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Probability Spaces (1/3)

An experiment (e.g., tossing a coin) is called random experiment i�
its outcome is uncertain in advance

De�nition (Probability Space)

A probability space is a triple (Ω,F,P) where:
a) The sample space Ω is a non-empty set containing all possible
outcomes of a random experiment;
b) The σ-algebra F ⊆ 2Ω is a set of subsets (i.e., events) of Ω such that:
b-1) Ω ∈ F; b-2) If A ∈ F, then Ac =Ω\A ∈ F; b-3) If Ai ∈ F for
i = 1,2, · · · , then ⋃∞i=1Ai ∈ F;
c) The probability P : F→ [0,1] is a function satisfying: c-1) P(Ω) = 1;
c-2) For mutually exclusive events Ai , i = 1,2, · · · , where Ai ∩Aj 6= ∅, i 6= j ,
we have P (

∑∞
i=1Ai ) =

∑∞
i=1P(Ai ).

Based on the De Morgan's law, properties b-2) and b-3) also imply
that if Ai ∈ F, then

⋂∞
i=1Ai ∈ F
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Probability Spaces (2/3)

Consider a random experiment tossing two coins:

Ω= {HH,HT ,TH,TT }1

If we de�ne the events �the �rst coin lands head� A1 = {HH,HT } and
�the �rst coin lands tail� A2 = {TH,TT }, then F = {Ω,∅,A1,A2}

If we de�ne the events �at least one head� B1 = {HH,HT ,TH} and �two
heads� B2 = {HH}, then F = {Ω,∅,B1,B

c
1
,B2,B

c
2
,Bc

1
∪B2,(B

c
1
∪B2)

c
}

A nature way to de�ne probability is by frequency, i.e.,
P(A) = limn→∞ timesn(A)/timesn(Ω) = limn→∞ timesn(A)/n, where
timesn(·) denotes how many times an event occurs when repeating the
experiment n times

What if the experiment is not repeatable?

P can also be de�ned to represent the degree of believe

Note Ω may be in�nite (e.g., consider an experiment throwing a dart
and the outcome is �at x meters from the center of the target�)

1HT means the �rst coin lands head and the second lands tail
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Probability Spaces (3/3)

By de�nition, we have [Proof]:

If P(A) = p, then P(Ac) = 1−p

P(∅) = 0
06 P(A)6 1
If A⊆ B, then P(A)6 P(B)
P(A∪B) = P(A)+P(B)−P(A∩B)6 P(A)+P(B) (equality holds
when A and B are mutually exclusive)

We call P(A) the marginal probability of A and P(A∩B) the joint
probability of A and B

Theorem (Law of Total Probability)

Let {Bi }
∞
i=1 be a partition of Ω (i.e.,

⋃∞
i=1Bi =Ω and Bi ∩Bj = ∅ for

i 6= j), then for any A we have P(A) =
∑∞

i=1P(A∩Bi ).
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Sure and Almost Sure Events

An event A happens surely if no outcome not in this event can occur

An event A happens almost surely if P(A) = 1

What's the di�erence?

The event �zero, one, or two heads� A=Ω is a sure event in the
coin-tossing experiment

The event �not at 4.3 meters from the center� is an almost sure even
in the dart-throwing experiment

De�ne probability of an event as the proportion of the event's
corresponding area to the area of the target
Since the event �at 4.3 meters from the center� is a circle without area,
its probability is 0
That is, the event �not at 4.3 meters from the center� has probability 1

An almost sure event can still not happen
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Conditional Probability and Independence

De�ne the conditional probability P(A|B) = P(A∩B)/P(B) as the
probability of the occurrence of A given that B occurred

The basic idea is to reduce the sample space to B: P(A|B) =

limn→∞ timesn(A∩B)
timesn(B) = limn→∞ timesn(A∩B)/timesn(Ω)

timesn(B)/timesn(Ω) = P(A∩B)/P(B)
Events A and B are independent i� their occurrence has nothing to
do with each other, i.e., P(A|B) = P(A)

Or equivalently, P(A∩B) = P(A)P(B)
Don't mix this up with the mutual exclusiveness:
A∩B = ∅⇒ P(A∪B) = P(A)+P(B)
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Bayes' Rule

Given P(A∩B) = P(A|B)P(B) = P(B |A)P(A), we can easily see that:

Theorem (Bayes' Rule)

P(A|B) = P(B |A)P(A)/P(B).

Bayes' Rule is so important to ML such that each term is given a
name: posterior (of A given B) = likelihood × prior / evidence

Example (From Predicting the Cause to Historical Statistics)

Given an event B �Having a suntan.� We want to infer whether the event
A1 �Mountain climbing� or A2 �Sleeping� is the cause. In other words, we
want to �nd an event Ai such that the posterior P(Ai |B) is higher. From
Bayes' rule, we can instead seeking for the event maximizing the product of
likelihood and prior, which, in this case, can be obtained from historical
statistics.
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Bayes' Rule

If A or B is continuous, we can instead formulate Bayes' Rule in terms
of the probability density p (A) or p (B).

If A is continuous and B is discrete,

p(A|B) =
P(B |A)p(A)

P(B)
.

If A is discrete and B is continuous,

P(A|B) =
p(B |A)p(A)

p(B)
.

