Convex Optimization

Shan-Hung Wu
shwu@cs.nthu.edu.tw
Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Fall 2014

Outline

(1) Optimization Problems

- Standard Forms and Terminology
- Problem Classes
(2) Convexity
- Convex Sets
- Convex Functions
(3) Convex Optimization
- Optimality
- Disciplined Convex Programming and CVX
- LP and QP
(4) Algorithms
- Unconstrained Problems
- Constrained Problems
- Large-Scale Problems**
(5) Duality
- Weak Duality
- Strong Duality

Outline

(1) Optimization Problems

- Standard Forms and Terminology
- Problem Classes

2 Convexity

- Convex Sets
- Convex Functions
(3) Convex Optimization
- Optimality
- Disciplined Convex Programming and CVX
- LP and QP
(4) Algorithms
- Unconstrained Problems
- Constrained Problems
- Large-Scale Problems**
(5) Duality
- Weak Duality
- Strong Duality

Functional Form

- An optimization problem is to minimize an objective (or cost) function $f: \mathcal{D} \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
\begin{aligned}
& \min _{x} f(x) \\
& \text { subject to } x \in C
\end{aligned}
$$

where $C \subseteq \mathbb{R}^{n}$ is called the feasible set containing feasible points (or variables)

- If $C=\mathbb{R}^{n}$, we say the optimization problem is unconstrained
- Maximizing f equals to minimizing $-f$
- C can be a set of function constrains, i.e., $C=\left\{\boldsymbol{x}: g_{i}(\boldsymbol{x}) \leqslant 0, i=1, \cdots, m\right\}$
- Sometimes, we single out equality constrains

$$
C=\left\{\boldsymbol{x}: g_{i}(\boldsymbol{x}) \leqslant 0, h_{j}(\boldsymbol{x})=0, i=1, \cdots, m, j=1, \cdots, p\right\}
$$

- Each equality constrain can be written as two inequality constrains

Epigraph form

- We can always assume that the objective is a linear function of the variables, via the epigraph
$\left(e p i(f):=\left\{(\boldsymbol{x}, t) \in \mathbb{R}^{n+1}: \boldsymbol{x} \in \mathbb{R}^{n}, t \geqslant f(\boldsymbol{x})\right\}\right)$ representation of the problem

$$
\begin{gathered}
\min _{\boldsymbol{x}, t} t \\
\text { subject to } f(\boldsymbol{x})-t \leqslant 0, \boldsymbol{x} \in C
\end{gathered}
$$

- The objective function is $\mathcal{A}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$, with values $\hat{\mathcal{A}}(x, t)=t$
- Consider the t-sublevel set of \mathcal{A} (i.e., $\left\{x: t \geqslant \mathcal{A}^{\mathcal{A}}(x)\right\}$), the problem amounts to finding the smallest t for which the corresponding sub-level set intersects the set of points satisfying the constraints

Geometric View

Functional form:
$\min _{x} 0.9 x_{1}^{2}-0.4 x_{1} x_{2}-0.6 x_{2}^{2}-6.4 x_{1}-0.8 x_{2}:-1 \leqslant x_{1} \leqslant 2,0 \leqslant x_{2} \leqslant 3$
Epigraph form:
$\min _{\boldsymbol{x}, t} t: t \geqslant 0.9 x_{1}^{2}-0.4 x_{1} x_{2}-0.6 x_{2}^{2}-6.4 x_{1}-0.8 x_{2},-1 \leqslant x_{1} \leqslant 2,0 \leqslant x_{2} \leqslant 3$

The level sets of the objective function are shown as blue lines, and the feasible set is the light-blue box. The problem amounts to find the smallest value of t such that $t=f(\boldsymbol{x})$ for some feasible \boldsymbol{x}. The two dots are the unconstrained and constrained optimal values respectively

Terminology (1)

- $p^{*}:=\inf _{x} f(x): x \in C$ is called the optimal value, which
- may not exist if the problem is infeasible
- may not be attained (e.g., in $\min _{x} e^{-x}, p^{*}=0$ is attained only when $x \rightarrow \infty)$
- We allow p^{*} to take on the values ∞ and $-\infty$ when the problem is either
- infeasible (the feasible set is empty), or
- unbounded below (there exists feasible points such that $f(\boldsymbol{x}) \rightarrow-\infty$), respectively
- A feasible point x^{*} is called the optimal point if $f\left(x^{*}\right)=p^{*}$
- The optimal set X^{*} is the set of all optimal points, i.e., $X^{*}:=\left\{x \in C: f(x)=p^{*}\right\}=\arg \min _{x} f(x): x \in C$
- We say the problem is attained iff $C \neq \emptyset$ and p^{*} is attained (or equivalently, $X^{*} \neq \emptyset$)

Terminology (2)

- The ϵ-suboptimal set X^{ϵ} is defined as $X^{\epsilon}:=\left\{\boldsymbol{x} \in C: f(\boldsymbol{x}) \leqslant p^{*}+\epsilon\right\}$

An e-suboptimal set is marked in darker color. This corresponds to the set of feasible points that achieves an objective value less or equal than $p^{*}+\epsilon$

- In practice, we may be only interested in suboptimal solutions

Local vs. Global Optimality

- A point z is locally optimal if there is a value $\delta>0$ such that z is optimal for problem (with new objective $\widetilde{f}(\boldsymbol{x}, \boldsymbol{z})=f(\boldsymbol{x})$)

$$
\min _{x} f(x): z, x \in C,\|x-z\| \leqslant \delta
$$

- That is, a local minimizer minimizes f, but only for its nearby points in the feasible set

Minima of a nonlinear function. The value at a local minimizer is not necessarily the (global) optimal value of the problem, unless f is a "convex" function (in the sense that epi (f) is a "convex" set)

Outline

(1) Optimization Problems

- Standard Forms and Terminology
- Problem Classes
(2) Convexity
- Convex Sets
- Convex Functions
(3) Convex Optimization
- Optimality
- Disciplined Convex Programming and CVX
- LP and QP
(4) Algorithms
- Unconstrained Problems
- Constrained Problems
- Large-Scale Problems**
(5) Duality
- Weak Duality
- Strong Duality

Linear Programming

- Linear Programming ($L P$) has the form: ${ }^{1}$

$$
\begin{gathered}
\min _{\boldsymbol{x}} \boldsymbol{c}^{\top} \boldsymbol{x} \\
\text { subject to } \boldsymbol{G} \boldsymbol{x} \leqslant \boldsymbol{h}, \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
\end{gathered}
$$

where $\boldsymbol{c} \in \mathbb{R}^{n}, \boldsymbol{G} \in \mathbb{R}^{m \times n}, \boldsymbol{h} \in \mathbb{R}^{m}, \boldsymbol{A} \in \mathbb{R}^{p \times n}$, and $\boldsymbol{b} \in \mathbb{R}^{p}$

- The objective and the $m+p$ constrain functions are all affine (i.e., translated linear)
- Note $\min _{x} \boldsymbol{c}^{\top} \boldsymbol{x}+d$ for some fixed $d \in \mathbb{R}$ amounts to $\min _{x} \boldsymbol{c}^{\top} \boldsymbol{x}$
${ }^{1}$ The term "programming" has nothing to do with computer programs. It is named so due to historical reasons.

Quadratic Programming

- Quadratic Programming (QP) has the form:

$$
\begin{gathered}
\min _{\boldsymbol{x}} \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}+\boldsymbol{c}^{\top} \boldsymbol{x} \\
\text { subject to } \boldsymbol{G} \boldsymbol{x} \leqslant \boldsymbol{h}, \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
\end{gathered}
$$

where $\boldsymbol{Q} \in \mathbb{R}^{n \times n}, \boldsymbol{c} \in \mathbb{R}^{n}, \boldsymbol{G} \in \mathbb{R}^{m \times n}, \boldsymbol{h} \in \mathbb{R}^{m}, \boldsymbol{A} \in \mathbb{R}^{p \times n}$, and $\boldsymbol{b} \in \mathbb{R}^{p}$

- The objective is a quadratic function, and the $m+p$ constrain functions are affine

Convex Optimization

- A convex optimization problem is of the form:

$$
\begin{gathered}
\min _{x} f(x) \\
\text { subject to } x \in C
\end{gathered}
$$

where f is a convex function, and C is a convex set

- In particular, with constrains

$$
C=\left\{\boldsymbol{x}: g_{i}(\boldsymbol{x}) \leqslant 0, h_{j}(\boldsymbol{x})=0, i=1, \cdots, m, j=1, \cdots, p\right\}
$$

- g_{i} must be convex functions
- h_{j} must be affine functions (since h_{j} can be expressed as two g 's, the only way to make both g 's convex is by letting h_{j} affine)
- Includes LP, QP with positive semidefinite Q, and more

Combinatorial Optimization

- In combinatorial optimization, some (or all) the variables are Boolean or integers, reflecting discrete choices to be made
- E.g., Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ be an incidence matrix of a directed graph where $A_{i, j}$ equals to 1 if the arc j starts at node $i ;-1$ if j ends at $i ; 0$ otherwise. The problem of finding the shortest path between nodes 1 and m can be expressed as

$$
\min _{x} \mathbf{1}^{\top} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=[1,0, \cdots, 0,-1]^{\top}, \boldsymbol{x} \in\{0,1\}^{n}
$$

