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Functional Form

An optimization problem is to minimize an objective (or cost)
function f :D⊆ Rn→ R:

minx f (x)
subject to x ∈ C

where C ⊆ Rn is called the feasible set containing feasible points
(or variables)

If C = Rn, we say the optimization problem is unconstrained

Maximizing f equals to minimizing −f

C can be a set of function constrains, i.e.,
C = {x : gi (x)6 0, i = 1, · · · ,m}

Sometimes, we single out equality constrains
C = {x : gi (x)6 0,hj(x) = 0, i = 1, · · · ,m, j = 1, · · · ,p}
Each equality constrain can be written as two inequality constrains
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Epigraph form

We can always assume that the objective is a linear function of the
variables, via the epigraph
(epi(f ) := {(x , t) ∈ Rn+1 : x ∈ Rn, t > f (x)}) representation of the
problem

minx ,t t
subject to f (x)− t 6 0,x ∈ C

The objective function is Λf : Rn+1→ R, with values Λf (x , t) = t

Consider the t-sublevel set of Λf (i.e.,{x : t >Λf (x)}), the problem
amounts to �nding the smallest t for which the corresponding
sub-level set intersects the set of points satisfying the constraints
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Geometric View

Functional form:
minx 0.9x21 −0.4x1x2−0.6x22 −6.4x1−0.8x2 : −16 x1 6 2,06 x2 6 3
Epigraph form:
minx ,t t : t > 0.9x21 −0.4x1x2−0.6x22 −6.4x1−0.8x2,−16 x1 6 2,06 x2 6 3

The level sets of the objective
function are shown as blue lines, and
the feasible set is the light-blue box.
The problem amounts to �nd the
smallest value of t such that t = f (x)
for some feasible x . The two dots are
the unconstrained and constrained
optimal values respectively
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Terminology (1)

p∗ := infx f (x) : x ∈ C is called the optimal value, which

may not exist if the problem is infeasible
may not be attained (e.g., in minx e

−x , p∗ = 0 is attained only when
x →∞)

We allow p∗ to take on the values ∞ and −∞ when the problem is
either

infeasible (the feasible set is empty), or
unbounded below (there exists feasible points such that f (x)→−∞),
respectively

A feasible point x∗ is called the optimal point if f (x∗) = p∗

The optimal set X ∗ is the set of all optimal points, i.e.,
X ∗ := {x ∈ C : f (x) = p∗}= argminx f (x) : x ∈ C

We say the problem is attained i� C 6= ∅ and p∗ is attained (or
equivalently, X ∗ 6= ∅)
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Terminology (2)

The ε-suboptimal set Xε is de�ned as Xε := {x ∈ C : f (x)6 p∗+ε}

An ε-suboptimal set is marked in
darker color. This corresponds to the
set of feasible points that achieves an
objective value less or equal than
p∗+ε

In practice, we may be only interested in suboptimal solutions
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Local vs. Global Optimality

A point z is locally optimal if there is a value δ > 0 such that z is
optimal for problem (with new objective f̃ (x ,z) = f (x))

min
x

f (x) : z ,x ∈ C ,‖x −z‖6 δ

That is, a local minimizer minimizes f , but only for its nearby points in
the feasible set

Minima of a nonlinear function. The value at a
local minimizer is not necessarily the (global)
optimal value of the problem, unless f is a
�convex� function (in the sense that epi(f ) is a
�convex� set)
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Linear Programming

Linear Programming (LP) has the form:1

minx c
>x

subject to Gx 6 h,Ax = b

where c ∈ Rn, G ∈ Rm×n, h ∈ Rm,A ∈ Rp×n, and b ∈ Rp

The objective and the m+p constrain functions are all a�ne (i.e.,
translated linear)

Note minx c
>x +d for some �xed d ∈ R amounts to minx c

>x

1The term �programming� has nothing to do with computer programs. It is named so

due to historical reasons.
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Quadratic Programming

Quadratic Programming (QP) has the form:

minx x
>Qx +c>x

subject to Gx 6 h,Ax = b

where Q ∈ Rn×n, c ∈ Rn, G ∈ Rm×n, h ∈ Rm,A ∈ Rp×n, and b ∈ Rp

The objective is a quadratic function, and the m+p constrain
functions are a�ne
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Convex Optimization