If both A and B are continuous,

p(A|B) =
p(B |A)p(A)

p(B)
.
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Random Variables (1/2)

De�nition (Random Variable)

A random variable X :Ω→W, W⊆ R, de�ned on a probability space
(Ω,F,P) is a function that assigns a number to each outcome ω ∈Ω such
that for every x ∈ R, −∞< x <∞, the set {ω|X (ω)6 x} is an event in F.

In the coin-tossing experiment, we can de�ne X that sums up the
total number of heads such that X (TT ) = 0, X (HT ) = 1, and so on

Denote P(X 6 1) the probability of the event �less than or equal to one
head�

In the dart-throwing experiment, we de�ne Y as the distance from the
center

Denote P(Y 6 4.3) the probability of the event �within 4.3 meters�

A random variable is discrete if W is countable; otherwise continuous
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Random Variables (2/2)

We can perform arithmetic (e.g., X +Y , X 2, 2X ) or conditioning
(e.g., X |Y = y , X |Y 6 y) on random variables to get a new one

X and Y are said to be equal in distribution (or stochastically
equal), denote by X =s.t. Y , i� P(X 6 a) = P(Y 6 a) for all a ∈ R

If X =s.t. Y , does X +Y =s.t. 2X hold?

No, as the domains of X and
Y may be di�erent

X and Y are said to be equal, denote by X = Y , i� X (ω) = Y (ω)
for all ω ∈Ω
X and Y are independent i� P(X 6 x |Y 6 y) = P(X 6 x) (or
equivalently, P(X 6 x ,Y 6 y) = P(X 6 x)P(Y 6 y))
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Distributions and Densities (1/2)

De�nition (Probability Distribution Function)

Given a random variable X . A function FX : R→ [0,1], de�ned by
FX (x) = P(X 6 x), is called the probability distribution function of X .

De�nition (Probability Mass Function)

If X is discrete, we have FX (x) =
∑

s6x PX (s), where PX (s) = P(X = s) is
called the probability mass function of X .

De�nition (Probability Density Function)

If X is continuous and FX is di�erentiable such that FX (x) =
∫x
−∞ pX (s)ds,

we call pX the probability density function of X .

Is pX (s) a probability?

No, it is the �rate of increase� of FX at s

P(X = x) always equals to 0 when X is continuous
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Distributions and Densities (2/2)

From now on, we focus on the continuous random variables

The joint distribution of X and Y is de�ned by
FX ,Y (x ,y) =

∫x
−∞∫y−∞ pX ,Y (s, t)dsdt

pX ,Y is the joint density

We may obtain the marginal distribution of X by
FX (x) =

∫x
−∞∫∞−∞ pX ,Y (s, t)dsdt =

∫x
−∞ pX (s)ds

pX (s) =
∫∞
−∞ pX ,Y (s, t)dt is the marginal density of X (by law of

total probability)

The conditional distribution of X on Y is
FX |Y=y (x |y) =

∫x
−∞ pX ,Y (s,y)ds∫∞
−∞ pX ,Y (s,y)ds

=
∫x
−∞ pX ,Y (s,y)ds

pY (y) =
∫x
−∞ pX |Y=y (s |y)ds

pX |Y=y (s |y) = pX ,Y (s,y)/pY (y) is the conditional density
X and Y are independent i� FX |Y=y (x) = FX (x) (or
FX ,Y (x ,y) = FX (x)FY (y) or pX ,Y (s,y) = pX (s)pY (y))
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Bayes' Rule for Random Variables

Generally, P(X 6 x |Y 6 y) =
P(Y6y |X6x)P(X6x)

P(Y6y)

Can be written as as di�erent forms in terms of mass/density
functions:

PX |Y=y (x |y) =
PY |X=x(y |x)PX (x)

PY (y) for discrete X and Y

pX |Y=y (x |y) =
pY |X=x(y |x)pX (x)

pY (y) for continuous X and Y

PX |Y=y (x |y) =
pY |X=x(y |x)PX (x)

pY (y) for discrete X and continuous Y

pX |Y=y (x |y) =
PY |X=x(y |x)pX (x)

PY (y) for continuous X and discrete Y
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Expectations

De�nition (Expectation)

The expectation (or expected value or mean) of a real-valued function
f whose domain is the values of a continuous random variable X is de�ned
by E [f (X )] =

∫∞
−∞ f (x)pX (x)dx .

E is a functional of f
For convenience, in E [f (X )] we may expand f directly:

E.g., if f (x) = x , then E [f (X )] = E [X ] =
∫∞
−∞ xpX (x)dx = µX is called

the expectation of X
E [X n] =

∫∞
−∞ xnpX (x)dx is called the nth moment of X

E [X |Y = y ] =
∫∞
−∞ xpX |Y=y (x |y)dx is called the conditional

expectation
We may consider expectation of functions de�ned over multiple
variables:

E [X +Y ] =
∫∞
−∞ ∫∞−∞(x + y)pX ,Y (x ,y)dxdy

We can subscript E to average f with respect to some particular
variables

E.g., EX [X +Y ] =
∫∞
−∞(x + y)pX ,Y (x ,y)dx

Note that EX [X +Y ] is a function of y
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Properties

E [X +Y ] =
∫∞
−∞∫∞−∞(x + y)pX ,Y (x ,y)dxdy =∫∞

−∞ x
(∫∞

−∞ pX ,Y (x ,y)dy
)
dx +

∫∞
−∞ y

(∫∞
−∞ pX ,Y (x ,y)dx

)
dy=∫∞

−∞ xpX (x)dx +
∫∞
−∞ ypY (y)dy = E [X ]+E [Y ]

Also, E [aX +b] = aE [X ]+b where a and b are a constants [Proof]

E [E [X ]] = E [X ] (E [X ] is a constant)

E [XY ] = E [X ]E [Y ] if X and Y are independent [Proof]
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Jensen's Inequality

Theorem (Jensen's Inequality)

Given a convex, di�erentiable function f de�ned on the values of a random

variable X , we have E [f (X )]> f (E [X ]).