- E.g., the traveling salesman problem
- Generally, extremely hard to solve
- However, they can often be approximately solved with linear or convex programming
- E.g., the LP-relaxed single-pair shortest path problem:

$$
\min _{x} \mathbf{1}^{\top} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=[1,0, \cdots, 0,-1]^{\top}, \mathbf{0} \leqslant \boldsymbol{x} \in \mathbb{R}^{n} \leqslant \mathbf{1}
$$

Hard vs. Easy Problems

- We say a problem is hard if cannot be solved in a reasonable amount of time and/or memory space
- Roughly speaking, convex problems are easy; non-convex ones are hard
- Of course, not all convex problems are easy, but a (reasonably large) subset
- E.g., LP and QP with positive semidefinite \boldsymbol{Q}
- Conversely, some non-convex problems are actually easy
- E.g., the LP-relaxed single-pair shortest path problem has optimal points turn out to be Boolean, so these points are also optimal to the original problem

Outline

(1) Optimization Problems

- Standard Forms and Terminology
- Problem Classes
(2) Convexity
- Convex Sets
- Convex Functions
(3) Convex Optimization
- Optimality
- Disciplined Convex Programming and CVX
- LP and QP
(4) Algorithms
- Unconstrained Problems
- Constrained Problems
- Large-Scale Problems**
(5) Duality
- Weak Duality
- Strong Duality

Convex Sets

Definition (Convex Set)

A set C of points is convex iff for any $\boldsymbol{x}, \boldsymbol{y} \in C$ and $\theta \in[0,1]$, we have $(1-\theta) x+\theta y \in C$.

- The point $(1-\theta) \boldsymbol{x}+\theta \boldsymbol{y}$ is called the convex combination of points x and y
- Non-convex set:
- Any convex set you know?

Convex Sets

Definition (Convex Set)

A set C of points is convex iff for any $\boldsymbol{x}, \boldsymbol{y} \in C$ and $\theta \in[0,1]$, we have $(1-\theta) x+\theta y \in C$.

- The point $(1-\theta) \boldsymbol{x}+\theta \boldsymbol{y}$ is called the convex combination of points x and y
- Non-convex set:
- Any convex set you know? \mathbb{R}^{n}, non-negative orthant $\mathbb{R}_{+}^{n}, \emptyset,\{\boldsymbol{x}\}$, line segments, etc.

- A set is said to be a convex cone if it is convex, and has the property that if $x \in C$, then $\theta x \in C$ for every $\theta \geqslant 0$
- E.g., $\mathbb{R}^{n}, \mathbb{R}_{+}^{n}$, union of scalings of a convex set (must contains $\mathbf{0}$)

More Examples

- Subspaces and affine subspaces such as lines, hyperplanes, and higher-dimensional "flat" sets
- Half-spaces, linear varieties (polyhedra, intersections of half-spaces)
- The convex hulls of a set of points $\left\{\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{m}\right\}$ is a convex set:

$$
\operatorname{Co}\left(x_{1}, \cdots, x_{m}\right):=\left\{\sum_{i=1}^{m} \theta_{i} x_{i}: \theta_{i} \geqslant 0, \forall i, \sum_{i=1}^{m} \theta_{i}=1\right\}
$$

- Norm balls: $N=\{\boldsymbol{x}:\|\boldsymbol{x}\| \leqslant 1\}$, where $\|\cdot\|$ is some norm on \mathbb{R}^{n}
- As for any $\boldsymbol{x}, \boldsymbol{y} \in N$,

$$
\|(1-\theta) \boldsymbol{x}+\theta \boldsymbol{y}\| \leqslant\|(1-\theta) \boldsymbol{x}\|+\|\theta \boldsymbol{y}\|=(1-\theta)\|\boldsymbol{x}\|+\theta\|\boldsymbol{y}\| \leqslant 1
$$

- The set of all (symmetric) positive semidefinite matrices, denoted by $\mathbb{S}_{+}^{n} \subset \mathbb{R}^{n \times n}$, is a convex cone
- For any $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{S}_{+}^{n}$ and $\boldsymbol{x} \in \mathbb{R}^{n}$,

$$
\boldsymbol{x}^{\top}((1-\theta) \boldsymbol{A}+\theta \boldsymbol{B}) \boldsymbol{x}=\boldsymbol{x}^{\top}(1-\theta) \boldsymbol{A} \boldsymbol{x}+\boldsymbol{x}^{\top} \theta \boldsymbol{B} \boldsymbol{x} \geqslant 0
$$

Operations That Preserve Convexity

- Given a convex set $C_{1}, C_{2} \subseteq \mathbb{R}^{n}$,
- Scaling: $\beta C=\{\beta \boldsymbol{x}: \boldsymbol{x} \in C\}$ is convex for any $\beta \in \mathbb{R}$
- Sum: $C_{1}+C_{2}=\left\{x_{1}+x_{2}: x_{1} \in C_{1}, x_{2} \in C_{2}\right\}$ is convex
- Augmentation: $\left\{\left(x_{1}, x_{2}\right): x_{1} \in C_{1}, x_{2} \in C_{2}\right\} \subseteq \mathbb{R}^{2 n}$ is convex
- Intersection: $C_{1} \cap C_{2}$ is convex [Homework]
- Affine transformation: if a map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is affine, and C is convex, then the set

$$
f(C):=\{f(x): x \in C\}
$$

is convex [Proof]

- In particular, the projection of a convex set on a subspace is convex

Outline

(1) Optimization Problems

- Standard Forms and Terminology
- Problem Classes

(2) Convexity

- Convex Sets
- Convex Functions
(3) Convex Optimization
- Optimality
- Disciplined Convex Programming and CVX
- LP and QP
(4) Algorithms
- Unconstrained Problems
- Constrained Problems
- Large-Scale Problems**
(5) Duality
- Weak Duality
- Strong Duality

Convex Functions

Definition (Convex Function)

A function $f: \mathcal{D} \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex iff a) \mathcal{D} is convex; and b) for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{D}$ and $\theta \in[0,1]$, we have $f((1-\theta) \boldsymbol{x}+\theta \boldsymbol{y}) \leqslant(1-\theta) f(\boldsymbol{x})+\theta f \boldsymbol{y})$

- Condition a) is necessary (what if \mathcal{D} is union of two line segments?)
- Alternatively, f is convex iff its epigraph epi $(f):=\left\{(x, t) \in \mathbb{R}^{n+1}: x \in\right.$ $\left.\mathbb{R}^{n}, t \geqslant f(\boldsymbol{x})\right\}$ is convex
- We say that a function f is
- strictly convex if $f((1-\theta) \boldsymbol{x}+\theta \boldsymbol{y})<(1-\theta) f(\boldsymbol{x})+\theta f \boldsymbol{y})$ for $\boldsymbol{x} \neq \boldsymbol{y}$
- concave if $-f$ is convex

More Alternate Definitions

- First-order condition: if $f \in \mathcal{C}^{1}$ is differentiable (that is, \mathcal{D} is open and the gradient exists everywhere on \mathcal{D}), then f is convex iff for any x and y, $f(\boldsymbol{y}) \geqslant f(\boldsymbol{x})+\nabla f(\boldsymbol{x})^{\top}(\boldsymbol{y}-\boldsymbol{x})$

- I.e., the graph of f is bounded below everywhere by anyone of its tangent planes
- Restriction to a line: f is convex iff its restriction to any line is convex, i.e., for every $x_{0}, \boldsymbol{v} \in \mathbb{R}^{n}$, the function $g(t):=f\left(x_{0}+t v\right)$ is convex when $x_{0}+t v \in \mathcal{D}$
- Second-order condition: If f is twice differentiable, then it is convex iff its Hessian $\nabla^{2} f$ is positive semidefinite everywhere on \mathcal{D}; i.e., for any $\boldsymbol{x} \in \mathcal{D}, \nabla^{2} f(x) \succeq \boldsymbol{O}$

Examples

- $f(x)=e^{a x}$ for $a \in \mathbb{R}, f(x)=|x|, f(x)=-\log x$ on \mathbb{R}_{++}(strict positive real numbers), negative entropy $f(x)=x \log x$ on \mathbb{R}_{++}
- Affine functions $f(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}$
- Quadratic functions $f(\boldsymbol{x})=\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{b} \boldsymbol{x}+c$ with positive semidefinite A
- Function $\lambda_{\max }(\boldsymbol{X})$ that maps an $n \times n$ symmetric matrix \boldsymbol{X} to it maximum eigenvalue $\lambda_{\text {max }}$
- Since the condition $\lambda_{\text {max }}(\boldsymbol{X}) \leqslant t$ is equivalent to the condition that $\boldsymbol{t I}-\boldsymbol{X} \in \mathbb{S}_{+}^{n}$, the epigraph is convex
- Norms
- As $\|(1-\theta) \boldsymbol{x}+\theta \boldsymbol{y}\| \leqslant\|(1-\theta) \boldsymbol{x}\|+\|\theta \boldsymbol{y}\|=(1-\theta)\|\boldsymbol{x}\|+\theta\|\boldsymbol{y}\|$
- Log-sum-exp $f(\boldsymbol{x})=\log \sum_{i} e^{x_{i}}$ (a smooth approximation to $\left.f(\boldsymbol{x})=\max \left\{x_{i}\right\}\right)$

Convexity of Sublevel Sets

- Convex functions give rise to a particularly important type of convex set, the t-sublevel set:

Theorem

Given a convex function $f: \mathcal{D} \rightarrow \mathbb{R}$ and $t \in \mathbb{R}$. The t-sublevel set (i.e., $\{x \in \mathcal{D}: f(x) \leqslant t\}$ is Convex.

