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@ Optimization Problems
@ Standard Forms and Terminology
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Functional Form

e An optimization problem is to minimize an objective (or cost)
function f: D CR"” = R;:

miny f(x)
subject to x € C

where C C R” is called the feasible set containing feasible points
(or variables)

e If C =R", we say the optimization problem is unconstrained

@ Maximizing f equals to minimizing —f

@ C can be a set of function constrains, i.e.,
C={x:gi(x)<0,i=1,---,m}

o Sometimes, we single out equality constrains
C={x:gi(x)<0,hj(x)=0,i=1,--- mj=1,- p}
e Each equality constrain can be written as two inequality constrains
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Epigraph form

@ We can always assume that the objective is a linear function of the
variables, via the epigraph
(epi(f) :={(x,t) € R"™1:x € R",t > f(x)}) representation of the
problem
miny ¢ £
subject to f(x)—t<0,xe C

@ The objective function is AR SR, with values A(x,t) =t

o Consider the t-sublevel set of A (e {x:t> A(x)}) the problem
amounts to finding the smallest t for which the corresponding
sub-level set intersects the set of points satisfying the constraints
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Functional form:

miny 0.9x2 —0.4x;x0 —0.6x3 —6.4x; —0.8x0: —1 < x <2,0< % <3
Epigraph form:

minyet:t>0.9x7 —0.4x10 —0.6x3 —6.4x; —0.8x0, —1 <33 <2,0< % < 3

‘ T The level sets of the objective

i function are shown as blue lines, and
the feasible set is the light-blue box.
The problem amounts to find the
smallest value of t such that ¢t = f(x)
for some feasible x. The two dots are
the unconstrained and constrained
optimal values respectively
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Terminology (1)

o p*:=inf,f(x):x € C is called the optimal value, which

e may not exist if the problem is infeasible
e may not be attained (e.g., in min, e™*, p* =0 is attained only when
X — 00)

@ We allow p* to take on the values co and —oo when the problem is
either
o infeasible (the feasible set is empty), or

e unbounded below (there exists feasible points such that f(x) — —o0),
respectively

*

@ A feasible point x* is called the optimal point if f(x*)=p

@ The optimal set X* is the set of all optimal points, i.e.,
X*:={xe C:f(x)=p*}=argmingf(x):xe C

e We say the problem is attained iff C # () and p* is attained (or
equivalently, X* #£ ()
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Terminology (2)

@ The e-suboptimal set X€ is defined as X€:={xec C:f(x) < p*+¢€}

. An e-suboptimal set is marked in

i darker color. This corresponds to the
set of feasible points that achieves an
objective value less or equal than
p*+e

@ In practice, we may be only interested in suboptimal solutions
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Local vs. Global Optimality

e A point z is locally optimal if there is a value & > 0 such that z is
optimal for problem (with new objective f(x,z) = f(x))

minf(x):z,x e C,|[x—z| <d

e That is, a local minimizer minimizes f, but only for its nearby points in
the feasible set

Minima of a nonlinear function. The value at a
local minimizer is not necessarily the (global)
optimal value of the problem, unless f is a

v “convex” function (in the sense that epi(f) is a
“convex” set)
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@ Optimization Problems

@ Problem Classes
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Linear Programming

o Linear Programming (LP) has the form:!

mingc ' x
subject to Gx < h,Ax=b

where ceR", GeR™" hecR™ AcRPX" and bc RP

@ The objective and the m+ p constrain functions are all affine (i.e.,

translated linear)

T

o Note min, ¢ x + d for some fixed d € R amounts to min, ¢ x

1The term “programming” has nothing to do with computer programs. It is named so
due to historical reasons.
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Quadratic Programming

e Quadratic Programming (QP) has the form:

mingyx ' Qx+c ' x
subject to Gx < h,Ax=b
where Q e R™" ceR", GER™ " heR™M AcRP*" and bc RP

@ The objective is a quadratic function, and the m+ p constrain
functions are affine
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Convex Optimization

e A convex optimization problem is of the form:

miny f(x)
subject to x € C

where f is a convex function, and C is a convex set
@ In particular, with constrains
C={x:gi(x)<0,hj(x)=0,i=1,---,mj=1,---,p}

e g; must be convex functions
o h; must be affine functions (since h; can be expressed as two g's, the
only way to make both g's convex is by letting h; affine)

@ Includes LP, QP with positive semidefinite @, and more
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Combinatorial Optimization

