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Entropy (1/2)

Given a discrete random variable x , how much information is received when
we observe a speci�c value for this variable?

If we are told that a highly improbable event has just occurred, we will
have received more information than if we were told that some very
likely event has just occurred, and if we knew that the event was
certain to happen we would receive no information.

Let h (x) be a monotonic function of the probability p (x) and express the
information content. We want h (x) to have the properties

h (x ,y) = h (x)+h (y)

if two events x and y are unrelated, i.e. p (x ,y) = p (x)p (y).

From these two relationships, it is easily shown that h (x) must be given by
the logarithm of p (x) and so we have

h (x) = − log2 p (x)

where the negative sign ensures that information is positive or zero.

The choice of basis for the logarithm is arbitrary.
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Entropy (2/2)

Now suppose that a sender wishes to transmit the value of a random

variable to a receiver. The average amount of information transmitted

in the process is

H [x ] = −
∑
x

p (x) log2 p (x) .

This quantity is called the entropy of the random variable x .
Note that limp→0 p lnp = 0 and so we shall take p (x) lnp (x) = 0
whenever we encounter a value for x such that p (x) = 0.

Next we show that these de�nitions indeed possess useful properties.

Average code length
A measure of disorder
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Average Code Length (1/2)

Consider a random variable x having 8 possible states, each of which

is equally likely.

In order to communicate the value of x to a receiver, we would need

to transmit a message of length 3 bits. Notice that the entropy of this

variable is given by

H [x ] = −8× 1

8
log2

1

8
= 3 bits.

If the probabilities of the 8 states are (12 ,
1
4 ,

1
8 ,

1
16 ,

1
64 ,

1
64 ,

1
64 ,

1
64)

instead, the entropy is

H [x ] = 2 bits.

This can be done using, for instance, the following set of code strings:
0,10,110,1110,111100,111101,111110,111111. The average code
length is then

1

2
×1+

1

4
×2+

1

8
×3+

1

16
×4+4× 1

64
×6= 2 bits.
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Average Code Length (2/2)

In the above example, we see that the nonuniform distribution has a

smaller entropy than the uniform one.

The relation between entropy and shortest coding length is a general

one. The noiseless coding theorem (Shannon, 1948) states that the

entropy is a lower bound on the number of bits need to transmit the

state of a random variable.
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A Measure of Disorder (1/2)

Let's consider a set of N identical objects that are to be divided

amongst a set of bins, such that there are ni objects in the i th bin.

The total number of ways of allocating the N objects to the bins is

given by

W =
N!∏
i ni !

which is called the multiplicity.

The entropy is then de�ned as the logarithm of the multiplicity scaled

by an appropriate constant

H =
1

N
lnW =

1

N
lnN!−

1

N

∑
i

lnni !.
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A Measure of Disorder (2/2)

We now consider the limit N →∞, in which the fractions ni/N are

held �xed, and apply Stirling's approximation

lnN!' N lnN−N

which gives

H =− lim
N→∞

∑
i

(ni
N

)
ln
(ni
N

)
=−
∑
i

pi lnpi

where we have used
∑

i ni = N.
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The Maximum Entropy Con�guration (1/4)

The maximum entropy con�guration can be found by maximizing H

using a Lagrange multiplier to enforce the normalization constraint on

the probabilities. Thus we maximize

H̃ =−
∑
i

p (xi ) lnp (xi )+λ

(∑
i

p (xi )−1

)

from which we �nd that all of the p (xi ) are equal and are given by

p (xi ) = 1/M where M is the total number of states xi .

To verify that the stationary point is indeed a maximum, we can

evaluate the second derivative of the entropy, which gives

∂H̃

∂p (xi )∂p (xj)
= −Iij

1

pi

where Iij are the elements of the identity matrix.
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The Maximum Entropy Con�guration (2/4)

In the case of discrete distributions, we saw that the maximum entropy
con�guration corresponded to an equal distribution of probabilities across
the possible states of the variable.

For a continuous variable x , we have

H [x ] = −

∫
p (x) lnp (x)dx

which is called the di�erential entropy.

In order for the maximum for H [x ] to be well de�ned, it will be necessary to
constrain the �rst and second moments of p (x) as well as preserving the
normalization constraint: ∫∞

−∞ p (x)dx = 1∫∞
−∞ xp (x)dx = µ∫∞

−∞ (x −µ)2 p (x)dx = σ2
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The Maximum Entropy Con�guration (3/4)

Then we maximize

−
∫
p (x) lnp (x)dx +λ1

(∫∞
−∞ p (x)dx −1

)
+λ2

(∫∞
−∞ xp (x)dx −µ

)
+λ3

(∫∞
−∞ (x −µ)2 p (x)dx −σ2

)
.