Proof.

[Homework]

- Consider a inequality constrain $g \leqslant 0$ in a convex optimization problem, if g is a convex function, then it defines a convex feasible set, the 0 -sublevel set
- When there are multiple inequality constrains, the final feasible set is the intersection of multiple convex sets, which is still convex

Operations That Preserve Convexity (1)

- Composition with an affine function: if \boldsymbol{A} in $\mathbb{R}^{m \times n}, \boldsymbol{b}$ in \mathbb{R}^{m} and $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is convex, then the function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with values $g(\boldsymbol{x})=f(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b})$ is convex
- Point-wise maximum: the pointwise maximum of a family of convex functions is convex-if $\left\{f_{i}\right\}_{i \in \mathcal{A}}$ is a family of convex functions, then the function $f(x):=\max _{i \in \mathcal{A}} f_{i}(x)$ is convex
- E.g., $f(\boldsymbol{x})=\max \left\{x_{i}\right\}$, induced matrix norm $\|\boldsymbol{A}\|=\max _{x:\|x\|=1}\|\boldsymbol{A} \boldsymbol{x}\|$ is convex
- Extension: $\sup _{y \in \mathcal{A}} f(\boldsymbol{x}, \boldsymbol{y})$ is convex if for each $\boldsymbol{y} \in \mathcal{A}, f(\boldsymbol{x}, \boldsymbol{y})$ is convex in x
- Nonnegative weighted sum of convex functions is convex
- E.g., entropy $f(\boldsymbol{x})=-\sum_{i=1}^{n} x_{i} \log x_{i}$ for a distribution $\boldsymbol{x} \in[0,1]^{n}$ and $\mathbf{1}^{\top} \boldsymbol{x}=1$ is concave
- Partial minimum: If f is a convex function in $(\boldsymbol{y}, \boldsymbol{z})$, then the function $g(\boldsymbol{y}):=\min _{\boldsymbol{z}} f(\boldsymbol{y}, \boldsymbol{z})$ is convex
- Note that joint convexity in $(\boldsymbol{y}, \boldsymbol{z})$ is essential

Operations That Preserve Convexity (2)

- Composition with monotone convex functions: if $f(\boldsymbol{x})=h\left(g_{1}(\boldsymbol{x}), \cdots, g_{k}(\boldsymbol{x})\right)$, with $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex, $h: \mathbb{R}^{k} \rightarrow \mathbb{R}$ convex and non-decreasing in each variable, then f is convex
- For simplicity, assume $k=1$ and $h, g \in \mathcal{C}^{2}$. The above conditions ensure that $\nabla^{2} g_{1}(\boldsymbol{x}) \in \mathbb{R}^{n \times n} \succeq \boldsymbol{O}, h^{\prime \prime}(\boldsymbol{y}) \in \mathbb{R}^{n} \geqslant 0$, and $h^{\prime}(\boldsymbol{y}) \in \mathbb{R}^{n} \geqslant 0$
- Then for any $\boldsymbol{x} \in \mathcal{D}$, (remember the chain and product rules?)

$$
\begin{aligned}
\nabla^{2} f(\boldsymbol{x}) & =(\nabla f)^{\prime}(\boldsymbol{x})^{\top}=\left\{\left[\nabla g_{1}(\boldsymbol{x}) h^{\prime}\left(g_{1}(\boldsymbol{x})\right)\right]^{\prime}\right\}^{\top} \\
& =\left\{\nabla g_{1}(\boldsymbol{x}) h^{\prime \prime}\left(g_{1}(\boldsymbol{x})\right) g_{1}^{\prime}(\boldsymbol{x})+\left(\nabla g_{1}\right)^{\prime}(\boldsymbol{x}) h^{\prime}\left(g_{1}(\boldsymbol{x})\right)\right\}^{\top} \\
& =h^{\prime \prime}\left(g_{1}(\boldsymbol{x})\right)\left\{\nabla g_{1}(\boldsymbol{x}) \nabla g_{1}(\boldsymbol{x})^{\top}\right\}+h^{\prime}\left(g_{1}(\boldsymbol{x})\right)\left\{\nabla^{2} g_{1}(\boldsymbol{x})\right\} \\
& \succeq \boldsymbol{O}
\end{aligned}
$$

- E.g., $\log \sum_{i} \exp \left(g_{i}\right)$ is convex if g_{i} is

Operations That Preserve Convexity (3)

- Let $g(x)=x^{2}, h(y)=y^{2}$ for $y \geqslant 0$, and $f(x)=h \circ g(x)=x^{4}$
- To show that epi (f) is convex, observe first that $f(x) \leqslant z$ in is equivalent to the existence of y such that $h(y) \leqslant z$ and $g(x) \leqslant y$
- The above conditions ensure that the set $\{(x, y, z): h(y) \leqslant z, g(x) \leqslant y\}$ in the space of (x, y, z)-variables is convex

- Hence, epi(f), the projection of that convex set onto the space of (x, z)-variables, is convex

Outline

(1) Optimization Problems

- Standard Forms and Terminology
- Problem Classes
(2) Convexity
- Convex Sets
- Convex Functions
(3) Convex Optimization
- Optimality
- Disciplined Convex Programming and CVX
- LP and QP
(4) Algorithms
- Unconstrained Problems
- Constrained Problems
- Large-Scale Problems**
(5) Duality
- Weak Duality
- Strong Duality

Problem Revisited

- Form:

$$
\begin{gathered}
\min _{\boldsymbol{x}} f(\boldsymbol{x}) \\
\text { subject to } g_{i}(\boldsymbol{x}) \leqslant 0, h_{j}(\boldsymbol{x})=0, i=1, \cdots, m, j=1, \cdots, p
\end{gathered}
$$

where f is a convex function, g_{i} are convex functions, and h_{j} are affine functions

- epi (f) is a convex set
- $C=\left\{\boldsymbol{x}: g_{i}(\boldsymbol{x}) \leqslant 0, h_{j}(\boldsymbol{x})=0, i=1, \cdots, m, j=1, \cdots, p\right\}$ is a convex set
- g_{i} 's are convex implies that the 0 -sublevel sets $\left\{\boldsymbol{x}: g_{i}(\boldsymbol{x}) \leqslant 0\right\}$ are convex sets
- C is the intersection of convex sublevel sets and hyperplanes
- The problem amounts to finding the "lowest" point in the set $e p i(f) \cap\{(\boldsymbol{x}, t): x \in C, t \in \mathbb{R}\}$, which is convex
- Local optimal points are also global optima

Global vs. Local Optima in Convex Optimization

Theorem

For convex problems with objective $f: \mathcal{D} \rightarrow \mathbb{R}$, any locally optimal point is globally optimal. In addition, the optimal set is convex.

Proof.

Let \boldsymbol{y} and \boldsymbol{x}^{*} be a point and a local minimizer of f on the intersection of feasible set C and \mathcal{D}. We need to prove that $f(\boldsymbol{y}) \geqslant f\left(\boldsymbol{x}^{*}\right)=p^{*}$. By convexity of f and C, we have $\boldsymbol{x}_{\theta}:=\theta \boldsymbol{y}+(1-\theta) \boldsymbol{x}^{*}$, and:

$$
f\left(\boldsymbol{x}_{\theta}\right)-f\left(x^{*}\right) \leqslant \theta f(y)+(1-\theta) f\left(x^{*}\right)-f\left(x^{*}\right)=\theta\left(f(y)-f\left(x^{*}\right)\right)
$$

Since \boldsymbol{x}^{*} is a local minimizer, the left-hand side in this inequality is nonnegative for all small enough values of $\theta>0$. We conclude that the right hand side is nonnegative, i.e., $f(\boldsymbol{y}) \geqslant f\left(\boldsymbol{x}^{*}\right)=p^{*}$ as claimed. Also, the optimal set is convex, since it can be written as $X^{*}=\left\{\boldsymbol{x} \in C \cap \mathcal{D}: f\left(\boldsymbol{x}^{*}\right) \leqslant p^{*}\right\}$. This ends our proof.

Outline

(1) Optimization Problems

- Standard Forms and Terminology
- Problem Classes
(2) Convexity
- Convex Sets
- Convex Functions
(3) Convex Optimization
- Optimality
- Disciplined Convex Programming and CVX
- LP and QP
(4) Algorithms
- Unconstrained Problems
- Constrained Problems
- Large-Scale Problems**
(5) Duality
- Weak Duality
- Strong Duality

Disciplined Convex Programming and CVX

- A convex optimization software can solve a convex optimization problem efficiently
- E.g., CVX, optimization toolbox in Matlab (for LP and QP)
- But it cannot identify whether a problem, in an arbitrary form, is convex or not
- Don't expect it to accept any problem you give, and tell you the problem is not convex
- Discipline convex optimization defines
- A library of convex functions
- The rule sets corresponding to operations that preserve convexity. E.g., sum, affine composition, pointwise maximum, partial minimization, composition with monotone convex functions, etc.