@ In combinatorial optimization, some (or all) the variables are Boolean
or integers, reflecting discrete choices to be made

o E.g., Let AcR™*" be an incidence matrix of a directed graph where
A; j equals to 1 if the arc j starts at node i; —1 if j ends at /; 0
otherwise. The problem of finding the shortest path between nodes 1

and m can be expressed as

minl"x:Ax=1[1,0,---,0,—1] T, x €{0,1}"
X

o E.g., the traveling salesman problem
o Generally, extremely hard to solve
@ However, they can often be approximately solved with linear or convex
programming
o E.g., the LP-relaxed single-pair shortest path problem:

minl x:Ax=1[1,0,---,0,—1]7,0<xeR" <1

X
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Hard vs. Easy Problems

@ We say a problem is hard if cannot be solved in a reasonable amount
of time and/or memory space

@ Roughly speaking, convex problems are easy; non-convex ones are

hard

@ Of course, not all convex problems are easy, but a (reasonably large)
subset

o E.g., LP and QP with positive semidefinite Q
o Conversely, some non-convex problems are actually easy

o E.g., the LP-relaxed single-pair shortest path problem has optimal
points turn out to be Boolean, so these points are also optimal to the
original problem
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Outline

© Convexity
o Convex Sets
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Convex Sets

Definition (Convex Set)

A set C of points is convex iff for any x,y € C and 0 € [0, 1], we have
(1—0)x+0yeC.

@ The point (1—0)x+ 0y is called the convex
combination of points x and y
@ Non-convex set:

@ Any convex set you know?
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Convex Sets

Definition (Convex Set)

A set C of points is convex iff for any x,y € C and 0 € [0, 1], we have
(1—0)x+0yeC.

@ The point (1—0)x+ 0y is called the convex
combination of points x and y

@ Non-convex set:

@ Any convex set you know? R”, non-negative
orthant R’ , (), {x}, line segments, etc.

@ A set is said to be a convex cone if it is convex, and has the property
that if x € C, then 6x € C for every 6 >0

o E.g., R", R, union of scalings of a convex set (must contains 0)
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More Examples

@ Subspaces and affine subspaces such as lines, hyperplanes, and
higher-dimensional “flat”" sets

@ Half-spaces, linear varieties (polyhedra, intersections of half-spaces)

@ The convex hulls of a set of points {x1,---,xmn} is a convex set:
m m
Co(x1, -+, Xm) = {ZG,-X,- 10, > O,VI,ZG,- = 1}
i=1 i=1
@ Norm balls: N ={x:||x|| <1}, where || -|| is some norm on R”"

e Asforany x,y e N,
[(1—0)x+0y| <

@ The set of all (symmetric) positive semidefinite matrices, denoted by
ST CR™7" is a convex cone

(1=0)x| + [0y = (1—0)lx[| + Oyl <1

e Forany A,B €8’ and x € R”,
x"((1—0)A+06B)x=x"(1—0)Ax+x'0Bx >0
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Operations That Preserve Convexity

@ Given a convex set Cy, G CR”,

Scaling: BC ={px:x € C}is convex for any 3 € R

Sum: G+ G ={x1+x5:x1 € C1,x € Gy} is convex
Augmentation: {(x1,x2):x1 € G, x5 € G} CR?" is convex
Intersection: C;N G, is convex [Homework]

o Affine transformation: if a map f:R” — R™ is affine, and C is
convex, then the set

f(C)={f(x):xeC}

is convex [Proof]

o In particular, the projection of a convex set on a subspace is convex
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Outline

© Convexity

@ Convex Functions
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Convex Functions

Definition (Convex Function)

A function f: D CR"” — R is convex iff a) D is convex; and b) for any
x,y €D and 6 €[0,1], we have f((1—0)x+0y) < (1—0)f(x)+6fy)

e Condition a) is necessary (what if D is
union of two line segments?)

o Alternatively, f is convex iff its
epigraph epi(f):={(x,t) e Rl :x ¢
R™ t > f(x)} is convex

e We say that a function f is
o strictly convex if f((1—0)x+0y) < (1—0)f(x)+06fy) for x £y

e concave if —f is convex
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More Alternate Definitions

o First-order condition: if f € C! is
differentiable (that is, D is open and
the gradient exists everywhere on D), ,

) . FOY 7 (-2)
then f is convex iff for any x and y,
fly) = f(x)+VFf(x) " (y—x)

o l.e., the graph of f is bounded below
everywhere by anyone of its tangent
planes

@ Restriction to a line: f is convex iff its restriction to any line is
convex, i.e., for every xo,v € R”, the function g(t):=f(xg+tv) is
convex when xg+tv e D

@ Second-order condition: If f is twice differentiable, then it is convex iff
its Hessian V?f is positive semidefinite everywhere on D; i.e., for any
xeD, V3f(x) = O
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o f(x)=eforacR, f(x)=Ix|, f(x) =—logx on R4 (strict
positive real numbers), negative entropy f(x) = xlogx on R ;.

o Affine functions f(x) =Ax+b

e Quadratic functions f(x) = x " Ax + bx + ¢ with positive semidefinite
A

@ Function Apmax(X) that maps an n x n symmetric matrix X to it
maximum eigenvalue Amax

o Since the condition Anax(X) < t is equivalent to the condition that
tl— X €', the epigraph is convex

@ Norms
o As [[(1—0)x+0y| < [[(1—0)x|[+0y| = (1—0)[|x]||+ 0]y

o Log-sum-exp f(x) =log) ;€% (a smooth approximation to
(x) = max{xi})
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Convexity of Sublevel Sets

o Convex functions give rise to a particularly important type of convex
set, the t-sublevel set:

Given a convex function f : D — R and t € R. The t-sublevel set (i.e.,
{xeD:f(x) < t}is Convex.