Proof.

De�ne a linear function g(x ,a) = f (a)+ f ′(a) · (x −a) that is tangent to f

at some point a. Since f is convex, we have g(x ,E [X ])6 f (x) for all x .
This implies that E [f (X )] =

∫
f (x)p(x)dx >

∫
g(x ,E [X ])p(x)dx =

E [g(x ,E [X ])]= E [f (E [X ])+ f ′(E [X ]) · (X −E [X ])] = f (E [X ]).
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Variance

De�nition (Variance)

The variance of a real-valued function f whose domain is the values of a
continuous random variable X is de�ned as
Var [f (X )] = E [(f (X )−E [f (X )])2].

Variance measures how much a function f varies from its expected
value in average

In particular, Var(X ) = E
[
(X −E [X ])2

]
= σ2X is called the variance of

X

We have Var(X ) = E
[
(X −E [X ])2

]
= E

[
X 2−2E [X ]X +E [X ]

]
=

E [X 2]−E [X ]2

σX =
√
Var(X ) is called the standard deviation of X
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Covariance

De�nition (Covariance)

The covariance between two random variable X and Y , denoted by
Cov [X ,Y ], is de�ned as Cov [X ,Y ] = E [(X −E [X ])(Y −E [Y ])].

If X and Y are related in a linear way (e.g., Y = aX +b), covariance
measures how much these two variables change together

Positive (resp. negative) covariance implies that Y grows (resp.
shrinks) as X increases

Cov [X ,Y ] = 0 if X and Y are independent [Proof]

The converse is not true as X and Y may be related in a nonlinear way
(e.g., Y = sin(X ))
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Properties

Var [aX +b] = a2Var [X ] where a and b are constants [Proof]

Var [aX +bY ] = a2Var [X ]+b2Var [Y ]+2abCov [X ,Y ] [Proof]

Var [X +Y ] = Var [X ]+Var [Y ] if X and Y are independent

Cov [aX +b,cY +d ] = acCov [X ,Y ] [Proof]

Cov [aX +bY ,cW +dV ] =
acCov [X ,W ]+adCov [X ,V ]+bcCov [Y ,W ]+bdCov [Y ,V ] [Proof]
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Correlation

De�nition (Correlation)

The correlation between two random variable X and Y , denoted by
Corr [X ,Y ], is de�ned as Corr [X ,Y ] = Cov [X ,Y ]/

√
Var [X ]Var [Y ].

Correlation is the normalized covariance with respect to X 's and Y 's
variances

The value always lies between [−1,1]

Remember how a search engine calculates the similarity between two
documents?

In addition to the cosine function, the correlation is another similarity
measure (if we think the attributes of a document version as the values
of a random variable)
What's the di�erence?

Correlation measures the similarity between the
trends of the change across attributes; while the cosine function
measures the similarity between corresponding attributes directly
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Markov's Inequality

Theorem (Markov's Inequality)

Let h be a real-valued, nonnegative, and nondecreasing function de�ned

over the values of a random variable X , we have P(X > t)6 E [h]
h(t) for any

t ∈ R.

Proof.

By de�nition, E [h] =
∫∞
−∞ h(z)pX (z)dz . Since h is nonnegative, we have∫∞

−∞ h(z)pX (z)dz >
∫∞
t h(z)pX (z)dz . Furthermore,∫∞

t h(z)pX (z)dz > h(t)
∫∞
t pX (z)dz = h(t)P(X > t) as h is nondecreasing.

We obtain the proof.

By letting h(x) = x+ we have P(X > t)6 µX
t

for t > 0 [Proof]
Provides a quick check for some statement about the tail of a
distribution

E.g., If we know that the average response time of a web site is 1
second. How many users will experience delay longer than 10 seconds?

Markov's Inequality tells us that there will be no more than
1/10= 10% of total users that will experience this
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Chebyshev's Inequality

If we know σX , we can have a more speci�c bound:

Theorem (Chebyshev's Inequality)

P(|X −µX |> t)6
σ2X
t2

for any t > 0.

Proof.

Let Y =s.t. (X −µX )
2 and h(x) = x . By Markov's Inequality we have

P(Y > t2)6 µY
t2

. Note that

P(Y > t2) = P
(
(X −µX )

2 > t2
)
= P (|X −µX |> t) and

µY = E
[
(X −µX )

2
]
= σ2X . So P (|X −µX |> t)6

σ2X
t2

.