Outline

(1) Optimization Problems

- Standard Forms and Terminology
- Problem Classes
(2) Convexity
- Convex Sets
- Convex Functions
(3) Convex Optimization
- Optimality
- Disciplined Convex Programming and CVX
- LP and QP
(4) Algorithms
- Unconstrained Problems
- Constrained Problems
- Large-Scale Problems**
(5) Duality
- Weak Duality
- Strong Duality

TBA

Outline

(1) Optimization Problems

- Standard Forms and Terminology
- Problem Classes
(2) Convexity
- Convex Sets
- Convex Functions
(3) Convex Optimization
- Optimality
- Disciplined Convex Programming and CVX
- LP and QP
(4) Algorithms
- Unconstrained Problems
- Constrained Problems
- Large-Scale Problems**
(5) Duality
- Weak Duality

Unconstrained Problems

- Form:

$$
\min _{x} f(x)
$$

where f is convex

- For simplicity, here we assume $f \in \mathcal{C}^{1}$
- Optimality condition: x^{*} is optimal iff $\nabla f\left(x^{*}\right)=0$
- For general f (other than affine or quadratic), we may not be able to solve \boldsymbol{x}^{*} in a close form
- In practice, suboptimal solutions may be acceptable
- There exist iterative algorithms that yield suboptimal points much faster

Iterative Algorithms

- Assumption: the problem is attained (i.e., $C \neq \emptyset$ and p^{*} is attained)

Algorithm 4.1: General Descent Method

Input: $\boldsymbol{x}^{(0)}$, an initial guess from \mathcal{D}
1 repeat
2 Determine a search direction $\boldsymbol{d}^{(t)} \in \mathbb{R}^{n}$;
3 Line search: Choose a step size $\eta^{(t)}$ such that $f\left(\boldsymbol{x}^{(t)}+\eta^{(t)} \boldsymbol{d}^{(t)}\right)<f\left(\boldsymbol{x}^{(t)}\right)$;
Update rule: $\boldsymbol{x}^{(t+1)} \leftarrow \boldsymbol{x}^{(t)}+\eta^{(t)} \boldsymbol{d}^{(t)} ;$
5 until convergence criterion is satisfied;

- Convergence criterion: $\left\|x^{(t+1)}-x^{(t)}\right\| \leqslant \epsilon,\left\|\nabla f\left(x^{(t+1)}\right)\right\| \leqslant \epsilon$, etc.
- Line search could be exact: $\eta^{(t)} \leftarrow \arg \min _{\eta>0} \phi(\eta):=f\left(\boldsymbol{x}^{(t)}+\eta \boldsymbol{d}^{(t)}\right)$, which minimizes f along the ray $\boldsymbol{x}^{(t+1)}=\boldsymbol{x}^{(t)}+\eta \boldsymbol{d}^{(t)}, \forall \eta \in \mathbb{R}>0$

Backtracking Line Search

- In practice, $\eta^{(t)}$ is usually obtained by another iterations called backtracking linear search


```
Algorithm 4.2: Backtracking Line Search
    Input: \(\alpha \in(0,0.5), \beta \in(0,1)\)
    \(1 \eta \leftarrow 1\);
    2 while \(x^{(t)}+\eta d^{(t)} \notin \mathcal{D}\) do
    \(3 \mid \eta \leftarrow \beta \eta\);
    4 end
    5 while \(f\left(\boldsymbol{x}^{(t)}+\eta \boldsymbol{d}^{(t)}\right)=\phi(\eta)>\phi(0)+\alpha \phi^{\prime}(0) \eta=\)
        \(f\left(x^{(t)}\right)+\alpha \nabla f\left(\boldsymbol{x}^{(t)}\right)^{\top} \boldsymbol{d}^{(t)} \eta\) do
    \(6 \mid \eta \leftarrow \beta \eta\);
    7 end
```

- α, typically in $[0.01,0.3]$, indicates how much relaxation we accept to the descent direction predicted by the linear extrapolation
- β, typically in $[0.1,0.8$], determines how fine-grained the search is

Newton's Method (1)

- Recall that when $f(\boldsymbol{x})=\boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}+\boldsymbol{c}^{\top} \boldsymbol{x}$ is quadratic and $\boldsymbol{Q} \succeq \mathbf{O}$, we cab obtain \boldsymbol{x}^{*} by solving $\boldsymbol{Q} \boldsymbol{x}^{*}=-\boldsymbol{c}$
- No solution if $\boldsymbol{c} \notin \mathcal{R}(\boldsymbol{Q})$; otherwise $X^{*}=\left\{-\boldsymbol{Q}^{\dagger} \boldsymbol{c}+\boldsymbol{z}: \boldsymbol{z} \in \mathcal{N}(\boldsymbol{Q})\right\}$ (remember how to solve linear equations using SVD?)
- When $\boldsymbol{Q} \succ \mathbf{O}, \boldsymbol{x}^{*}=-\boldsymbol{Q}^{-1} \boldsymbol{c}$ is unique
- Complexity?

Newton's Method (1)

- Recall that when $f(\boldsymbol{x})=\boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}+\boldsymbol{c}^{\top} \boldsymbol{x}$ is quadratic and $\boldsymbol{Q} \succeq \mathbf{O}$, we cab obtain \boldsymbol{x}^{*} by solving $\boldsymbol{Q} \boldsymbol{x}^{*}=-\boldsymbol{c}$
- No solution if $\boldsymbol{c} \notin \mathcal{R}(\boldsymbol{Q})$; otherwise $X^{*}=\left\{-\boldsymbol{Q}^{\dagger} \boldsymbol{c}+\boldsymbol{z}: \boldsymbol{z} \in \mathcal{N}(\boldsymbol{Q})\right\}$ (remember how to solve linear equations using SVD?)
- When $\boldsymbol{Q} \succ \mathbf{O}, \boldsymbol{x}^{*}=-\boldsymbol{Q}^{-1} \boldsymbol{c}$ is unique
- Complexity? $O\left(n^{3}\right)$
- We can leverage the quadratic approximation of a general f to give an iterative algorithm

Newton's Method (2)

- Assumption: $f \in \mathcal{C}^{2}$ and is strictly convex (i.e., $\nabla^{2} f(\boldsymbol{x}) \succ \boldsymbol{O}$ everywhere)

Update rule: $\boldsymbol{x}^{(t+1)} \leftarrow \boldsymbol{x}^{(t)}-\left(\nabla^{2} f\left(\boldsymbol{x}^{(t)}\right)\right)^{-1} \nabla f\left(\boldsymbol{x}^{(t)}\right)$;

- Based on a local quadratic approximation of the the function at the current point x_{t} :

$$
\begin{aligned}
& \widetilde{f}(x):=f\left(\boldsymbol{x}^{(t)}\right)+\nabla f\left(\boldsymbol{x}^{(t)}\right)\left(\boldsymbol{x}-\boldsymbol{x}^{(t)}\right)+ \\
& \frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}^{(t)}\right)^{\top} \nabla^{2} f\left(\boldsymbol{x}^{(t)}\right)\left(\boldsymbol{x}-\boldsymbol{x}^{(t)}\right)
\end{aligned}
$$

- $x^{(t+1)}$ is set to be a solution to the problem of minimizing \widetilde{f}

Remarks (1)

- Pros:
- No need for line search (although in practice, we often set $\boldsymbol{d}^{(n)}=-\left(\nabla^{2} f\left(\boldsymbol{x}^{(t)}\right)\right)^{-1} \nabla f\left(\boldsymbol{x}^{(t)}\right)$ and perform linear search)
- Converges fast (1 iteration for quadratic f)
- Cons:
- Computing $\left(\nabla^{2} f\left(x_{t}\right)\right)^{-1}$ may be too costly for large-scale problems
- $\nabla^{2} f\left(x_{t}\right)$ may be singular or ill-conditioned (try $\boldsymbol{d}^{(n)}=-\left[\nabla^{2} f\left(\boldsymbol{x}^{(t)}\right)+\mu \boldsymbol{I}\right]^{-1} \nabla f\left(\boldsymbol{x}^{(t)}\right)$ instead $)$

Remarks (2)

- Might fail to converge for some convex functions
- Works best for self-concordant functions, whose the Hessians do not vary too fast

- Failure of the Newton method. x_{0} is chosen in a region where the function is almost linear. As a result, the quadratic approximation is almost a straight line, and the Hessian is close to zero, sending x_{1} to a relatively large negative value. The method quickly diverges in this case

Gradient Descent (1)

- Assumption: $f \in \mathcal{C}^{1}$
- Recall that at a given point $\boldsymbol{x}, \nabla f(\boldsymbol{x})$ points to the steepest ascend direction

Search direction: $\boldsymbol{d}^{(t)}=-\nabla f\left(\boldsymbol{x}^{(t)}\right)$;

- Since $\nabla f\left(\boldsymbol{x}^{(t)}+\eta^{(t)} \boldsymbol{d}^{(t)}\right)^{\top} \boldsymbol{d}^{(t)}=0$, the next gradient $\nabla f\left(\boldsymbol{x}^{(t+1)}\right)$ is orthogonal to the current descent direction $\boldsymbol{d}^{(t)}=-\nabla f\left(\boldsymbol{x}^{(t)}\right)$

Remarks

- Pros:
- Easy to implement
- Requires only the first order information on f (computing each iteration is cheap)
- Cons:
- Much more iterations (as compared to the Newton's method) to convergence
- "Zig-zagging" around a narrow valley with flat bottom
- E.g., Rosenbrock's banana:

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)+\left(1-x_{1}^{2}\right)
$$

(Newton vs. Gradient)

Conjugate Gradient Descent (1)

- A simple variation of the gradient descent
- Line search and update rule are the same
- But tilt the next search direction to better aim at the minimum of the Hessian of f

Search direction: $\boldsymbol{d}^{(t)}=-\nabla f\left(\boldsymbol{x}^{(t)}\right)+c^{(t)} \boldsymbol{d}^{(t-1)}$ for some constant $c^{(t)}$;

- $c^{(t)}$ can be $\frac{\left\|\nabla f\left(\boldsymbol{x}^{(t)}\right)\right\|^{2}}{\left\|\nabla f\left(\boldsymbol{x}^{(t-1)}\right)\right\|^{2}}$, $\frac{\left(\nabla f\left(\boldsymbol{x}^{(t)}\right)-\nabla f\left(\boldsymbol{x}^{(t-1)}\right)\right)^{\top} \nabla f\left(\mathbf{x}^{(t)}\right)}{\left\|\nabla f\left(\boldsymbol{x}^{(t-1)}\right)\right\|^{2}}$, etc.
- Designed to perform well on quadratic functions

$$
\left(g^{(t)}:=\nabla f\left(x^{(t)}\right)\right.
$$

Conjugate Gradient Descent (2)

- Suppose $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}^{\top} \boldsymbol{x}$ is quadratic (so that $\nabla f(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}$)
- Idea: instead of searching for $\boldsymbol{x}^{(t+1)}$ minimizing f along $x^{(t)}-\eta \nabla f\left(x^{(t)}\right)$, seek for $\boldsymbol{x}^{(t+1)}$ minimizing f in the affine space $\mathcal{W}^{(t+1)}:=\boldsymbol{x}^{(0)}+\operatorname{span}\left(\boldsymbol{d}^{(0)}, \boldsymbol{d}^{(1)}, \cdots, \boldsymbol{d}^{(t-1)}, \nabla f\left(\boldsymbol{x}^{(t)}\right)\right)$

Lemma

If $\boldsymbol{x}^{(t+1)}$ is the minimizer of f in $\mathcal{W}^{(t+1)}$, then $\nabla f\left(x^{(t+1)}\right) \perp \mathcal{W}^{(t+1)}$.

Proof.

Otherwise, we can decrease f along the projection of $\nabla f\left(\boldsymbol{x}^{(t+1)}\right)$ onto $\mathcal{W}^{(t+1)}$, contradicting to that $\boldsymbol{x}^{(t+1)}$ is the minimizer.

Conjugate Gradient Descent (3)

Lemma

Let $\boldsymbol{x}^{(t)}$ be the minimizer of f in $\mathcal{W}^{(t)}$. From $\boldsymbol{x}^{(t)}$, the direction $\boldsymbol{d}^{(t)}$ points to the minimizer $\boldsymbol{x}^{(t+1)}$ in $\mathcal{W}^{(t+1)}$ iff $\boldsymbol{d}^{(t) \top} \boldsymbol{A} \boldsymbol{d}^{(i)}=0$ for $0 \leqslant i \leqslant t-1$. The direction $\boldsymbol{d}^{(t)}$ is said to be conjugate to all previous $\boldsymbol{d}^{(i)}$.

Proof.

By definition, we have $x^{(t+1)}=x^{(t)}+\eta d^{(t)}$ and

$$
\nabla f\left(\boldsymbol{x}^{(t+1)}\right)=\boldsymbol{A} \boldsymbol{x}^{(t+1)}+\boldsymbol{b}=\nabla f\left(\boldsymbol{x}^{(t)}\right)+\eta \boldsymbol{A} \boldsymbol{d}^{(t)}
$$

From the above lemma $\nabla f\left(\boldsymbol{x}^{(t+1)}\right) \perp \mathcal{W}^{(t+1)}$ and $\nabla f\left(\boldsymbol{x}^{(t)}\right) \perp \mathcal{W}^{(t)}$, we have

$$
0=\nabla f\left(\boldsymbol{x}^{(t+1)}\right)^{\top} \nabla f\left(\boldsymbol{x}^{(t)}\right)=\left\|\nabla f\left(\boldsymbol{x}^{(t)}\right)\right\|^{2}+\eta \boldsymbol{d}^{(t) \top} \boldsymbol{A} \nabla f\left(\boldsymbol{x}^{(t)}\right),
$$

implying $\eta \neq 0$. Furthermore,

$$
0=\nabla f\left(\boldsymbol{x}^{(t+1)}\right)^{\top} \boldsymbol{d}^{(i)}=\nabla f\left(\boldsymbol{x}^{(t)}\right) \boldsymbol{d}^{(i)}+\eta \boldsymbol{d}^{(t) \top} \boldsymbol{A} \boldsymbol{d}^{(i)}=\eta \boldsymbol{d}^{(t) \top} \boldsymbol{A} \boldsymbol{d}^{(i)}
$$

implying $\boldsymbol{d}^{(t) \top} \boldsymbol{A} \boldsymbol{d}^{(i)}=0$ for all i.

Conjugate Gradient Descent (4)

- How to find $\boldsymbol{d}^{(t)}$ such that it is conjugate to all $\boldsymbol{d}^{(i)}$?
- Notice that $\nabla f\left(\boldsymbol{x}^{(t+1)}\right)-\nabla f\left(\boldsymbol{x}^{(t)}\right)=\boldsymbol{A}\left(\boldsymbol{x}^{(t+1)}-\boldsymbol{x}^{(t)}\right)=\eta \boldsymbol{A} \boldsymbol{d}^{(t)}$ (see the proof of the above lemma).
- So, $\boldsymbol{d}^{(t) \top} \boldsymbol{A} \boldsymbol{d}^{(i)}=0 \Rightarrow \boldsymbol{d}^{(t) \top}\left(\nabla f\left(\boldsymbol{x}^{(t+1)}\right)-\nabla f\left(\boldsymbol{x}^{(t)}\right)\right)=0 \Rightarrow$ $\boldsymbol{d}^{(t) \top} \nabla f\left(\boldsymbol{x}^{(t+1)}\right)=\boldsymbol{d}^{(t) \top} \nabla f\left(\boldsymbol{x}^{(t)}\right)=$ some constant
- Since $\nabla f\left(\boldsymbol{x}^{(i)}\right)$ forms an orthogonal family, we have $\boldsymbol{d}^{(t)}$ a scaling of $\sum_{i=0}^{t} \frac{\nabla f\left(\boldsymbol{x}^{(i)}\right)}{\left\|\nabla f\left(\boldsymbol{x}^{(i)}\right)\right\|^{2}}$
- Apply the above to $\boldsymbol{d}^{(0)}, \boldsymbol{d}^{(1)}, \cdots, \boldsymbol{d}^{(t)}$, we have $\boldsymbol{d}^{(t)}=-\nabla f\left(\boldsymbol{x}^{(t)}\right)+c^{(t)} \boldsymbol{d}^{(t-1)}$
- You can easily verify that $c^{(t)}=\frac{\left\|\nabla f\left(x^{(t)}\right)\right\|^{2}}{\left\|\nabla f\left(x^{(t-1)}\right)\right\|^{2}}$ makes the equation holds

Remarks

- Pros:
- Easy to implement
- Still a first order method (same cheap iterations as in gradient descent)
- Converges fast (at most n iterations for quadratic function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$)
- Can be applied to non-quadratic f, by replacing \boldsymbol{A} with the Hessian of f
- Works well if $\nabla^{2} f\left(x^{(t+1)}\right)$ and $\nabla^{2} f\left(x^{(t)}\right)$ do not vary too much
- Caution:
- For general f, \boldsymbol{d}^{n} may not be a descent direction. Set it to $-\nabla f\left(\boldsymbol{x}^{(t)}\right)$ in this case

(Gradient vs. Conjugate Gradient)

Outline

(1) Optimization Problems

- Standard Forms and Terminology
- Problem Classes
(2) Convexity
- Convex Sets
- Convex Functions
(3) Convex Optimization
- Optimality
- Disciplined Convex Programming and CVX
- LP and QP
(4) Algorithms
- Unconstrained Problems
- Constrained Problems
- Large-Scale Problems**
(5) Duality
- Weak Duality
- Strong Duality

Constrained Problems

- Form:

$$
\min _{x} f(x)
$$

subject to $\boldsymbol{x} \in C=\left\{\boldsymbol{x}: g_{i}(\boldsymbol{x}) \leqslant 0, h_{j}(\boldsymbol{x})=0, i=1, \cdots, m, j=1, \cdots, p\right\}$
where f and g_{i} are convex, h_{j} are affine

- For simplicity, here we assume $f \in \mathcal{C}^{1}$
- Optimality condition: x^{*} is optimal iff $\nabla f\left(x^{*}\right)^{\top}\left(x-x^{*}\right) \geqslant 0, \forall x \in C$, as $f(x) \geqslant f\left(\boldsymbol{x}^{*}\right)+\nabla f\left(\boldsymbol{x}^{*}\right)^{\top}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)$

Active Sets

- Define the active set $\mathcal{A}(\boldsymbol{x})$ at a point \boldsymbol{x} as the set of constrains θ 's such that $\theta(x)=0$, i.e., $\mathcal{A}(\boldsymbol{x}):=\{\theta: \theta(\boldsymbol{x})=0\}$
- Equality constrains h_{j} 's are always active
- Recall for any constrain θ, the gradient $\nabla \theta(x)$ is orthogonal to a tangent line/space
 passing through the level set at \boldsymbol{x}
- x^{*} occurs when
- $\forall j, \nabla h_{j}\left(x^{*}\right)$ and $-\nabla f\left(x^{*}\right)$ are parallel (i.e., $-\nabla f\left(x^{*}\right)=v_{j} \nabla h_{j}\left(x^{*}\right)$ for some $\left.v_{j} \neq 0\right)$
- $\forall i$ such that g_{i} is active, $-\nabla g_{i}\left(x^{*}\right)$ and $-\nabla f\left(x^{*}\right)$ are opposite (i.e., $-\nabla f\left(\boldsymbol{x}^{*}\right)=\lambda_{i} \nabla g_{j}\left(\boldsymbol{x}^{*}\right)$ for some $\left.\lambda_{i}>0\right)$

Iterative Algorithms

- Assumption: the problem is attained (i.e., $C \neq \emptyset$ and p^{*} is attained)
- Iterative algorithms in the presence of constrains?