[Homework]

o Consider a inequality constrain g < 0 in a convex optimization
problem, if g is a convex function, then it defines a convex feasible
set, the O-sublevel set

o When there are multiple inequality constrains, the final feasible set is
the intersection of multiple convex sets, which is still convex
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Operations That Preserve Convexity (1)

@ Composition with an affine function: if A in R™*7, b in R™ and
f:R™ — R is convex, then the function g:R"” — R with values
g(x) =1(Ax+b) is convex
e Point-wise maximum: the pointwise maximum of a family of convex
functions is convex—if {f;};c 4 is a family of convex functions, then the
function f(x) := max;ca fi(x) is convex
o E.g., f(x) =max{x;}, induced matrix norm [|A|| = max,.| -1 [|Ax]| is
convex
o Extension: sup,c 4 f(x,y) is convex if for each y € A, f(x,y) is convex
n x
@ Nonnegative weighted sum of convex functions is convex
e E.g., entropy f(x)=—3_1_, x;logx; for a distribution x € [0,1]" and
17x =1 is concave
o Partial minimum: If f is a convex function in (y, z), then the function
g(y) :=min,f(y,z) is convex
o Note that joint convexity in (y, z) is essential
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Operations That Preserve Convexity (2)

e Composition with monotone convex functions: if
f(x)=h(gi(x), -, gk(x)), with g; : R” — R convex, h:RK - R
convex and non-decreasing in each variable, then f is convex

o For simplicity, assume k =1 and h,g € @?>. The above conditions
ensure that V2g;(x) €R™" = 0, h"(y) €R" >0, and h'(y) €R" >0
e Then for any x € D, (remember the chain and product rules?)

V() = (VA)'(x) = { Ve ok (@)}

={Va(x )h”(gl( x))g{(x)+(Vg1)'(x )h (gl( )}
=h"(g(x){Var(x)Va(x)" } +h'(g1(x)) {V?&(x)}
-0

o E.g, log) ;exp(gi) is convex if g; is
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Operations That Preserve Convexity (3)

o Let g(x) =x?, h(y)=y?for y >0, and
f(x)=hog(x) =x* ¢
@ To show that epi(f) is convex, observe first
that f(x) < z in is equivalent to the existence
of y such that h(y) <z and g(x) <y
@ The above conditions ensure that the set g
{(x,y,2) : h(y) <z, g(x) <y} in the space of e
(x,y,z)-variables is convex

@ Hence, epi(f), the projection of that convex
set onto the space of (x, z)-variables, is
convex
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© Convex Optimization
@ Optimality
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Problem Reuvisited

e Form:

miny f(x)
i =

subject to gi(x) <0, hj(x) =0,/ omj=1--p

where f is a convex function, g; are convex functions, and h; are
affine functions

@ epi(f) is a convex set

o C={x:gi(x)<0,hj(x)=0,i=1,---,mj=1,---,p}is a convex set

e g;'s are convex implies that the 0-sublevel sets {x : g;j(x) < 0} are
convex sets
o C is the intersection of convex sublevel sets and hyperplanes

@ The problem amounts to finding the “lowest” point in the set
epi(f)N{(x,t) : x € C,t € R}, which is convex

o Local optimal points are also global optima

Shan-Hung Wu (CS, NTHU) Convex Optimization NetDB-ML, Fall 2014 20 / 79



Global vs. Local Optima in Convex Optimization

Theorem

For convex problems with objective f : D — R, any locally optimal point is
globally optimal. In addition, the optimal set is convex.

Proof.

Let y and x* be a point and a local minimizer of f on the intersection of
feasible set C and D. We need to prove that f(y) > f(x*) = p*. By
convexity of f and C, we have xg : =0y + (1—0)x*, and:

f(xe) —f(x™) <Of(y)+(1—-0)f (x™) —f(x7) =0(f(y) —f(x7)).

Since x* is a local minimizer, the left-hand side in this inequality is
nonnegative for all small enough values of 6 > 0. We conclude that the
right hand side is nonnegative, i.e., f(y) > f(x*) = p* as claimed.