Setting t = cσX for some c > 0, we have P (|X −µX |> cσX )6
1
c2
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Describing the Distribution of a Random Variable

Given a random variable X and a function Dist parametrized by θ, we
sayX has distribution Dist(θ), denoted by X ∼ Dist(θ), i�

PX (x) = Dist(x |θ) when X is discrete, or
pX (x) = Dist(x |θ) when X is continuous

Next, we study common Dist functions
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Bernoulli Distribution (Discrete)

The distribution of a random variable X depends on how the
experiment is de�ned

The simplest experiment is to perform a trial whose outcome can be
either 0 (failure) or 1 (success)

Let p be the probability of success, we have PX (1) = P(X = 1) = p

and PX (0) = P(X = 0) = (1−p)

X ∼ Ber(p), where Ber(x |p) = px(1−p)1−x for x = 0,1

FX (x) =
∑

k6x Ber(k |p) for x = 0,1

E [X ] = p, Var [X ] = p(1−p) [Proof]
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Binomial Distribution (Discrete)

How about the experiment that performs the Bernoulli trial
independently for n times and counts the times of success?

We have PX (x) =

(
n

x

)
px(1−p)n−x

X ∼ Bin(n,p), where Bin(x |n,p) =

(
n

x

)
px(1−p)n−x for 06 x 6 n

FX (x) =
∑

k6x Bin(k |n,p)

E [X ] = np, Var [X ] = np(1−p) [Proof]

Let X (i) ∼ Ber(p), we can see that X (1)+ · · ·+X (n) ∼ Bin(n,p)
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Multinomial Distribution (Discrete)

Now, what if each trial in the Binomial distribution can have K
possible outcomes (e.g., rolling a die) instead of 2?

Let pi be the possibility the ith possible outcome occurs in a trial,
where

∑K
i=1 pi = 1, we have PX (x1, · · · ,xK |p) = n!

x1···xK
∏K

i=1 p
xi
i for∑K

i=1 xi = n

X ∼Mul(n,K ,p), where Mul(x1, · · · ,xK |n,K ,p) = n!
x1···xk

∏K
i=1 p

xi
i for∑K

i=1 xi = n

Distributions are discussed separately in terms of each xi , i.e.,
FX (xi |x1, · · · ,xi−1,xi+1, · · · ,xK ) =

∑
s6xi

Mul(x1, · · · ,s, · · · ,xK |n,K ,p),

where
∑i−1

j=1 xj + s+
∑k

j=i+1 xj = n
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Dirichlet Distribution (Continuous) (1/3)

If p= (p1, · · · ,pK ) ∼ Dirichlet(α), then

P (p|α) =
Γ (α0)

Γ (α1) · · ·Γ (αK )
K∏
i=1

pαi−1
i

for all p1, · · · ,pK > 0 satisfying p1+ · · ·pK = 1.

α= [α1, . . . ,αK ]
> and α0 =

∑
i αi .

Γ (α) is the Gamma function de�ned as Γ (α)≡
∫∞
0
uα−1e−udu.

Note that Γ (α) = (α−1)! if α is a positive integer.
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Dirichlet Distribution (Continuous) (2/3)

If we use the Dirichlet distribution as the prior for the multinomial (i.e.,
p ∼Dirichlet(α)), we have

P (p|x1, · · · ,xK ) =
P (x1, · · · ,xK |p)P (p|α)∫
P (x1, · · · ,xK |p)P (p|α)dp

=

(
n!

x1···xK
∏K

i=1
p
xi
i

)(
Γ(α0)

Γ(α1)···Γ(αK )

∏K
i=1

p
αi−1

i

)
∫
p

(
n!

x1···xK
∏K

i=1
p
xi
i

)(
Γ(α0)

Γ(α1)···Γ(αK )

∏K
i=1

p
αi−1

i

)
dp

=

∏K
i=1

p
αi+xi−1

i
Γ(α1+x1)···Γ(αK+xK )

Γ(α0+n)
×
∫
p

Γ(α0+n)
Γ(α1+x1)···Γ(αK+xK )

∏K
i=1

p
αi+xi−1

i dp

=
Γ (α0+n)

Γ (α1+x1) · · ·Γ (αK +xK )

K∏
i=1

p
αi+xi−1

i

∼Dirichlet(α+x)

where x= [x1, · · · ,xK ]>.

We see that the posterior has the same form as the prior and we call such a prior a
conjugate prior.
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Dirichlet Distribution (Continuous) (3/3)

As xi are counts of occurrences of state i in a sample of x, we can
view αi as counts of occurrences of state i in some imaginary sample
of α0 instances. In de�ning the prior, we are subjectively saying that in
a sample of α0, we expect αi of them to belong to state i .

Note that larger α0 implies that we have a higher con�dence in our
subjective proportions.