Iterative Algorithms

- Assumption: the problem is attained (i.e., $C \neq \emptyset$ and p^{*} is attained)
- Iterative algorithms in the presence of constrains?
(1) Transform the constrained problem into a unconstrained one, or
(2) Make sure that $\boldsymbol{x}^{(t+1)}$ falls inside the feasible set during each iteration

Exterior-Point Methods

- For equality constrains $h_{j}(\boldsymbol{x})=0$
- Idea: penalize non-admissible solutions
- Create "barrier functions" $\psi_{j}(\boldsymbol{x})$ such that $\psi_{j}(\boldsymbol{x})=0$ if $h_{j}(\boldsymbol{x})=0$; $\psi_{j}(x) \gg 0$ otherwise
- E.g., $\psi_{j}(\boldsymbol{x})=\mu\left\|h_{j}(\boldsymbol{x})\right\|^{2}$ for some large μ
- Solve the unconstrained problem: $\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mu \sum_{j=1}^{p} \psi_{j}(\boldsymbol{x})$
- Objective is still convex
- A solution falls outside the feasible set, an "exterior point"

Interior-Point Methods

- For inequality constrains $g_{i}(\boldsymbol{x}) \leqslant 0$
- Assumption: the original problem is strictly feasible (i.e., there exists $\boldsymbol{x} \in X^{*}$ such that $g_{i}(\boldsymbol{x})<0$ for all i)
- Idea: penalize non-admissible solutions
- Create barrier functions $\psi_{i}(\boldsymbol{x})$ such that $\psi_{i}(\boldsymbol{x})=0$ if $g_{i}(\boldsymbol{x}) \leqslant 0$; $\psi_{i}(\boldsymbol{x}) \gg 0$ otherwise
- E.g., the logarithmic barrier $\psi_{i}(\boldsymbol{x})=-\mu \log \left(-g_{i}(\boldsymbol{x})\right)$ for some μ
- Solve the unconstrained problem (still convex): $\min _{x} f(x)-\mu \sum_{i=1}^{m} \log \left(-g_{i}(x)\right)$
- A solution falls inside the feasible set, an "interior point""

Remarks

- For μ large, solving the above problem results in a point well aligned/inside the feasible set
- As $\mu \rightarrow 0$ the solution converges to a global minimizer for the original, constrained problem
- In fact, the theory of convex optimization says that if we set $\mu=m / \epsilon$ (or $\mu=p / \epsilon$ for equality constrains), then the minimizer is ϵ-suboptimal.
- In practice, we solve the unconstrained problem several times, with μ from large to small

Projected Gradient Descent (1)

- $\boldsymbol{x}^{(t+1)}$ may fall outside C during an iteration
- Idea: if so, project $\boldsymbol{x}^{(t+1)}$ onto the boundary of C

Update rule: $\boldsymbol{x}^{(t+1)} \leftarrow \boldsymbol{P}\left(\boldsymbol{x}^{(t)}-\eta^{(t)} \nabla f\left(\boldsymbol{x}^{(t)}\right)\right)$ for some projector \boldsymbol{P};

- For simplicity, we consider only the affine constrains here
- Suppose $\boldsymbol{x}^{(t)}$ is already on the boundary of C
- We can identify the active set $\mathcal{A}\left(\boldsymbol{x}^{(t)}\right)$ at $\boldsymbol{x}^{(t)}$
- Define the tangent space of active constrains at $\boldsymbol{x}^{(t)}$:
$\bigcap_{\theta \in \mathcal{A}\left(x^{(t)}\right)}\left\{x: \nabla \theta\left(x^{(t)}\right)^{\top}\left(x-x^{(t)}\right)=0\right\}$
- We seek for the projection of
 $\boldsymbol{x}^{(t+1)}$ onto that tangent space

Projected Gradient Descent (2)

- Since $\boldsymbol{x}^{(t)}$ is already in the tangent space, the update rule can be
written as $\boldsymbol{x}^{(t+1)} \leftarrow\left(\boldsymbol{x}^{(t)}-\eta^{(t)} P \nabla f\left(\boldsymbol{x}^{(t)}\right)\right)$ (recall $P^{2}=P$)
- $\nabla \theta\left(x^{(t)}\right)^{\top}\left(x^{(t+1)}-x^{(t)}\right)=0$ implies
$\nabla \theta\left(\boldsymbol{x}^{(t)}\right)^{\top}\left(-\eta^{(t)} \boldsymbol{P} \nabla f\left(\boldsymbol{x}^{(t)}\right)\right)=0$
- Let
$\boldsymbol{\Theta}=\left[\nabla \theta_{1}\left(\boldsymbol{x}^{(t)}\right), \cdots, \nabla \theta_{a}\left(\boldsymbol{x}^{(t)}\right)\right] \in$ $\mathbb{R}^{n \times a}$, where $a=\left|\mathcal{A}\left(\boldsymbol{x}^{(t)}\right)\right|$
- We instead seek for the projection of $-\nabla f\left(\boldsymbol{x}^{(t)}\right)$ onto $\left\{\boldsymbol{x}: \boldsymbol{\Theta}^{\top} \boldsymbol{x}=\mathbf{0}\right\}$

Projected Gradient Descent (3)

- Target: $-\boldsymbol{P} \nabla f\left(\boldsymbol{x}^{(t)}\right) \in\left\{\boldsymbol{x}: \boldsymbol{\Theta}^{\top} \boldsymbol{x}=\mathbf{0}\right\}$. How to find \boldsymbol{P} ?

Projected Gradient Descent (3)

- Target: $-\boldsymbol{P} \nabla f\left(\boldsymbol{x}^{(t)}\right) \in\left\{\boldsymbol{x}: \boldsymbol{\Theta}^{\top} \boldsymbol{x}=\mathbf{0}\right\}$. How to find \boldsymbol{P} ?
- Recall from the fundamental theorem of linear algebra that $\left\{\boldsymbol{x}: \boldsymbol{\Theta}^{\top} \boldsymbol{x}=\mathbf{0}\right\}=\mathcal{R}(\boldsymbol{\Theta})^{\perp}=\operatorname{span}\left(\nabla \theta_{1}\left(\boldsymbol{x}^{(t)}\right), \cdots, \nabla \theta_{a}\left(\boldsymbol{x}^{(t)}\right)\right)^{\perp}$
- Also, recall that the projection of any point \boldsymbol{y} onto $\mathcal{R}(\boldsymbol{\Theta})$ is $\boldsymbol{\Theta} \boldsymbol{x}^{*}$, where $\boldsymbol{x}^{*}=\left(\boldsymbol{\Theta}^{\top} \boldsymbol{\Theta}\right)^{-1} \boldsymbol{\Theta}^{\top} \boldsymbol{y}$ is the solution to the least square problem

$$
\arg \min _{x}\|\Theta x-y\|^{2}
$$

- Let $\boldsymbol{Q}=\boldsymbol{\Theta}\left(\boldsymbol{\Theta}^{\top} \boldsymbol{\Theta}\right)^{-1} \boldsymbol{\Theta}^{\top}$, the projection of \boldsymbol{y} onto $\mathcal{R}(\boldsymbol{\Theta})^{\perp}$ is

$$
\boldsymbol{y}-\boldsymbol{Q} \boldsymbol{y}=(\boldsymbol{I}-\boldsymbol{Q}) \boldsymbol{y}, \text { so } \boldsymbol{P}=\boldsymbol{I}-\boldsymbol{Q}
$$

The Changing Active Sets

- We may encounter $-\boldsymbol{P} \nabla f\left(\boldsymbol{x}^{(t)}\right)=\mathbf{0}$ during an iteration. Should we stop?