A convex optimization problem is of the form:

minx f (x)
subject to x ∈ C

where f is a convex function, and C is a convex set

In particular, with constrains
C = {x : gi (x)6 0,hj(x) = 0, i = 1, · · · ,m, j = 1, · · · ,p}

gi must be convex functions
hj must be a�ne functions (since hj can be expressed as two g 's, the
only way to make both g 's convex is by letting hj a�ne)

Includes LP, QP with positive semide�nite Q, and more
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Combinatorial Optimization

In combinatorial optimization, some (or all) the variables are Boolean
or integers, re�ecting discrete choices to be made

E.g., Let A ∈ Rm×n be an incidence matrix of a directed graph where
Ai ,j equals to 1 if the arc j starts at node i ; −1 if j ends at i ; 0
otherwise. The problem of �nding the shortest path between nodes 1
and m can be expressed as

min
x

1
>x : Ax = [1,0, · · · ,0,−1]>,x ∈ {0,1}n

E.g., the traveling salesman problem

Generally, extremely hard to solve

However, they can often be approximately solved with linear or convex
programming

E.g., the LP-relaxed single-pair shortest path problem:

min
x

1
>x : Ax = [1,0, · · · ,0,−1]>,06 x ∈ Rn 6 1
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Hard vs. Easy Problems

We say a problem is hard if cannot be solved in a reasonable amount
of time and/or memory space

Roughly speaking, convex problems are easy; non-convex ones are
hard

Of course, not all convex problems are easy, but a (reasonably large)
subset

E.g., LP and QP with positive semide�nite Q

Conversely, some non-convex problems are actually easy

E.g., the LP-relaxed single-pair shortest path problem has optimal
points turn out to be Boolean, so these points are also optimal to the
original problem
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Convex Sets

De�nition (Convex Set)

A set C of points is convex i� for any x ,y ∈ C and θ ∈ [0,1], we have
(1−θ)x +θy ∈ C .

The point (1−θ)x +θy is called the convex
combination of points x and y
Non-convex set:
Any convex set you know?

Rn, non-negative
orthant Rn

+, ∅, {x}, line segments, etc.

A set is said to be a convex cone if it is convex, and has the property
that if x ∈ C , then θx ∈ C for every θ> 0

E.g., Rn, Rn
+, union of scalings of a convex set (must contains 0)
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More Examples

Subspaces and a�ne subspaces such as lines, hyperplanes, and
higher-dimensional ``�at'' sets

Half-spaces, linear varieties (polyhedra, intersections of half-spaces)

The convex hulls of a set of points {x1, · · · ,xm} is a convex set:

Co(x1, · · · ,xm) :=

{
m∑
i=1

θix i : θi > 0,∀i ,
m∑
i=1

θi = 1

}

Norm balls: N = {x : ‖x‖6 1}, where ‖ · ‖ is some norm on Rn

As for any x ,y ∈ N,
‖(1−θ)x +θy‖6 ‖(1−θ)x‖+‖θy‖= (1−θ)‖x‖+θ‖y‖6 1

The set of all (symmetric) positive semide�nite matrices, denoted by
Sn+ ⊂ Rn×n, is a convex cone

For any A,B ∈ Sn+ and x ∈ Rn,
x>((1−θ)A+θB)x = x>(1−θ)Ax +x>θBx > 0
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Operations That Preserve Convexity

Given a convex set C1,C2 ⊆ Rn,

Scaling: βC = {βx : x ∈ C } is convex for any β ∈ R
Sum: C1+C2 = {x1+x2 : x1 ∈ C1,x2 ∈ C2} is convex
Augmentation: {(x1,x2) : x1 ∈ C1,x2 ∈ C2}⊆ R2n is convex
Intersection: C1∩C2 is convex [Homework]

A�ne transformation: if a map f : Rn→ Rm is a�ne, and C is
convex, then the set

f (C ) := {f (x) : x ∈ C }

is convex [Proof]

In particular, the projection of a convex set on a subspace is convex
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Convex Functions

De�nition (Convex Function)

A function f :D⊆ Rn→ R is convex i� a) D is convex; and b) for any
x ,y ∈D and θ ∈ [0,1], we have f ((1−θ)x +θy)6 (1−θ)f (x)+θf y)

Condition a) is necessary (what if D is
union of two line segments?)