In a sequential setting where we receive a sequence of instances,
because the posterior and the prior have the same form, the current
posterior accumulates information from all past instances and becomes
the prior for the next instance.
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Dirichlet-Multinomial Distribution (Continuous)

In the case the Dirichlet distribution is used as the prior for the multinomial,
by integrating out p, we get the marginal joint distribution

P (x1, · · · ,xK |α) =
∫
p

P (x1, · · · ,xK |p)P (p|α)dp

=

∫
p

(
n!

x1 · · ·xK

K∏
i=1

p
xi
i

)(
Γ (α0)

Γ (α1) · · ·Γ (αK )
K∏
i=1

p
αi−1

i

)
dp

=
Γ (α0)

Γ (α0+n)

(
K∏

k=1

Γ (αk + xk)

Γ (αk)

)

which is called the Dirichlet-multinomial distribution.
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Uniform Distribution (Continuous)

We say that X is uniformly distributed within [a,b] if X ∼ Uni(a,b),
where Uni(x |a,b) = 1/(b−a) for a 6 x 6 b

FX (x) =
∫x
a Uni(x |a,b)dx = (x −a)/(b−a)

E [X ] = (a+b)/2, Var [X ] = (b−a)2/12 [Proof]

[Homework] Plot the above density/mass and distribution functions
using Matlab
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Convergence of Random Variables (1/2)

Theorem (Convergence in Distribution)

A sequence of random variables {X (1),X (2), · · · } converges in distribution
to X i� limn→∞FX (n)(x) = F (x).

Theorem (Convergence in Probability)

A sequence of random variables {X (1),X (2), · · · } converges in probability
to X i� for any ε > 0, limn→∞P[|X (n)−X |< ε] = 1.

Theorem (Convergence Almost Surely)

A sequence of random variables {X (1),X (2), · · · } converges almost surely
to X i� P

[
limn→∞X (n) = X

]
= 1.
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Convergence of Random Variables (2/2)

What's the di�erence between the convergence in probability and
almost surely?

The former leaves open the possibility that |X (n)−X |> ε happens an
in�nite number of times; while the latter guarantees that this almost
surely will not occur
Convergence almost surely implies convergence in probability
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The Sample Mean and Variance

Statistics refer to numeric quantities derived from sample data of a
population

Common statistics?

Let X= {X (1), · · · ,X (n)} be a set of n independent
and identically distributed (i.i.d.) random variables drawn (or sampled)
from a population X of unknown mean µX and variance σ2X

Sample mean: mX = 1

n

∑n
i=1

X (i)

Sample variance: s2X = 1

n−1

∑n
i=1

(X (i)−mX )
2 (Why 1

n−1
instead of

1

n
?)

The process of estimating the values (resp. intervals) of parameters of
a population using statistics is known as the point (resp. interval)
estimation
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Bias and Variance (1/2)

Let θ be an unknown parameter and dX be its statistic (a random
variable) obtained from X, we want to measure how �good� dX is

Bias: E [dX]−θ (here the expectation is averaged over all possible X of
the same size, i.e., E [dX] =

∫
dXp(X)dX)

Variance: E
[
(dX−E [dX])

2

]
Mean square error:

EX

[
(dX−θ)2

]
= E

[
(dX−E [dX]+E [dX]−θ)2

]
= E

[
(dX−E [dX])2+(E [dX]−θ)2+2(dX−E [dX]) (E [dX]−θ)

]
= E

[
(dX−E [dX])2

]
+E

[
(E [dX]−θ)2

]
+2E [(dX−E [dX]) (E [dX]−θ)]

= E
[
(dX−E [dX])2

]
+(E [dX]−θ)2 = variance+bias2

We call a statistic unbiased estimator i� it has zero bias

mX is an unbiased estimator of µX , as
E [mX ] = E

[
1

n

∑n
i=1

X (i)
]
= 1

n

∑n
i=1

E [X (i)] = µX
But s̃2X = 1

n

∑n
i=1

(X (i)−mX )
2 is not an unbiased estimator of σ2X
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Bias and Variance (2/2)

Var(mX ) = E
[
(mX −E [mX ])2

]
= E

[
m2
X −2µXmX +µ2X

]
= E

[
m2
X

]
−µ2X

=
1

n2

∑
ij

E [X (i)X (j)]−µ2X =
1

n2

∑
i=j

E [X (i)X (j)]+
∑
i 6=j

E [X (i)X (j)]

−µ2X

=
1

n2

(∑
i

E [X (i)2]+n(n−1)E [X (i)]E [X (j)]

)
−µ2X

=
1

n
E [X 2]+

(n−1)

n
µ2X −µ2X =

1

n

(
E [X 2]−µ2X

)
=σ2X/n

E [s̃2X ] = E

[
1

n

n∑
i=1

(X (i)−mX )2

]
= E

[
1

n

(
n∑

i=1

X (i)2−2

n∑
i=1

X (i)mX +

n∑
i=1

m2
X

)]
= E

[
1

n

(
n∑

i=1

X (i)2−nm2
X

)]

=
1

n

(
n∑

i=1

E
[
X (i)2

]
−nE [m2

X ]

)
= E

[
X 2
]
−E [m2

X ] =
(
σ2X +µ2X

)
−
(
Var(mX )+E [mX ]2

)
=σ2X +µ2X −

1

n
σ2X −µ2X =

n−1

n
σ2X 6=σ2X

We can see from above that s2X = n
n−1 s̃

2
X is an unbiased estimator
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Law of Large Numbers (1/2)

Let {X (i)}ni=1 be a set of n i.i.d. random variables drawn from a
population X of unknown mean µX and variance σX , and

m
(n)
X = 1

n

∑n
i=1Xi be the sample mean

Theorem (Weak Law of Large Numbers)

For any ε > 0, limn→∞P
(∣∣∣m(n)

X −µX

∣∣∣< ε)= 1.

Proof.