The Changing Active Sets

- We may encounter $-\boldsymbol{P} \nabla f\left(\boldsymbol{x}^{(t)}\right)=\mathbf{0}$ during an iteration. Should we stop?
- No, some constrains θ in $\mathcal{A}\left(\boldsymbol{x}^{(t)}\right)$ may be "unnecessary," i.e., we cannot find $\eta>0$ such that $\boldsymbol{x}^{(t)}-\eta P_{\theta} \nabla f\left(\boldsymbol{x}^{(t)}\right)$ is on the boundary of C,
- \boldsymbol{P}_{θ} projects $\boldsymbol{d}^{(t)}$ onto $\left\{\boldsymbol{x}: \nabla \theta\left(\boldsymbol{y}^{(t)}\right)^{\top} \boldsymbol{x}=0\right\}$
- We can obtain η by first solving $g\left(\boldsymbol{x}^{(t)}-\eta \boldsymbol{P}_{\theta} \nabla f\left(\boldsymbol{x}^{(t)}\right)\right)=0$ for each another constrain $g \in C$, and then take the minimum of
 the solutions that are in $(0, \infty)$
- Remove all such constrains θ^{\prime} s in $\mathcal{A}\left(\boldsymbol{x}^{(t)}\right)$. Stop only if $\mathcal{A}\left(\boldsymbol{x}^{(t)}\right)=\emptyset$

Algorithm

Algorithm 4.3: Projected Gradient Descent Method

Input: $\boldsymbol{x}^{(0)}$, an initial guess from $\mathcal{D} \cap C$
1 repeat
${ }_{2} \quad \boldsymbol{d}^{(t)} \leftarrow-\nabla f\left(\boldsymbol{x}^{(t)}\right)$;

3
4

5

6

$$
\text { Determine } \eta^{(t)}
$$

$$
x^{(t+1)} \leftarrow x^{(t)}+\eta^{(t)} d^{(t)}
$$

$$
\text { if } x^{(t+1)} \notin C \text { then }
$$

$$
\boldsymbol{y}^{(t)} \leftarrow \boldsymbol{x}^{(t)}+\eta^{\prime} \boldsymbol{d}^{(t)} \text { is the intersect between }\left\{\boldsymbol{x}^{(t)}+\eta \boldsymbol{d}^{(t)}: \eta>0\right\} \text { and }
$$ the boundary of C; $\mathcal{A}\left(\boldsymbol{y}^{(t)}\right) \leftarrow$ set of active constrains at $\boldsymbol{y}^{(t)}$, excluding those θ 's such that there is no intersect between $\left\{\boldsymbol{x}^{(t)}+\eta \boldsymbol{P}_{\theta} \boldsymbol{d}^{(t)}: \eta>0\right\}$ and the boundary of C;

if $\mathcal{A}\left(\boldsymbol{y}^{(t)}\right) \neq \emptyset$ then $\boldsymbol{x}^{(t+1)} \leftarrow \boldsymbol{y}^{(t)}+\left(\eta^{(t)}-\eta^{\prime}\right) \boldsymbol{P} \boldsymbol{d}^{(t)}$ else $\boldsymbol{x}^{(t+1)} \leftarrow \boldsymbol{y}^{(t)}$; end
until convergence criterion is satisfied;

Outline

(1) Optimization Problems

- Standard Forms and Terminology
- Problem Classes
(2) Convexity
- Convex Sets
- Convex Functions
(3) Convex Optimization
- Optimality
- Disciplined Convex Programming and CVX
- LP and QP
(4) Algorithms
- Unconstrained Problems
- Constrained Problems
- Large-Scale Problems**
(5) Duality
- Weak Duality
- Strong Duality

Decomposition Methods

TBA

Weak and Strong Duality

- Next, we shows how the notion of weak duality allows to develop, in a systematic way, approximations of non-convex problems based on convex optimization.
- Starting with any given minimization problem, which we call the primal problem, we can form a dual problem, which
- Is always convex (specifically, a concave maximization problem)
- Provides a lower bound on the values of the primal
- When the primal is convex, the strong duality holds-the dual problem shares the same optimal value as that of the primal
- Gives more insights to the optimality conditions

Outline

(1) Optimization Problems

- Standard Forms and Terminology
- Problem Classes
(2) Convexity
- Convex Sets
- Convex Functions
(3) Convex Optimization
- Optimality
- Disciplined Convex Programming and CVX
- LP and QP
(4) Algorithms
- Unconstrained Problems
- Constrained Problems
- Large-Scale Problems**
(5) Duality
- Weak Duality
- Strong Duality

Primal Problem

- Consider a primal problem:

$$
\begin{gathered}
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} f(\boldsymbol{x}) \\
\text { subject to } g_{i}(\boldsymbol{x}) \leqslant 0, h_{j}(\boldsymbol{x})=0, i=1, \cdots, m, j=1, \cdots, p
\end{gathered}
$$

- f, g_{i}, and h_{j} can be arbitrary (need not be convex or affine)
- For simplicity, let $f(\boldsymbol{x})=\infty$ (resp., $g_{i}(\boldsymbol{x})$ and $\left.h_{j}(\boldsymbol{x})\right)$ if \boldsymbol{x} is not in the domain of f (resp., g_{i} and h_{j})
- $p^{*}:=\inf _{x: g_{i}(x) \leqslant 0, h_{j}(x)=0} f(\boldsymbol{x})$ and x are call primal value and variables respectively

Lagrange Function

- Define a Lagrange function (or simply Lagrangian) $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ with values

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}):=f(\boldsymbol{x})+\sum_{i=1}^{m} \alpha_{i} g_{i}(\boldsymbol{x})+\sum_{j=1}^{p} \beta_{j} h_{j}(\boldsymbol{x})
$$

- Then the primal problem can be written as

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} \sup _{\boldsymbol{\alpha} \geqslant 0} \mathcal{L}(x, \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

- $p^{*}=\inf _{x \in \mathbb{R}^{n}} \sup _{\alpha \geqslant 0} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})$
- This creates "barriers" that penalize $g_{i}(\boldsymbol{x})>0$ and $h_{j}(\boldsymbol{x}) \neq 0$
- The constrains $\alpha \geqslant \mathbf{0}$ are essential

Dual Problem

- Given a primal problem $\min _{\boldsymbol{x} \in \mathbb{R}^{n}} \sup _{\alpha \geqslant 0} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})$, define its dual problem as

$$
\max _{\boldsymbol{\alpha} \geqslant \boldsymbol{0}} \inf _{\boldsymbol{x} \in \mathbb{R}^{n}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

- $d^{*}:=\sup _{\alpha \geqslant 0} \inf _{x \in \mathbb{R}^{n}} \mathcal{L}(x, \alpha, \beta)$ is called the dual value
- It can be easily shown that
$d^{*}=\sup _{\alpha \geqslant 0} \inf _{\boldsymbol{x} \in \mathbb{R}^{n}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \leqslant \inf _{\boldsymbol{x} \in \mathbb{R}^{n}} \sup _{\boldsymbol{\alpha} \geqslant \mathbf{0}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})=p^{*}$ (called max-min inequality) [Homework]
- d^{*} is a lower bound of p^{*}
- $p^{*}-d^{*}$ is called the duality gap
- dual $(\alpha, \beta ; x):=\inf _{x \in \mathbb{R}^{n}} \mathcal{L}(x, \alpha, \beta)$ is called the dual function
- Defined as a point-wise minimum (in \boldsymbol{x}), therefore concave
- The dual problem max $\boldsymbol{\alpha} \geqslant 0^{\text {dual }}(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is always a concave-maximization problem (convex)

Example

- Consider a primal problem:

$$
\begin{gathered}
\min _{\boldsymbol{x}} \frac{1}{2}\|\boldsymbol{x}\|^{2} \\
\text { subject to } \boldsymbol{A} \boldsymbol{x} \leqslant \boldsymbol{b}
\end{gathered}
$$

- $\operatorname{dual}(\boldsymbol{\alpha} ; \boldsymbol{x})=\min _{\boldsymbol{x}} \frac{1}{2}\|\boldsymbol{x}\|^{2}+\boldsymbol{\alpha}^{\top}(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b})=-\frac{1}{2}\left\|\boldsymbol{A}^{\top} \boldsymbol{\alpha}\right\|^{2}-\boldsymbol{b}^{\top} \boldsymbol{\alpha}$ [Proof]

$$
\text { - } \boldsymbol{x}^{*}=\boldsymbol{A}^{\top} \boldsymbol{\alpha}
$$

- Dual problem:

$$
\begin{gathered}
\max _{\boldsymbol{\alpha}}-\frac{1}{2}\left\|\boldsymbol{A}^{\top} \boldsymbol{\alpha}\right\|^{2}-\boldsymbol{b}^{\top} \boldsymbol{\alpha} \\
\text { subject to } \boldsymbol{\alpha} \geqslant \boldsymbol{0}
\end{gathered}
$$

- Equivalent to $\min _{\alpha \geqslant 0} \frac{1}{2}\left\|\boldsymbol{A}^{\top} \boldsymbol{\alpha}\right\|^{2}+\boldsymbol{b}^{\top} \boldsymbol{\alpha}$

Geometric Interpretation (1)

- Consider a primal problem: $\min _{\boldsymbol{x}} f(\boldsymbol{x})$ subject to $g(\boldsymbol{x}) \leqslant 0$
- Dual problem: $\max _{\alpha \geqslant 0} d u a l(\alpha)=\max _{\alpha \geqslant 0} \inf _{x} f(x)+\alpha g(x)$
- Let $A:=\{(u, t): u \geqslant g(x), t \geqslant f(\boldsymbol{x})\}$, the blue area

- The solutions are feasible only in the dark blue area

Geometric Interpretation (2)