Alternatively, f is convex i� its
epigraph epi(f ) := {(x , t) ∈ Rn+1 : x ∈
Rn, t > f (x)} is convex

We say that a function f is

strictly convex if f ((1−θ)x +θy)< (1−θ)f (x)+θf y) for x 6= y

concave if −f is convex
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More Alternate De�nitions

First-order condition: if f ∈ C1 is
di�erentiable (that is, D is open and
the gradient exists everywhere on D),
then f is convex i� for any x and y ,
f (y)> f (x)+∇f (x)>(y −x)

I.e., the graph of f is bounded below
everywhere by anyone of its tangent
planes

Restriction to a line: f is convex i� its restriction to any line is
convex, i.e., for every x0,v ∈ Rn, the function g(t) := f (x0+ tv) is
convex when x0+ tv ∈D

Second-order condition: If f is twice di�erentiable, then it is convex i�
its Hessian ∇2f is positive semide�nite everywhere on D; i.e., for any
x ∈D, ∇2f (x)�O
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Examples

f (x) = eax for a ∈ R, f (x) = |x |, f (x) = − logx on R++ (strict
positive real numbers), negative entropy f (x) = x logx on R++

A�ne functions f (x) = Ax +b

Quadratic functions f (x) = x>Ax +bx + c with positive semide�nite
A

Function λmax(X ) that maps an n×n symmetric matrix X to it
maximum eigenvalue λmax

Since the condition λmax(X )6 t is equivalent to the condition that
tI −X ∈ Sn+, the epigraph is convex

Norms

As ‖(1−θ)x +θy‖6 ‖(1−θ)x‖+‖θy‖= (1−θ)‖x‖+θ‖y‖

Log-sum-exp f (x) = log
∑

i e
xi (a smooth approximation to

f (x) =max{xi })
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Convexity of Sublevel Sets

Convex functions give rise to a particularly important type of convex
set, the t-sublevel set:

Theorem

Given a convex function f :D→ R and t ∈ R. The t-sublevel set (i.e.,

{x ∈D : f (x)6 t} is Convex.

Proof.

[Homework]

Consider a inequality constrain g 6 0 in a convex optimization
problem, if g is a convex function, then it de�nes a convex feasible
set, the 0-sublevel set

When there are multiple inequality constrains, the �nal feasible set is
the intersection of multiple convex sets, which is still convex
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Operations That Preserve Convexity (1)

Composition with an a�ne function: if A in Rm×n, b in Rm and
f : Rm→ R is convex, then the function g : Rn→ R with values
g(x) = f (Ax +b) is convex

Point-wise maximum: the pointwise maximum of a family of convex
functions is convex�if {fi }i∈A is a family of convex functions, then the
function f (x) :=maxi∈A fi (x) is convex

E.g., f (x) =max{xi }, induced matrix norm ‖A‖=max
x :‖x‖=1 ‖Ax‖ is

convex
Extension: supy∈A f (x ,y) is convex if for each y ∈A, f (x ,y) is convex
in x

Nonnegative weighted sum of convex functions is convex

E.g., entropy f (x) = −
∑n

i=1
xi logxi for a distribution x ∈ [0,1]n and

1
>x = 1 is concave

Partial minimum: If f is a convex function in (y ,z), then the function
g(y) :=minz f (y ,z) is convex

Note that joint convexity in (y ,z) is essential
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Operations That Preserve Convexity (2)

Composition with monotone convex functions: if
f (x) = h(g1(x), · · · ,gk(x)), with gi : Rn→ R convex, h : Rk → R
convex and non-decreasing in each variable, then f is convex

For simplicity, assume k = 1 and h,g ∈ C2. The above conditions
ensure that ∇2g1(x) ∈Rn×n �O, h ′′(y) ∈Rn > 0, and h ′(y) ∈Rn > 0
Then for any x ∈D, (remember the chain and product rules?)