By Chebyshev's inequality we have

P
(∣∣∣m(n)

X −µX

∣∣∣> ε)= P
(∣∣∣m(n)

X −E [x ]
∣∣∣> ε)6 Var(xn)

ε2
= σX

nε2
, implying

limn→∞P
(∣∣∣m(n)

X −µX

∣∣∣> ε)6 limn→∞ σX
nε2

= 0 and therefore

limn→∞P
(∣∣∣m(n)

X −µX

∣∣∣< ε)= 1.
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Law of Large Numbers (2/2)

More complex arithmetic shows that m
(n)
X converges almost surely to

µX :

Theorem (Strong Law of Large Numbers)

P
(
limn→∞m

(n)
X = µX

)
= 1.
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Central Limit Theorem

Now, let's study �how� m
(n)
X deviates from µX

Let Y (n) =s.t. m
(n)
X −µX , we want to know the distribution of Y (n) as

n→∞
But the law of large numbers tells us that P

(
limn→∞Y (n) = 0

)
= 1 so

the distribution is trivial

We study the enlarged2 deviation instead: Y (n) =s.t.
√
n(m

(n)
X −µX )

Theorem (Central Limit Theorem)

{Y (n)}n converges in distribution to a random variable of distribution

N(0,σ2X ); that is, limn→∞Y (n) ∼ N(0,σ2X ), where

N(x |µ,σ2) = 1√
2πσ2

exp(
−(x−µ)2

2σ2
).

limn→∞FY (n)(x) = limn→∞P(
√
n(m

(n)
X −µX )6 x) =∫x

−∞N(x |0,σ2X )dx .
2It can be shown that

√
n is the only enlarge coe�cient such that Y (n) converges

and has nontrivial distribution
Shan-Hung Wu (CS, NTHU) Probability and Statistics NetDB-ML, Spring 2014 46 / 72



The Normal Distribution

N(µ,σ2) is called the normal (or Gaussian) distribution

Central limit theorem tells us that no matter what the original
distribution of X was, if n is very large, the (enlarged) deviation of
the sample mean from µX has probability looks like below:

Figure : Density of a normal random variable. The probability that the deviation
falls within [−2σ,2σ] is about 95%.
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Properties

If X ∼ N(µ,σ2), then aX +b ∼ N(aµ+b,(aσ)2) for any a,b ∈ R
[Proof]

We call Z =s.t.
X−µ
σ ∼ N(0,1) the z-normalization fo X

Given two functions f (x) =N(x |µ1,σ
2
1) and g(x) =N(x |µ2,σ

2
2), we

have (f ◦g)(x) =
∫
f (x − t)g(t)dt =N(µ1+µ2,σ

2
1+σ

2
2) [Proof]

The convolution of two normal distributions is still a normal distribution

If X1 ∼ N(µ1,σ
2
1) is independent with X2 ∼ N(µ2,σ

2
2), then

X1+X2 ∼ N(µ1+µ2,σ
2
1+σ

2
2)

Not true if X1 and X2 are dependent

E.g., let X1 ∼ N(µX1 ,σ
2

X1
) and X2 =s.t.

{
X1, |X1|6 c

−X1, otherwise
for some

c ∈ R, then both X1 and X2 are univariate normal but X1+X2 is not
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When Should We Assume Normal?

When should we assume that a random variable is normal?

Given n i.i.d. random variables X (i), 16 i 6 n, of mean µX and

variance σ2X , the distribution of random variable
√
n
(∑n

i=1X
(i)

n
−µX

)
approaches N(0,σ2X ) when n is large
That is, the distribution of

∑n
i=1

X (i) is close to N(nµX ,nσ
2

X ) when n

is large
We can assume a random variable to be normal if 1) its values can be
regarded as deviations from some prototype (i.e., mean); 2) it can be
regarded as the sum of many random variables

The binomial distribution (sum of outcomes of n Bernoulli
experiments) can be approximated by the normal distribution when n

is large
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Interval Estimation

In interval estimation, we specify an interval within which θ lies with a
certain degree of con�dence.

To obtain such an interval estimator, we make use of the probability
distribution of the point estimator.
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Two-sided Con�dence Interval

Suppose X=
{
X (i)
}n
i=1

is a sample from a normal density with the
mean µX and variance σ2.

Can we �nd a interval [u(X),v(X)] such that
P (u(X)< µX < v(X)) = γ?

Let's start from analyzing the property of the sample mean
mX =

∑n
i=1X

(i)/n.
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Two-sided Con�dence Interval

mX is the sum of normals and therefore is also normal,
mX ∼ N

(
µX ,σ

2/n
)
. We can also de�ne the statistic with a unit

normal distribution Z ∼ N(0,1):

(mX −µX )

σ/
√
n

∼ Z

We know that P(−1.96< Z< 1.96) = 0.95, and we can write

P(−1.96<
√
n
(mX −µX )

σ
< 1.96) = 0.95

or
P(mX −1.96

σ√
n
< µX <mX +1.96

σ√
n
) = 0.95

That is �with 95 percent con�dence,� µX will lie within 1.96σ/
√
n units

of the sample mean.
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Generalized for Any Required Con�dence

Let us denote zα such that P(Z> zα) = α, 0< α < 1.