- $\inf _{x} f(x)+\alpha g(x)$ is attained, so we can rewrite the dual function as $d u a l(\alpha)=\min _{(u, t) \in A} t+\alpha u=t^{*}+\alpha u^{*}$
- Given any fixed $\alpha \geqslant 0,\{(u, t): t=d u a l(\alpha)-\alpha u\}$ is a line with slop $-\alpha$ intercepting A at $\left(t^{*}, u^{*}\right)$
- The line intercepts $\{(u, t): u=0\}$ at $(0, \operatorname{dual}(\alpha))$
- The dual problem is to find the best line intercepting A that produce the highest intercept with $\{(u, t): u=0\}$

Remarks

- The dual function dual may not be easy to compute: it is itself an optimization problem!
- Duality works best when dual can be computed in closed form
- Even if it is possible to compute dual, it might not be easy to maximize: convex problems are not always easy to solve
- A lower bound might not be of great practical interest: often we need a sub-optimal solution
- Duality does not seem at first to offer a way to compute such a primal point
- However, duality is a powerful tool in understanding the problem

Outline

(1) Optimization Problems

- Standard Forms and Terminology
- Problem Classes
(2) Convexity
- Convex Sets
- Convex Functions
(3) Convex Optimization
- Optimality
- Disciplined Convex Programming and CVX
- LP and QP
(4) Algorithms
- Unconstrained Problems
- Constrained Problems
- Large-Scale Problems**
(5) Duality
- Weak Duality
- Strong Duality

Strong Duality

- Primal problem:

$$
\begin{gathered}
\min _{\boldsymbol{x} \in \mathbb{R}^{\boldsymbol{n}}} f(\boldsymbol{x}) \\
\text { subject to } g_{i}(\boldsymbol{x}) \leqslant 0, h_{j}(\boldsymbol{x})=0, i=1, \cdots, m, j=1, \cdots, p
\end{gathered}
$$

$$
\text { - } p^{*}:=\inf _{x: g_{i}(x) \leqslant 0, h_{j}(x)=0} f(\boldsymbol{x})
$$

- Dual problem:

$$
\max _{\boldsymbol{\alpha} \geqslant \mathbf{0}} \inf _{\boldsymbol{x} \in \mathbb{R}^{n}} f(\boldsymbol{x})+\sum_{i=1}^{m} \alpha_{i} g_{i}(\boldsymbol{x})+\sum_{j=1}^{p} \beta_{j} h_{j}(\boldsymbol{x})
$$

- $d^{*}:=\sup _{\alpha \geqslant 0} \inf _{x \in \mathbb{R}^{n}} \mathcal{L}(x, \alpha, \beta)$
- We say that strong duality holds if the duality gap is zero: $d^{*}=p^{*}$

Slater's Sufficient Condition for Strong Duality (1)

- How to make $\left(0, d^{*}\right)=\left(0, p^{*}\right)$?

Slater's Sufficient Condition for Strong Duality (1)

- How to make $\left(0, d^{*}\right)=\left(0, p^{*}\right)$?
- One sufficient condition:
(1) $A=\{(u, t): u \geqslant g(x), t \geqslant f(x)\}$ (the blue area) is a convex set
(2) The line
$\{(u, t): t=\operatorname{dual}(\alpha)-\alpha u\}$ is not vertical (so d^{*} is attained)

Slater's Sufficient Condition for Strong Duality (2)

- The above two points imply:
(1) The primal problem is convex
- Since $\{u: u \geqslant g(\boldsymbol{x})\}$ and $\{t: t \geqslant f(\boldsymbol{x})\}$ are convex, so does A [Proof]
(2) Slater condition: the primal problem is strictly feasible: $\exists \boldsymbol{x}: g_{i}(\boldsymbol{x})<0, h_{j}(\boldsymbol{x})=0$
- The interior points of $A=\{(u, t): u \geqslant g(x), t \geqslant f(\boldsymbol{x})\}$ (the blue area) cut into the area $\{(u, t): u<0\}$
- If $g_{i}(\boldsymbol{x})$ is affine, we can relax the feasibility above by $g_{i}(\boldsymbol{x}) \leqslant 0$
- Sufficient condition for strong duality, but not necessary

Solving the Dual Problem

- Suppose the strong duality holds, then by solving the dual problem, we obtain:
- The primal value $p^{*}=d^{*}$
- Furthermore, \boldsymbol{x}^{*} if we can write \boldsymbol{x}^{*} in a close form with respect to $\boldsymbol{\alpha}$ and β in dual $(\boldsymbol{\alpha}, \boldsymbol{\beta} ; \boldsymbol{x}):=\inf _{\boldsymbol{x} \in \mathbb{R}^{n}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})$
- Why solving the dual problem instead?

Solving the Dual Problem

- Suppose the strong duality holds, then by solving the dual problem, we obtain:
- The primal value $p^{*}=d^{*}$
- Furthermore, \boldsymbol{x}^{*} if we can write \boldsymbol{x}^{*} in a close form with respect to $\boldsymbol{\alpha}$ and β in dual $(\boldsymbol{\alpha}, \boldsymbol{\beta} ; \boldsymbol{x}):=\inf _{\boldsymbol{x} \in \mathbb{R}^{n}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})$
- Why solving the dual problem instead?
- We gain insights to the primal problem

Karush-Kuhn-Tucker (KKT) Conditions

Theorem

Suppose f, g_{i}, and h_{j} are continuously differentiable at x^{*}, and the primal problem is attained, convex, and satisfies the Slate condition. Then a primal variable \boldsymbol{x}^{*} is optimal iff there exists $\boldsymbol{\alpha}^{*}$ and $\boldsymbol{\beta}^{*}$ such that the following conditions, called Karush-Kuhn-Tucker (KKT) conditions are satisfied:
Lagrangian stationarity:
$\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \alpha_{i}^{*} \nabla g_{i}\left(x^{*}\right)+\sum_{j=1}^{p} \beta_{j}^{*} \nabla h_{j}\left(x^{*}\right)=0$
Primal feasibility: $g_{i}\left(x^{*}\right) \leqslant 0$ and $h_{j}\left(x^{*}\right)=0$ for all $i=1, \cdots, m$ and $j=1, \cdots, p$
Dual feasibility: $\alpha_{i}^{*} \geqslant 0$ for all $i=1, \cdots, m$
Complementary slackness: $\alpha_{i}^{*} g_{i}\left(x^{*}\right)=0$ for all $i=1, \cdots, m$

Complementary Slackness

- Why $\alpha_{i}^{*} g_{i}\left(x^{*}\right)=0$ for all $i=1, \cdots, m$?
- When strong duality holds and both primal and dual problems are attained, by ($\boldsymbol{x}^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}$), we have

$$
f\left(x^{*}\right)+\sum_{i=1}^{m} \alpha_{i}^{*} g_{i}\left(x^{*}\right)+\sum_{j=1}^{p} \beta_{j}^{*} h_{j}\left(x^{*}\right)=\operatorname{dual}\left(\boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*} ; x^{*}\right)=d^{*}=p^{*}=f\left(x^{*}\right)
$$

- Since $\boldsymbol{\alpha}^{*} \geqslant 0$, each term in $\sum_{i=1}^{m} \alpha_{i}^{*} g_{i}\left(\boldsymbol{x}^{*}\right)$ must be 0
- So what?

Complementary Slackness

- Why $\alpha_{i}^{*} g_{i}\left(x^{*}\right)=0$ for all $i=1, \cdots, m$?
- When strong duality holds and both primal and dual problems are attained, by ($\boldsymbol{x}^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}$), we have

$$
f\left(x^{*}\right)+\sum_{i=1}^{m} \alpha_{i}^{*} g_{i}\left(x^{*}\right)+\sum_{j=1}^{p} \beta_{j}^{*} h_{j}\left(x^{*}\right)=\operatorname{dual}\left(\boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*} ; x^{*}\right)=d^{*}=p^{*}=f\left(x^{*}\right)
$$

- Since $\boldsymbol{\alpha}^{*} \geqslant 0$, each term in $\sum_{i=1}^{m} \alpha_{i}^{*} g_{i}\left(\boldsymbol{x}^{*}\right)$ must be 0
- So what? If $\alpha_{i}^{*}>0$, then $g_{i}\left(x^{*}\right)=0$
- We can tell from the values of α_{i}^{*} 's which inequality constraint is active

Example

- Suppose $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, in the primal problem:

$$
\begin{gathered}
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} \frac{1}{2}\|\boldsymbol{x}\|^{2} \\
\text { subject to } \boldsymbol{A} \boldsymbol{x} \leqslant \boldsymbol{b}
\end{gathered}
$$

- Dual problem:

$$
\begin{gathered}
\min _{\boldsymbol{\alpha} \in \mathbb{R}^{m}} \frac{1}{2}\left\|\boldsymbol{A}^{\top} \boldsymbol{\alpha}\right\|^{2}+\boldsymbol{b}^{\top} \boldsymbol{\alpha} \\
\text { subject to } \boldsymbol{\alpha} \geqslant \mathbf{0}
\end{gathered}
$$

- $\boldsymbol{x}^{*}=\boldsymbol{A}^{\top} \boldsymbol{\alpha}$
- We now solve m instead of n variables
- If $n \gg m$, solving the dual problem takes less time
- Furthermore, by complementary slackness, $\boldsymbol{\alpha}^{\top}(\boldsymbol{A x}-\boldsymbol{b})=\mathbf{0}$
- We can tell that the j-th constraint is active (i.e., $\boldsymbol{A}_{j}, \boldsymbol{x}=b_{j}$) iff $\alpha_{j} \neq 0$