∇2f (x) = (∇f ) ′(x)> =
{
[∇g1(x)h ′(g1(x))]

′}>
= {∇g1(x)h ′′(g1(x))g ′1(x)+(∇g1) ′(x)h ′(g1(x))}>

= h ′′(g1(x))
{
∇g1(x)∇g1(x)>

}
+h ′(g1(x))

{
∇2g1(x)

}
�O

E.g., log
∑

i exp(gi ) is convex if gi is
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Operations That Preserve Convexity (3)

Let g(x) = x2, h(y) = y2 for y > 0, and
f (x) = h ◦g(x) = x4

To show that epi(f ) is convex, observe �rst
that f (x)6 z in is equivalent to the existence
of y such that h(y)6 z and g(x)6 y

The above conditions ensure that the set
{(x ,y ,z) : h(y)6 z ,g(x)6 y } in the space of
(x ,y ,z)-variables is convex

Hence, epi(f ), the projection of that convex
set onto the space of (x ,z)-variables, is
convex
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Problem Revisited

Form:

minx f (x)
subject to gi (x)6 0,hj(x) = 0, i = 1, · · · ,m, j = 1, · · · ,p

where f is a convex function, gi are convex functions, and hj are
a�ne functions

epi(f ) is a convex set

C = {x : gi (x)6 0,hj(x) = 0, i = 1, · · · ,m, j = 1, · · · ,p} is a convex set

gi 's are convex implies that the 0-sublevel sets {x : gi (x)6 0} are
convex sets
C is the intersection of convex sublevel sets and hyperplanes

The problem amounts to �nding the �lowest� point in the set
epi(f )∩ {(x , t) : x ∈ C , t ∈ R}, which is convex

Local optimal points are also global optima
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Global vs. Local Optima in Convex Optimization

Theorem

For convex problems with objective f :D→ R, any locally optimal point is

globally optimal. In addition, the optimal set is convex.

Proof.

Let y and x∗ be a point and a local minimizer of f on the intersection of
feasible set C and D. We need to prove that f (y)> f (x∗) = p∗. By
convexity of f and C , we have xθ := θy +(1−θ)x∗, and:

f (xθ)− f (x∗)6 θf (y)+(1−θ)f (x∗)− f (x∗) = θ(f (y)− f (x∗)).

Since x∗ is a local minimizer, the left-hand side in this inequality is
nonnegative for all small enough values of θ > 0. We conclude that the
right hand side is nonnegative, i.e., f (y)> f (x∗) = p∗ as claimed.
Also, the optimal set is convex, since it can be written as
X ∗ = {x ∈ C ∩D : f (x∗)6 p∗}. This ends our proof.
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Disciplined Convex Programming and CVX

A convex optimization software can solve a convex optimization
problem e�ciently

E.g., CVX, optimization toolbox in Matlab (for LP and QP)

But it cannot identify whether a problem, in an arbitrary form, is
convex or not

Don't expect it to accept any problem you give, and tell you the
problem is not convex

Discipline convex optimization de�nes

A library of convex functions
The rule sets corresponding to operations that preserve convexity. E.g.,
sum, a�ne composition, pointwise maximum, partial minimization,
composition with monotone convex functions, etc.
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Unconstrained Problems

Form:
min
x

f (x)

where f is convex

For simplicity, here we assume f ∈ C1

Optimality condition: x∗ is optimal i� ∇f (x∗) = 0

For general f (other than a�ne or quadratic), we may not be able to
solve x∗ in a close form

In practice, suboptimal solutions may be acceptable

There exist iterative algorithms that yield suboptimal points much
faster
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Iterative Algorithms

Assumption: the problem is attained (i.e., C 6= ∅ and p∗ is attained)

Algorithm 4.1: General Descent Method

Input: x(0), an initial guess from D

1 repeat

2 Determine a search direction d (t) ∈ Rn ;

3 Line search: Choose a step size η(t) such that

f (x(t)+η(t)d (t))< f (x(t));

4 Update rule: x(t+1)← x(t)+η(t)d (t) ;

5 until convergence criterion is satis�ed ;

Convergence criterion: ‖x(t+1)−x(t)‖6 ε, ‖∇f (x(t+1))‖6 ε, etc.
Line search could be exact: η(t)← argminη>0φ(η) := f (x(t)+ηd (t)),

which minimizes f along the ray x(t+1) = x(t)+ηd (t), ∀η ∈ R> 0
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Backtracking Line Search