Also, the optimal set is convex, since it can be written as

X*={xe CND:f(x*) < p*} This ends our proof. O
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© Convex Optimization

@ Disciplined Convex Programming and CVX
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Disciplined Convex Programming and CVX

@ A convex optimization software can solve a convex optimization
problem efficiently

e E.g., CVX, optimization toolbox in Matlab (for LP and QP)
@ But it cannot identify whether a problem, in an arbitrary form, is
convex or not

e Don’t expect it to accept any problem you give, and tell you the
problem is not convex

@ Discipline convex optimization defines

o A library of convex functions

o The rule sets corresponding to operations that preserve convexity. E.g.,
sum, affine composition, pointwise maximum, partial minimization,
composition with monotone convex functions, etc.
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© Convex Optimization

e LP and QP
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O Algorithms
@ Unconstrained Problems
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Unconstrained Problems

Form:

mxin f(x)

where f is convex

For simplicity, here we assume f € C!

Optimality condition: x* is optimal iff Vf(x*) =0

For general f (other than affine or quadratic), we may not be able to
solve x* in a close form

In practice, suboptimal solutions may be acceptable

There exist iterative algorithms that yield suboptimal points much
faster
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Iterative Algorithms

@ Assumption: the problem is attained (i.e., C # (0 and p* is attained)

Algorithm 4.1: General Descent Method

Input: x(o), an initial guess from D

1 repeat
2 Determine a search direction d'*) E R ;
3 Line search: Choose a step size n(t) such that

F(xO 4n©Od®y < £(x);
4 Update rule: x(t+1) « x(t) _|_n(t)d(t) :
5 until convergence criterion is satisfied,;

o Convergence criterion: ||x(t*1) — x| < e, [|[VF(xEFD)|| <€, etc.

@ Line search could be exact: n( ) argming~o $(n) = f(x® +nd(t)),
which minimizes f along the ray x(t+1) = x(t) +nd, yneR >0
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Backtracking Line Search

o In practice, n(t) is usually obtained by another iterations called
backtracking linear search

Algorithm 4.2: Backtracking Line Search
Input: « € (0,0.5), B €(0,1)
n« 1L

1
= S+ 1) 2 while x(® +1d'" ¢ D do
/ 3 | ne B
- 4 end
5

;,(‘f(_r)wvf(.r)%‘m - _'f(,r)flrlfvf(J:)TAI while f(X(t) +T]d(t)) _ ¢>(T1) > (I)(O)JFO“I’,(O)T] —
0 " F(x0) + v (x®)Td )y do
6 | n« pn;
(n =t here) 7 end

@ «, typically in [0.01,0.3], indicates how much relaxation we accept to
the descent direction predicted by the linear extrapolation

@ 3, typically in [0.1,0.8], determines how fine-grained the search is
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Newton’'s Method (1)

@ Recall that when f(x) =x'Qx+c'xis quadratic and @ = O, we
cab obtain x* by solving @x* =—c
o No solution if ¢ ¢ R(Q); otherwise X* ={—Qfc+2z:z e N(Q)}
(remember how to solve linear equations using SVD?)
o When Q= 0, x*=—Q cis unique
o Complexity?
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Newton’'s Method (1)

@ Recall that when f(x) =x'Qx+c'xis quadratic and @ = O, we
cab obtain x* by solving Qx* =—c
o No solution if ¢ ¢ R(Q); otherwise X* ={—Qfc+2z:z e N(Q)}
(remember how to solve linear equations using SVD?)
o When Q= 0, x*=—Q cis unique
o Complexity? O(n?)
@ We can leverage the quadratic approximation of a general f to give an
iterative algorithm
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Newton's Method (2)

e Assumption: f € @2 and is strictly convex (i.e., V?f(x) = O
everywhere)

Update rule: x(tt1) « x(t) — (V2f(x(1))) =1y £ (x(t));

o Based on a local quadratic
approximation of the the function at
the current point x;:
f(x):=f(x)+VFxO)(x—x)4+
Lx—x)TV2f(x()(x —x V)

o x(t+1) is set to be a solution to the
problem of minimizing f

Shan-Hung Wu (CS, NTHU) Convex Optimization NetDB-ML, Fall 2014 39 /79



Remarks (1)

@ Pros:

o No need for line search (although in practice, we often set
d" = —(V2f(x1)))"1Vf(x(t)) and perform linear search)
o Converges fast (1 iteration for quadratic )

e Cons:

o Computing (V2f(x:))~! may be too costly for large-scale problems
e V2f(x;) may be singular or ill-conditioned (try
d" = —[V2f (x1)) + 1wl 71VF (x(1)) instead)
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Remarks (2)

Might fail to converge for some convex functions

o Works best for self-concordant functions, whose the Hessians do not
vary too fast

o Failure of the Newton method. xq is
chosen in a region where the function

o e is almost linear. As a result, the

- quadratic approximation is almost a

straight line, and the Hessian is close

) to zero, sending x1 to a relatively large

J oot | negative value. The method quickly

R T diverges in this case
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Gradient Descent (1)

e Assumption: f € C!