Using the calculus of variations, we set the derivative of this functional to
zero giving

p (x) = exp
{
−1+λ1+λ2x +λ3 (x −µ)

2

}
.

The Lagrange multipliers can be found by back substitution of this result
into the constraint equations, leading �nally to the result

p (x) =
1

(2πσ2)1/2
exp

{
−
(x −µ)2

2σ2

}

and so the distribution that maximizes the di�erential entropy is the
Gaussian.
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The Maximum Entropy Con�guration (4/4)

If we evaluate the di�erential entropy of the Gaussian, we obtain

H [x ] =
1

2

{
1+ ln

(
2πσ2

)}
.

The entropy increases as the distribution becomes broader, i.e., as σ2

increases.
Note that the di�erential entropy, unlike the discrete entropy, can be
negative, because H [x ]< 0 for σ2 < 1/(2π).
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Conditional Entropy

Suppose we have a joint distribution p (x ,y) from which we draw pairs

of values of x and y .

If a value of x is already known, then the additional information

needed to specify the corresponding value of y is given by − lnp (y |x).

Thus the average additional information needed to specify y can be

written as

H [y |x ] = −

∫∫
p (y ,x) lnp (y |x)dydx

which is called the conditional entropy of y given x .

It is easily seen, using the product rule, that the conditional entropy

satis�es the relation

H [x ,y ] = H [y |x ]+H [x ] .

H [x ,y ] is called the joint entropy of x and y .
Thus the information needed to describe x and y is given by the sum
of the information needed to describe x alone plus the additional
information required to specify y given x .
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Relative Entropy (1/2)

Consider some unknown distribution p (x), and suppose that we have

modeled this using an approximating distribution q (x).

If we use q (x) to construct a coding scheme for the purpose of

transmitting values of x to a receiver, then the average additional

amount of information required to specify the value of x as a result of

using q (x) instead of the true distribution p (x) is given by

KL(p||q) = −

∫
p (x) lnq (x)dx −

(
−

∫
p (x) lnp (x)dx

)
=−

∫
p (x) ln

{
q (x)

p (x)

}
dx .

This is known as the relative entropy or Kullback-Leibler (KL)
divergence between the distributions p (x) and q (x).
Note that KL(p||q) 6= KL(q||p).
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Relative Entropy (2/2)

We can show that the KL divergence satis�es KL(p||q)> 0 with equality i�
p (x) = q (x) using Jensen's inequality:

f

(
M∑
i=1

λixi

)
6

M∑
i=1

λi f (xi )

for a convex function f (x) where λi > 0 and
∑

i λi = 1.
If we interpret the λi as the probability distribution over a discrete variable x
taking the values {xi }, then the inequality can be written

f (E [x ])6 E [f (x)] .

For continuous variables, Jensen's inequality takes the form

f

(∫
xp (x)dx

)
6
∫
f (x)p (x)dx .

Since − lnx is a strictly convex function, we have

KL(p||q) = −

∫
p (x) ln

{
q (x)

p (x)

}
dx >− ln

∫
q (x)dx = 0

and the equality holds i� p (x) = q (x).
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Illustration of the Relative Entropy

Figure : Illustration of the relative entropy or KL divergence for two normal
distributions. Note that the typical asymmetry is clearly visible.
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Mutual Information

Consider the joint distribution between two variables x and y given by

p (x ,y). If they are independent, then their joint distribution will

factorize into the product of their marginals p (x ,y) = p (x)p (y).

If they are not independent, we can gain some idea of whether they are

close to being independent by considering the KL divergence between

the joint distribution and the product of the marginals, given by

I [x ,y ]≡ KL(p (x ,y) ||p (x)p (y))

= −

∫∫
p (x ,y) ln

(
p (x)p (y)

p (x ,y)

)
dxdy

which is called the mutual information between the variables x and y .

Using the sum and product rules of probability, we see that the mutual

information is related to the conditional entropy through

I [x ,y ] = H [x ]−H [x |y ] = H [y ]−H [y |x ] .
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Relation between Entropy and Mutual Information

Figure : Individual (H [X] ,H [Y]), joint (H [X,Y]), and conditional entropies for a
pair of random variables X,Y with mutual information I [X,Y].
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