In practice, η(t) is usually obtained by another iterations called
backtracking linear search

(η= t here)

Algorithm 4.2: Backtracking Line Search

Input: α ∈ (0,0.5), β ∈ (0,1)
1 η← 1;

2 while x(t)+ηd (t) /∈D do
3 η← βη;
4 end

5 while f (x(t)+ηd (t)) = φ(η)>φ(0)+αφ ′(0)η=

f (x(t))+α∇f (x(t))>d (t)η do
6 η← βη;
7 end

α, typically in [0.01,0.3], indicates how much relaxation we accept to
the descent direction predicted by the linear extrapolation

β, typically in [0.1,0.8], determines how �ne-grained the search is
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Newton's Method (1)

Recall that when f (x) = x>Qx +c>x is quadratic and Q �O, we
cab obtain x∗ by solving Qx∗ =−c

No solution if c /∈ R(Q); otherwise X ∗ = {−Q†c+z : z ∈N(Q)}
(remember how to solve linear equations using SVD?)
When Q �O, x∗ =−Q−1c is unique
Complexity?

O(n3)

We can leverage the quadratic approximation of a general f to give an
iterative algorithm
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Newton's Method (2)

Assumption: f ∈ C2 and is strictly convex (i.e., ∇2f (x)�O
everywhere)

Update rule: x(t+1)← x(t)−(∇2f (x(t)))−1∇f (x(t));

Based on a local quadratic
approximation of the the function at
the current point x t :
f̃ (x) := f (x(t))+∇f (x(t))(x −x(t))+
1
2(x −x(t))>∇2f (x(t))(x −x(t))

x(t+1) is set to be a solution to the
problem of minimizing f̃
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Remarks (1)

Pros:

No need for line search (although in practice, we often set

d (n) =−(∇2f (x(t)))−1∇f (x(t)) and perform linear search)
Converges fast (1 iteration for quadratic f )

Cons:

Computing (∇2f (x t))
−1 may be too costly for large-scale problems

∇2f (x t) may be singular or ill-conditioned (try

d (n) =−[∇2f (x(t))+µI ]−1∇f (x(t)) instead)
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Remarks (2)

Might fail to converge for some convex functions

Works best for self-concordant functions, whose the Hessians do not
vary too fast

Failure of the Newton method. x0 is
chosen in a region where the function
is almost linear. As a result, the
quadratic approximation is almost a
straight line, and the Hessian is close
to zero, sending x1 to a relatively large
negative value. The method quickly
diverges in this case
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Gradient Descent (1)

Assumption: f ∈ C1

Recall that at a given point x , ∇f (x) points to the steepest ascend
direction

Search direction: d (t) =−∇f (x(t));

Since ∇f (x(t)+η(t)d (t))>d (t) = 0, the next gradient ∇f (x(t+1)) is

orthogonal to the current descent direction d (t) =−∇f (x(t))
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Remarks

Pros:

Easy to implement
Requires only the �rst order
information on f (computing each
iteration is cheap)

Cons:

Much more iterations (as compared
to the Newton's method) to
convergence
�Zig-zagging� around a narrow valley
with �at bottom

E.g., Rosenbrock's banana:

f (x) = 100(x2−x2
1
)+(1−x2

1
)

(Newton vs. Gradient)
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Conjugate Gradient Descent (1)

A simple variation of the gradient descent

Line search and update rule are the same
But tilt the next search direction to better aim at the minimum of the
Hessian of f

Search direction: d (t) =−∇f (x(t))+ c(t)d (t−1) for some constant c(t);

c(t) can be ‖∇f (x(t))‖2
‖∇f (x(t−1))‖2 ,

(∇f (x(t))−∇f (x(t−1)))>∇f (x(t))

‖∇f (x(t−1))‖2 ,
etc.