@ Recall that at a given point x, V£ (x) points to the steepest ascend
direction

Search direction: d't) = —Vf(x();

o Since V(x40 dTd) =0, the next gradlent VF(xtH1)) s
orthogonal to the current descent direction d't) = —Vf(x1®)
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Remarks

@ Pros:

o Easy to implement

e Requires only the first order
information on f (computing each
iteration is cheap)

o Cons:
o Much more iterations (as compared I(Newton vs. Gradient)
to the Newton's method) to %2
convergence Z:\
o "Zig-zagging” around a narrow valley 26\
with flat bottom PINVK

044, .
03

o E.g., Rosenbrock’s banana: 02
f(x) =100(xp —x3) + (1 —x3) u

-0

€788 5. Sheencn
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Conjugate Gradient Descent (1)

@ A simple variation of the gradient descent

o Line search and update rule are the same
o But tilt the next search direction to better aim at the minimum of the

Hessian of f

Search direction: d'*) = -V (x(0))+c(Od1) for some constant c(t);

IVF(x*)|2
) C(t) can be m,
(VE(x)—VF(xEDNTVF(x1)
[VF(xE=))2 ’

etc.

@ Designed to perform well on
quadratic functions
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Conjugate Gradient Descent (2)

@ Suppose f(x) = %XTAX—i-bTX is quadratic (so that Vf(x) = Ax+ b)

o Idea: instead of searching for x(t*1) minimizing f along

x) —nVF(x1)), seek for x(*+1) minimizing f in the affine space
W(t+1) . — x(0) +span(d(0),d(1),~~- ,d(t_l),Vf(x(t)))

If x't*1) js the minimizer of f in W) | then VF(x(tT1)) L W(t+1),

Otherwise, we can decrease f along the projection of V£ (x(t+1)) onto
W) contradicting to that x(t1) is the minimizer. O
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Conjugate Gradient Descent (3)

Lemma

Let xt) be the minimizer of f in W From x), the direction d'*) points
to the mlnlmlzer x(t+1 in W(t+1) lffd TAd =0for0<i<t—1.
The direction d'*) is said to be conjugate to all previous d

| \

Proof.
By definition, we have x(t+1) = x(t) 4 nd(®) and

VF(xH) = Ax(+D 4 p = V(D)) +nAd V)
From the above lemma Vf(x(t+1)) LW+ and WV (x()) LW we have
0=V xTNTVFx) = | VF(x®)|2+nd DT AVE(x(1),
implying 1 # 0. Furthermore,

0=Vi(xtNTdD = vf(xd) 4nd DT Ad") =nd T ad",

implying dPTAdY =0 forall i. O
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Conjugate Gradient Descent (4)

o How to find d'*) such that it is conjugate to all d/)?

o Notice that V£ (x(t+1)) — Vf(x(1)) = A(x(t+1) — x(t)) = Ad®) (see
the proof of the above lemma).

o So, dTAdY) =0= d"VT(VF(xt1)) —Vf(x() =0=
d' TV{( (t+1)) — d(t)TVf(xm):some constant

e Since V£ (x() forms an orthogonal family, we have d'?) a scaling of
M g
t Vf(x()
20 [T
@ Apply the above to d(o),d(l),--- ,d(t), we have
d = —vf(x0) 4 cOdt)

[V (x))2

IVFED) 2 makes the equation holds

e You can easily verify that ¢(t) =
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Remarks

1

@ Pros: Xj;
o Easy to implement :\
o Still a first order method (same jz\
cheap iterations as in gradient A
descent) o
o Converges fast (at most n iterations . 4
for quadratic function f : R" — R) B T T T T P P T
o Can be applied to non-quadratic f, (Gradient vs. Conjugate
by replacing A with the Hessian of f Gradient)
o Works well if V2f(x(t+1)) and " —

V2f(x(t)) do not vary too much

o Caution:

o For general f, d" may not be a
descent direction. Set it to
—VF£(x")) in this case
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Outline

O Algorithms

@ Constrained Problems
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Constrained Problems

e Form:

miny f(x)
subject to x € C ={x:gi(x) <0,hj(x)=0,i=1,--- ,mj=1,---,p}

where f and g; are convex, h; are affine

o For simplicity, here we assume f € C!

e Optimality condition: x* is optimal iff V£ (x*)T (x —x*) > 0,Vx € C,
as f(x) > f(x*)+VF(x*) T (x—x*)
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Active Sets