Because Z is symmetric around the mean, z1−α/2 =−zα/2, and
P(X <−zα/2) = P(X > zα/2) = α/2. Hence,

1−α= P(−zα/2 < Z< zα/2)

= P(−zα/2 <
√
n
(mX −µX )

σ
< zα/2)

= P(mX −Zα/2
σ√
n
< µX <mX +Zα/2

σ√
n
)

Hence, a 100(1−α) percent two-sided con�dence interval for µX can
be computed for any α.
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One-sided Con�dence Interval

Similarly, knowing that P(Z< 1.64) = 0.95, we have

0.95= P(
√
n
(mX −µX )

σ
< 1.64)

= P(mX −1.64
σ√
n
< µX )

(m−1.64σ/
√
n,∞) is a 95 percent one-sided upper con�dence interval

for µX .

Generalizing, a 100(1−α) percent one-sided con�dence interval for
µX can be computed from

P(mX − zα
σ√
n
< µX ) = 1−α
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Sample Variance?

In the previous intervals, we assume the variance σ2 is known.
However, we only have sample variance s2X = 1

n−1

∑n
i=1(X

(i)−mX )
2

in usual.

Then,
√
N (mX −µX )/sX is t-distributed with N−1 degrees of

freedom, denoted as
√
N (mX −µX )

sX
∼ tN−1

Hence for any α ∈ (0,1/2), we can de�ne an interval, using the values
speci�ed by the t-distribution, instead of unit normal Z:

P(t1−α/2,N−1 <
√
N
(mX −µX )

sX
< tα/2,N−1) = 1−α

or using t1−α/2,N−1 =−t1α/2,N−1, we can write

P(mX − tα/2,N−1

sX√
N
< µX <mX + tα/2,N−1

sX√
N
) = 1−α
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Properties of Student t-distribution

We say
√
N (mX −µX )/sX is t-distributed with ν= N−1 degrees of

freedom.

As N becomes larger, t density becomes more and more like the unit
normal, the di�erence being that t has thicker tails, indicating greater
variability than does normal.

ν → ∞
ν = 1.0

ν = 0.1

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

Figure : The limit ν→∞ corresponds to a Gaussian distribution
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Hypothesis Testing

We will come back to this later if we have time to talk about the ML
experiments
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Multivariate Random Variables (1/2)

Now, let's extend the notion of random variable to the multivariate
cases: X = [X1, · · · ,Xd ]

>

We discuss the distribution of X , which is a joint distribution of
X1, · · · ,Xd

Typically, the attributes Xi (or variables or features) of X are
correlated (otherwise, they can be discussed individually)

The mean vector of X can be de�ned as µX = E [X ] = [µX1 , · · · ,µXd ]>
Denoting
σXi ,Xj = Cov [Xi ,Xj ] = E [(Xi −µXi )(Xj −µXj )] = E [XiXj ]−µXiµXj , we
de�ne the covariance matrix of X as

ΣX = Cov [X ] =


σ2X1 σX1,X2 · · · σX1,Xd
σX2,X1 σ2X2 · · · σX2,Xd

...
...

. . .
...

σXd ,X1 σXd ,X2 · · · σ2Xd

=

E [(X −µX )(X −µX )
>] = E [XX>]−µXµ

>
X
.
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Multivariate Random Variables (2/2)

ΣX is always symmetric and positive semide�nite

v>ΣXv = v>
(∫
X
(X −µX )(X −µX )

>dX
)
v =∫

X

(
v>(X −µX )(X −µX )

>v
)
dX= E [v>(X −µX )(X −µX )

>v ] =

E
[(
v>(X −µX )

)2]
> 0

ΣX is positive de�nite i� it is nonsingular

We write Var [X ]> 0 when ΣX is positive de�nite

ΣX is singular (i.e., det(ΣX ) = 0) implies that X has either

Deterministic attributes causing zero rows, or
Redundant attributes causing linear dependence between rows

How to measure the variance of X?

By det(ΣX )
Suppose d = 2, we can see that a small

det(ΣX ) = det

([
σ2X1

σX1,X2

σX2,X1
σ2X2

])
= σ2X1

σ2X2
−σX1,X2

σX2,X1

implies either

X does not vary much from µX , or
The attributes of X are highly correlated
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Properties and Point Estimation

Consider w ∈ Rd and a random variable w>X

µ
w>X = E [w>X ] =w>E [X ] =w>µX
σ2
w>X

= Var(w>X ) = E [(w>X −w>µX )
2] =

E [(w>X −w>µX )(X
>w −µ>

X
w)]= E [w>(X −µX )(X −µX )

>w ] =
w>E [(X −µX )(X −µX )

>]w =w>ΣXw

Given X= {X (1), · · · ,X (n)} a set of n i.i.d. random variables drawn
from a population X

Sample mean: mX =
∑n

t=1X
(t)

n

Sample covariance matrix: SX = 1

n−1

∑n
t=1

(X (t)−mX )(X
(t)−mX )

>

s2Xi
=
∑n

t=1
(X

(t)
i −mXi

)2

n−1

s2Xi ,Xj
=

∑n
t=1

(X
(t)
i −mXi

)(X
(t)
j −mXj

)

n−1
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Multivariate Normal Distribution

De�nition (Multivariate Normal Distribution)

A multivariate random variable X = [X1, · · · ,Xd ]
> is said to have the

multivariate normal distribution, denote as X ∼ N(µX ,ΣX ), i� for any
w ∈ Rd , the random variable w>X (that is, the projection of X on w) is
univariate normal.