Designed to perform well on
quadratic functions

(g (t) :=∇f (x(t))
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Conjugate Gradient Descent (2)

Suppose f (x) = 1
2x
>Ax+b>x is quadratic (so that ∇f (x) =Ax+b)

Idea: instead of searching for x(t+1) minimizing f along
x(t)−η∇f (x(t)), seek for x(t+1) minimizing f in the a�ne space

W(t+1) := x(0)+ span(d (0),d (1), · · · ,d (t−1),∇f (x(t)))

Lemma

If x(t+1) is the minimizer of f in W(t+1), then ∇f (x(t+1))⊥W(t+1).

Proof.

Otherwise, we can decrease f along the projection of ∇f (x(t+1)) onto
W(t+1), contradicting to that x(t+1) is the minimizer.
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Conjugate Gradient Descent (3)

Lemma

Let x(t) be the minimizer of f in W(t). From x(t), the direction d (t) points

to the minimizer x(t+1) in W(t+1) i� d (t)>Ad (i) = 0 for 06 i 6 t−1.
The direction d (t) is said to be conjugate to all previous d (i).

Proof.

By de�nition, we have x(t+1) = x(t)+ηd (t) and

∇f (x(t+1)) = Ax(t+1)+b =∇f (x(t))+ηAd (t).

From the above lemma ∇f (x(t+1))⊥W(t+1) and ∇f (x(t))⊥W(t), we have

0=∇f (x(t+1))>∇f (x(t)) = ‖∇f (x(t))‖2+ηd (t)>A∇f (x(t)),

implying η 6= 0. Furthermore,

0=∇f (x(t+1))>d (i) =∇f (x(t))d (i)+ηd (t)>Ad (i) = ηd (t)>Ad (i),

implying d (t)>Ad (i) = 0 for all i .
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Conjugate Gradient Descent (4)

How to �nd d (t) such that it is conjugate to all d (i)?

Notice that ∇f (x(t+1))−∇f (x(t)) = A(x(t+1)−x(t)) = ηAd (t) (see
the proof of the above lemma).

So, d (t)>Ad (i) = 0⇒ d (t)>(∇f (x(t+1))−∇f (x(t))) = 0⇒
d (t)>∇f (x(t+1)) = d (t)>∇f (x(t)) = some constant

Since ∇f (x(i)) forms an orthogonal family, we have d (t) a scaling of∑t
i=0

∇f (x(i))

‖∇f (x(i))‖2

Apply the above to d (0),d (1), · · · ,d (t), we have
d (t) =−∇f (x(t))+ c(t)d (t−1)

You can easily verify that c(t) =
‖∇f (x(t))‖2
‖∇f (x(t−1))‖2 makes the equation holds
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Remarks

Pros:

Easy to implement
Still a �rst order method (same
cheap iterations as in gradient
descent)
Converges fast (at most n iterations
for quadratic function f : Rn→ R)
Can be applied to non-quadratic f ,
by replacing A with the Hessian of f

Works well if ∇2f (x(t+1)) and

∇2f (x(t)) do not vary too much

Caution:

For general f , d n may not be a
descent direction. Set it to
−∇f (x(t)) in this case

(Gradient vs. Conjugate
Gradient)
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Constrained Problems

Form:

minx f (x)
subject to x ∈ C = {x : gi (x)6 0,hj(x) = 0, i = 1, · · · ,m, j = 1, · · · ,p}

where f and gi are convex, hj are a�ne

For simplicity, here we assume f ∈ C1

Optimality condition: x∗ is optimal i� ∇f (x∗)>(x −x∗)> 0,∀x ∈ C ,
as f (x)> f (x∗)+∇f (x∗)>(x −x∗)
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Active Sets

De�ne the active set A(x) at a point x as
the set of constrains θ's such that θ(x) = 0,
i.e., A(x) := {θ : θ(x) = 0}

Equality constrains hj 's are always active

Recall for any constrain θ, the gradient
∇θ(x) is orthogonal to a tangent line/space
passing through the level set at x

x∗ occurs when

∀j , ∇hj(x∗) and −∇f (x∗) are parallel (i.e.,
−∇f (x∗) = νj∇hj(x∗) for some νj 6= 0)
∀i such that gi is active, −∇gi (x∗) and
−∇f (x∗) are opposite (i.e.,
−∇f (x∗) = λi∇gj(x∗) for some λi > 0)
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Iterative Algorithms

Assumption: the problem is attained (i.e., C 6= ∅ and p∗ is attained)

Iterative algorithms in the presence of constrains?