. . . -Vf(x)
@ Define the active set A(x) at a point x as

the set of constrains 0's such that 6(x) =0, N
i.e., A(x):={0:0(x) =0}

e Equality constrains h;’s are always active

@ Recall for any constrain 0, the gradient h(x) = 0
VO(x) is orthogonal to a tangent line/space
passing through the level set at x

@ x™ occurs when -Vix)

e Vj, Vhj(x*) and —Vf(x*) are parallel (i.e., x
—VIf(x*) =v;jVh;j(x*) for some v; #0)

e Vi such that g; is active, —Vg;(x*) and
—Vf(x*) are opposite (i.e.,
—Vf(x*) =A;Vgj(x*) for some A; > 0)
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Iterative Algorithms

@ Assumption: the problem is attained (i.e., C # (0 and p* is attained)

o lterative algorithms in the presence of constrains?
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Iterative Algorithms

@ Assumption: the problem is attained (i.e., C # (0 and p* is attained)

o lterative algorithms in the presence of constrains?

@ Transform the constrained problem into a unconstrained one, or

@ Make sure that x(t*1) falls inside the feasible set during each iteration
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Exterior-Point Methods

e For equality constrains h;(x) =0
o Idea: penalize non-admissible solutions

o Create “barrier functions” ;(x) such that \;(x) =0 if h;j(x) =0;
P;(x) > 0 otherwise

o E.g., ¥j(x) =l hj(x)]? for some large p
@ Solve the unconstrained problem: miny f(x)+ij?:11pj(x)
o Objective is still convex

@ A solution falls outside the feasible set, an “exterior point”
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Interior-Point Methods

@ For inequality constrains g;(x) <0

@ Assumption: the original problem is strictly feasible (i.e., there exists
x € X* such that gij(x) <0 for all i)

@ Idea: penalize non-admissible solutions

o Create barrier functions \;(x) such that 1;(x) =0 if gi(x) <0;
P;(x) > 0 otherwise

o E.g., the logarithmic barrier \;(x) = —plog(—g;i(x)) for some p
@ Solve the unconstrained problem (still convex):
miny f(x) —pn ) 2, log(—gi(x))
@ A solution falls inside the feasible set, an “‘interior point”
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@ For p large, solving the above problem results in a point well
aligned/inside the feasible set
@ As 1 — 0 the solution converges to a global minimizer for the original,
constrained problem
o In fact, the theory of convex optimization says that if we set L =m/e
(or uw=p/e for equality constrains), then the minimizer is
e-suboptimal.
@ In practice, we solve the unconstrained problem several times, with pn
from large to small
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Projected Gradient Descent (1)

o xt*1) may fall outside C during an iteration

o Idea: if so, project x(t*1) onto the boundary of C

Update rule: x(t1) « P(x(t) —n(1)Vf(x())) for some projector P;

@ For simplicity, we consider only the
affine constrains here

e Suppose x(t) is already on the
boundary of C

@ We can identify the active set

A(x(1) at x(t)

@ Define the tangent space of Vi)
active constrains at x(t): Vo, 1 *
meeA(X(e)){X5V9(X(t))T(X—X(t)):0} ve,! 3 o,

@ We seek for the projection of S O

xt+1) onto that tangent space
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Projected Gradient Descent (2)

e Since x(t) is already in the tangent
space, the update rule can be

written as

xtHD)  (x() —y () pyf(x(1)))

(recall P? = P)
o VO(x)T(x(t+h) _x(t)y =g

implies

VO(xI) T (B PVF(x))) =0 v
o Let o |

© = [VO(xt)),--,VO,(xt)] € Ll e\

R™%2, where a = |A(x))| e

o We instead seek for the projection
of —V£(x") onto {x: @ x =0}
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Projected Gradient Descent (3)

o Target: —PVf(x(1)) e {x:®"x =0}. How to find P?

Shan-Hung Wu (CS, NTHU) Convex Optimization NetDB-ML, Fall 2014 58 / 79



Projected Gradient Descent (3)

o Target: —PVf(x(1)) e {x:®"x =0}. How to find P?

@ Recall from the fundamental theorem of linear algebra that
{x:@ x=0}=R(O) =span(V0;(x¥)), -+, V0, (x(1)))+

@ Also, recall that the projection of any point y onto R(®) is @ x*,
where x* = (@ T @) 1@ Ty is the solution to the least square problem

argmin | @x —y||?
X

0 Let Q=0O(O®'O) 1O, the projection of y onto R(®)L is
y—Qy=(1-Q)y,so P=1-Q
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The Changing Active Sets

e We may encounter —PVf(x(t)) =0 during an iteration. Should we
stop?
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The Changing Active Sets

e We may encounter —PVf(x(t)) =0 during an iteration. Should we
stop?