N(x |µ,Σ) = 1
(2π)d/2det(Σ)1/2

exp
[
−1

2(x −µ)>Σ−1(x −µ)
]
provided Σ

is nonsingular

If ΣX is singular (i.e., det(ΣX ) = 0), we can remove the
deterministic/redundant attributes of X to make ΣX nonsingular
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Distributions of Components

If X ∼ N(µX ,ΣX ), then each attribute of X is univariate normal

Is converse true?

No

Again, let X1 ∼ N(µX1 ,σ
2

X1
) X2 =s.t.

{
X1, |X1|6 c

−X1, otherwise
for some

c ∈ R, and w = [1,1]>, then both X1 and X2 are univariate normal but
w>X = X1+X2 is not

However, if X1, · · · ,Xd are i.i.d. and Xi ∼ N(µi ,σ
2
i ), then

X ∼ N(µX ,ΣX ), where µX = [µ1, · · · ,µd ]> and

ΣX =

 σ
2
i · · · 0
...

. . .
...

0 · · · σ2i

 [Proof]
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The Mahalanobis Distance

De�nition (Mahalanobis Distance)

Let x and y be two speci�c values (vectors) of a random variable X with
covariance matrix ΣX , the Mahalanobis distance between x and y is
de�ned as (x −y)>Σ−1

X
(x −y).

The larger the distance between x and µX , the smaller the
multivariate normal density pX (x)
Mahalanobis distance degenerates into the Euclidean distance when
ΣX = cI , as
(x −µX )

>(cI )−1(x −µX ) =
1
c
(x −µX )

>(x −µX ) =
1
c
‖x −µX‖

How does ΣX a�ect the distance?

The level set {x : (x −µX )
>Σ−1

X
(x −µX ) = c2,c ∈ R} is an ellipsoid (a

surface) centered at µX and its shape/orientation are determined by
ΣX
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Bivariate Examples (1/3)

Let's consider an example where d = 2,

ΣX =

[
σ2X1

ρσX1
σX2

ρσX1
σX2

σ2X2

]
, and ρ=

σX1,X2
σX1σX2

If |ρ|< 1, then ΣX is positive de�nite and nonsingular

As det(ΣX ) and all the leading principle minors are greater than 0
In particular when |ρ|= 0, the attributes of X are independent and

pX (x) =
∏d

i=1
pXi (xi )

If |ρ|= 1, the two attribute of X are linearly related and one of them
can be eliminated
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Bivariate Examples (2/3)

Cov(x
1
,x

2
)=0, Var(x

1
)=Var(x

2
)

x
1

x 2

Cov(x
1
,x

2
)=0, Var(x

1
)>Var(x

2
)

Cov(x
1
,x

2
)>0 Cov(x

1
,x

2
)<0

Figure : The level sets closer to the center µX are de�ned with lower c. (a)
When Cov [X1,X2] = 0 and Var [X1] = Var [X2] 6= 0, the level sets are spheres and
the Mahalanobis distance degenerates into the Euclidean distance. (b) By
increasing Var [X1], we stretch the level sets (and squeeze the distance)
horizontally along the X1 axis. (c) By increasing Cov [X1,X2] (or ρ), we stretch
the level sets along the 45◦ axis. The closer the ρ to 1, the thinner the sets. (d)
By decreasing Cov [X1,X2] (or ρ), we stretch the level sets along the −45◦ axis.
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Bivariate Examples (3/3)

The shape of
N(x |µX ,ΣX ) =

1
(2π)d/2det(ΣX )1/2

exp
[
−1

2(x −µX )
>Σ−1

X
(x −µX )

]
in a

graph is also determined by ΣX , as it is proportional to the inverse of
Mahalanobis distance
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Properties (1/2)

Given X ∼ N(µX ,ΣX ) and w ∈ Rd , we have
w>X ∼ N(w>µX ,w

>ΣXw)

By de�nition w>X is normal and we have µ
w>X =w>µX and

σ2
w>X

=w>ΣXw

More generally, given any W ∈ Rd×k , k 6 d , we have
W>X ∼ N(W>µX ,W

>ΣXW ) which is k-variate normal

The projection of X onto a k-dimensional space is still normal
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Properties (2/2)

Applying Bayes' rule to normal variables we get [Proof]:

Theorem

Given two dependent random variables X = [X1, · · · ,Xd ]
> and

Y = [Y1, · · · ,Yk ]
> such that

X ∼ N(µ,Λ) and (Y |X = x) ∼ N(W>x +b,L)

for some µ ∈ Rd , Λ ∈ Rd×d , W ∈ Rd×k , b ∈ Rk and L ∈ Rk×k , then we

have
Y ∼ N(W>µ+b,L+W>ΛW ) and

(X |Y = y) ∼ N(Σ(WL−1(y −b)+Λ−1µ),Σ),

where Σ= (Λ−1+WL−1W>)−1.

The mean of Y |X = x is a linear combination of the conditioned
values x
p(Y ) marginalized from p(X ,Y ) is a normal distribution if p(Y |X )
and p(X ) are normal distributions satisfying the above relation

Note that when W = I , p(Y ) is just the convolution of two normal
distributions N(b,L) and N(µ,Λ)
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