1 Transform the constrained problem into a unconstrained one, or

2 Make sure that x(t+1) falls inside the feasible set during each iteration
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Exterior-Point Methods

For equality constrains hj(x) = 0

Idea: penalize non-admissible solutions

Create �barrier functions� ψj(x) such that ψj(x) = 0 if hj(x) = 0;
ψj(x)� 0 otherwise

E.g., ψj(x) = µ‖hj(x)‖2 for some large µ

Solve the unconstrained problem: minx f (x)+µ
∑p

j=1ψj(x)

Objective is still convex

A solution falls outside the feasible set, an �exterior point�
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Interior-Point Methods

For inequality constrains gi (x)6 0

Assumption: the original problem is strictly feasible (i.e., there exists
x ∈ X ∗ such that gi (x)< 0 for all i)

Idea: penalize non-admissible solutions

Create barrier functions ψi (x) such that ψi (x) = 0 if gi (x)6 0;
ψi (x)� 0 otherwise

E.g., the logarithmic barrier ψi (x) = −µ log(−gi (x)) for some µ

Solve the unconstrained problem (still convex):
minx f (x)−µ

∑m
i=1 log(−gi (x))

A solution falls inside the feasible set, an ``interior point''
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Remarks

For µ large, solving the above problem results in a point well
aligned/inside the feasible set

As µ→ 0 the solution converges to a global minimizer for the original,
constrained problem

In fact, the theory of convex optimization says that if we set µ=m/ε
(or µ= p/ε for equality constrains), then the minimizer is
ε-suboptimal.

In practice, we solve the unconstrained problem several times, with µ
from large to small
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Projected Gradient Descent (1)

x(t+1) may fall outside C during an iteration

Idea: if so, project x(t+1) onto the boundary of C

Update rule: x(t+1)← P(x(t)−η(t)∇f (x(t))) for some projector P;

For simplicity, we consider only the
a�ne constrains here

Suppose x(t) is already on the
boundary of C

We can identify the active set
A(x(t)) at x(t)

De�ne the tangent space of
active constrains at x(t):⋂
θ∈A(x(t)){x :∇θ(x(t))>(x −x(t)) = 0}

We seek for the projection of
x(t+1) onto that tangent space
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Projected Gradient Descent (2)

Since x(t) is already in the tangent
space, the update rule can be
written as
x(t+1)← (x(t)−η(t)P∇f (x(t)))
(recall P2 = P)

∇θ(x(t))>(x(t+1)−x(t)) = 0
implies
∇θ(x(t))>(−η(t)P∇f (x(t))) = 0

Let
Θ=

[
∇θ1(x(t)), · · · ,∇θa(x(t))

]
∈

Rn×a, where a = |A(x(t))|

We instead seek for the projection
of −∇f (x(t)) onto {x :Θ>x = 0}

Shan-Hung Wu (CS, NTHU) Convex Optimization NetDB-ML, Fall 2014 57 / 79



Projected Gradient Descent (3)

Target: −P∇f (x(t)) ∈ {x :Θ>x = 0}. How to �nd P?

Recall from the fundamental theorem of linear algebra that
{x :Θ>x = 0}= R(Θ)⊥ = span(∇θ1(x(t)), · · · ,∇θa(x(t)))⊥

Also, recall that the projection of any point y onto R(Θ) is Θx∗,
where x∗ = (Θ>Θ)−1Θ>y is the solution to the least square problem

argmin
x

‖Θx −y‖2

Let Q =Θ(Θ>Θ)−1Θ>, the projection of y onto R(Θ)⊥ is
y −Qy = (I −Q)y , so P = I −Q
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The Changing Active Sets

We may encounter −P∇f (x(t)) = 0 during an iteration. Should we
stop?