o No, some constrains 0 in A(x(t))
may be “unnecessary,” i.e., we
cannot find 11 > 0 such that
x) —nPyVF(x)) is on the
boundary of C,

o Py projects d'*) onto
{x:Vo(ythTx=0}

o We can obtain 1 by first solving
g(x(t) —nPyVFf(xt))) =0 for ‘

. . Ve \ Ve

each another constrain g € C, o ) 2
and then take the minimum of Hspesii e
the solutions that are in (0, 00)

—Vf(x")

Vo,

@ Remove all such constrains 0’s in A(x(t)). Stop only if A(x(t)) =0
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Algorithm

Algorithm 4.3: Projected Gradient Descent Method

Input: x(©), an initial guess from DN C

1 repeat

2 dt) — —vf(xt);

3 Determine 1(t);

1 x (1) (1) 4 (e )d(®).

5 if x(t*1) ¢ C then

6 y®)  x(t) 4 17d() js the intersect between {x(t) +nd*) :1 >0} and
the boundary of C;

7 A(y ) <—set of active constrains at y(t), excluding those 0’s such that
there is no intersect between {x(t +nP9dm :1 > 0} and the boundary
of C;

8 if A(y®)£0 then x(t+1)  y(1) 4 (n(1) _1/)pd(t) else x(t11) (1),

9 end

10 until convergence criterion is satisfied,;
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O Algorithms

@ Large-Scale Problems**
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Decomposition Methods

TBA
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Weak and Strong Duality

@ Next, we shows how the notion of weak duality allows to develop, in
a systematic way, approximations of non-convex problems based on
convex optimization.

@ Starting with any given minimization problem, which we call the
primal problem, we can form a dual problem, which

o Is always convex (specifically, a concave maximization problem)
o Provides a lower bound on the values of the primal

@ When the primal is convex, the strong duality holds—the dual
problem shares the same optimal value as that of the primal

o Gives more insights to the optimality conditions
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© Duality
@ Weak Duality
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Primal Problem

o Consider a primal problem:

minycrn f(x)
subject to gi(x) <0, hj(x)=0,i=1,--- mj=1,---,p

o f, gi, and h; can be arbitrary (need not be convex or affine)
e For simplicity, let f(x) = oo (resp., gi(x) and hj(x)) if x is not in the
domain of f (resp., gi and hj)

o p*i=infy.z.(x)<o, i )0 f(x) and x are call primal value and
varlables respectlvely
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Lagrange Function

e Define a Lagrange function (or simply Lagrangian)
L:R"xR™xRP — R with values

p
L(x, 0 B): +Zoc,g, +Z[3jhj(x)
=

@ Then the primal problem can be written as

min sup £(x, «, B)
x€R" >0

o p* =infyepn SUPo@oL(X,O(, B)
o This creates "barriers” that penalize g;(x) >0 and h;(x) #0
o The constrains o > 0 are essential
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Dual Problem

@ Given a primal problem minycpn sup“>0[,(x,0(,[3), define its dual
problem as

inf £
gy of, £ P)

o d*:=supy>ginfxern L(x, &, B) is called the dual value

@ It can be easily shown that

d* =supy>ginfxern L(x, &, B) <infyernsupy=oL(x, &, B) = p*
(called max-min inequality) [Homework]

e d* is a lower bound of p*
e p*—d* is called the duality gap

e dual(x,B;x):=infycrn L(x, &, B) is called the dual function
o Defined as a point-wise minimum (in x), therefore concave

@ The dual problem maxq>gdual(x, ) is always a
concave-maximization problem (convex)
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e Consider a primal problem:
minx%Htz
subject to Ax < b
o dual(o;x) =miny 3||x|[>+aT (Ax—b) = —L|AT |2~ b" & [Proof]
o x*=A'«x

@ Dual problem:
maxq—3[|AT |2~ b" &
subject to x > 0

o Equivalent to ming>o3|AT >+ b
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Geometric Interpretation (1)

e Consider a primal problem: min, f(x) subject to g(x) <0
@ Dual problem: maxy>q dual(x) = maxq>oinfx f(x) + xg(x)
o Let A:={(u,t):u>g(x),t>=f(x)}, the blue area

@ The solutions are feasible only in the dark blue area
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Geometric Interpretation (2)

@ infy f(x)+ ag(x) is attained, so we can rewrite the dual function as
dual(a) = min(, yeat+ou=t*+ow*
o Given any fixed « >0, {(u,t): t = dual(o) — aw} is a line with slop
—« intercepting A at (t*,u™)
o The line intercepts {(u, t) : u =0} at (0, dual(x))
@ The dual problem is to find the best line intercepting A that produce
the highest intercept with {(u, t): v =0}

Tt dual{a)
t = dual{a) — au *""*'\\,;,
5

Rry ' | ' ' '
2 4 0 1 2 3 4 ]
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The dual function dual may not be easy to compute: it is itself an
optimization problem!

o Duality works best when dual can be computed in closed form

@ Even if it is possible to compute dual, it might not be easy to
maximize: convex problems are not always easy to solve

A lower bound might not be of great practical interest: often we need
a sub-optimal solution

o Duality does not seem at first to offer a way to compute such a primal
point

However, duality is a powerful tool in understanding the problem
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© Duality

@ Strong Duality
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Strong Duality

@ Primal problem:

mMinycrn f(x)
subject to gi(x) <0,hj(x)=0,i=1,--- mj=1,---,p

° pri= infx:g,-(x)go,hj(x):o f(X)

@ Dual problem:

m P
max inf f(x)—i—Zoc,'g;(x)—i-Zﬁjhj(X)
i=1 Jj=1

a>0xeRn

o d*:=supy>ginfxern £(x, &, B)

e We say that strong duality holds if the duality gap is zero: d* = p*
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Slater’s Sufficient Condition for Strong Duality (1)

@ How to make (0,d*) = (0,p*)?
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Slater’s Sufficient Condition for Strong Duality (1)

@ How to make (0,d*) = (0,p*)?
@ One sufficient condition:
Q A={(u,t):u>g(x), t>f(x)}

(the blue area) is a convex set .

@ The line
{(u,t):t =dual(x) — aw} is
not vertical (so d* is attained)
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Slater’s Sufficient Condition for Strong Duality (2)

@ The above two points imply:

© The primal problem is convex
o Since {u:u>g(x)}and {t:t > f(x)} are convex, so does A [Proof]

@ Slater condition: the primal problem is strictly feasible:
dx : gi(x)<0,hi(x) =0

o The interior points of A={(u,t):u > g(x),t > f(x)} (the blue area)
cut into the area {(u, t): u <0}
o If gi(x) is affine, we can relax the feasibility above by g;(x) <0

e Sufficient condition for strong duality, but not necessary
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Solving the Dual Problem

@ Suppose the strong duality holds, then by solving the dual problem, we
obtain:

o The primal value p* = d*

o Furthermore, x* if we can write x* in a close form with respect to «
and B in dual(«x, B;x) :=inf,crn L(x, &, B)

@ Why solving the dual problem instead?
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Solving the Dual Problem

@ Suppose the strong duality holds, then by solving the dual problem, we
obtain:

o The primal value p* = d*
o Furthermore, x* if we can write x* in a close form with respect to «
and B in dual(«x, B;x) :=inf,crn L(x, &, B)

@ Why solving the dual problem instead?
o We gain insights to the primal problem
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Karush-Kuhn-Tucker (KKT) Conditions

Suppose f, gi, and h; are continuously differentiable at x*

, and the primal

problem is attained, convex, and satisfies the Slate condition. Then a
primal variable x* is optimal iff there exists &* and B* such that the

following conditions, called Karush-Kuhn-Tucker (KKT) conditions are

satisfied:
Lagrangian stationarity
VE(x*)+> 7, orVgi(x —i—Zp,lB Vhj(x*) =0

Primal feasibility: g;(x*) <0 and h; ( *)=0foralli=1,---

j=1,,p
Dual feasibility: o >0 foralli=1,--- ., m

,m and

Complementary slackness: «}gij(x*)=0 foralli=1,---,m
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Complementary Slackness

o Why afgi(x*)=0forall i=1,--,m?
@ When strong duality holds and both primal and dual problems are

attained, by (x*, o, ), we have

m 1%
Fx*)+ ) ofgi(x*)+ ) Bihi(x*) =dual(a”,B*;x*) = d* =p* = f(x")
i=1 j=1

e Since a* >0, each term in }_ ", o7 gi(x*) must be 0
e So what?
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Complementary Slackness

o Why afgi(x*)=0forall i=1,--,m?

@ When strong duality holds and both primal and dual problems are
attained, by (x*, o, ), we have

m 1%
Fx*)+ ) ofgi(x*)+ ) Bihi(x*) =dual(a”,B*;x*) = d* =p* = f(x")
i=1 j=1

e Since a* >0, each term in }_ ", o7 gi(x*) must be 0
e So what? If of >0, then gi(x*) =0

@ We can tell from the values of «’s which inequality constraint is
active
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@ Suppose A € R™*" in the primal problem:

MinycRrn %||x||2
subject to Ax < b

@ Dual problem:
mingegrm 3|AT o2+ b
subject to x > 0
o x*=AT«x
@ We now solve m instead of n variables
o If n>> m, solving the dual problem takes less time
o Furthermore, by complementary slackness, ' (Ax—b) =0

o We can tell that the j-th constraint is active (i.e., Aj.x = b;) iff &; #0
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