No, some constrains θ in A(x(t))
may be �unnecessary,� i.e., we
cannot �nd η > 0 such that
x(t)−ηPθ∇f (x(t)) is on the
boundary of C ,

Pθ projects d (t) onto
{x :∇θ(y (t))>x = 0}
We can obtain η by �rst solving
g(x(t)−ηPθ∇f (x(t))) = 0 for
each another constrain g ∈ C ,
and then take the minimum of
the solutions that are in (0,∞)

Remove all such constrains θ's in A(x(t)). Stop only if A(x(t)) = ∅
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Algorithm

Algorithm 4.3: Projected Gradient Descent Method

Input: x(0), an initial guess from D∩C
1 repeat

2 d (t)←−∇f (x(t));

3 Determine η(t);

4 x(t+1)← x(t)+η(t)d (t);

5 if x(t+1) /∈ C then

6 y (t)← x(t)+η ′d (t) is the intersect between {x(t)+ηd (t) : η > 0} and

the boundary of C ;

7 A(y (t))←set of active constrains at y (t), excluding those θ's such that

there is no intersect between {x(t)+ηPθd
(t) : η > 0} and the boundary

of C ;

8 if A(y (t)) 6= ∅ then x(t+1)← y (t)+(η(t)−η ′)Pd (t) else x(t+1)← y (t);

9 end

10 until convergence criterion is satis�ed ;
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Decomposition Methods

TBA
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Weak and Strong Duality

Next, we shows how the notion of weak duality allows to develop, in
a systematic way, approximations of non-convex problems based on
convex optimization.

Starting with any given minimization problem, which we call the
primal problem, we can form a dual problem, which

Is always convex (speci�cally, a concave maximization problem)
Provides a lower bound on the values of the primal

When the primal is convex, the strong duality holds�the dual
problem shares the same optimal value as that of the primal

Gives more insights to the optimality conditions
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Primal Problem

Consider a primal problem:

minx∈Rn f (x)
subject to gi (x)6 0,hj(x) = 0, i = 1, · · · ,m, j = 1, · · · ,p

f , gi , and hj can be arbitrary (need not be convex or a�ne)

For simplicity, let f (x) =∞ (resp., gi (x) and hj(x)) if x is not in the
domain of f (resp., gi and hj)

p∗ := inf
x :gi(x)60,hj(x)=0 f (x) and x are call primal value and

variables respectively
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Lagrange Function

De�ne a Lagrange function (or simply Lagrangian)
L : Rn×Rm×Rp→ R with values

L(x ,α,β) := f (x)+

m∑
i=1

αigi (x)+

p∑
j=1

βjhj(x)

Then the primal problem can be written as

min
x∈Rn

sup
α>0

L(x ,α,β)

p∗ = inf
x∈Rn supα>0L(x ,α,β)

This creates �barriers� that penalize gi (x)> 0 and hj(x) 6= 0
The constrains α> 0 are essential
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Dual Problem

Given a primal problem minx∈Rn supα>0L(x ,α,β), de�ne its dual
problem as

max
α>0

inf
x∈Rn

L(x ,α,β)

d∗ := supα>0 infx∈Rn L(x ,α,β) is called the dual value

It can be easily shown that
d∗ = supα>0 infx∈Rn L(x ,α,β)6 infx∈Rn supα>0L(x ,α,β) = p∗

(called max-min inequality) [Homework]

d∗ is a lower bound of p∗

p∗−d∗ is called the duality gap

dual(α,β;x) := infx∈Rn L(x ,α,β) is called the dual function

De�ned as a point-wise minimum (in x), therefore concave

The dual problem maxα>0 dual(α,β) is always a
concave-maximization problem (convex)
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Example

Consider a primal problem:

minx
1
2‖x‖

2

subject to Ax 6 b

dual(α;x) =minx
1
2‖x‖

2+α>(Ax −b) = −1
2‖A

>α‖2−b>α [Proof]

x∗ = A>α

Dual problem:
maxα−1

2‖A
>α‖2−b>α

subject to α> 0

Equivalent to minα>0
1

2
‖A>α‖2+b>α
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Geometric Interpretation (1)

Consider a primal problem: minx f (x) subject to g(x)6 0

Dual problem: maxα>0 dual(α) =maxα>0 infx f (x)+αg(x)

Let A := {(u, t) : u > g(x), t > f (x)}, the blue area

The solutions are feasible only in the dark blue area
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Geometric Interpretation (2)

infx f (x)+αg(x) is attained, so we can rewrite the dual function as
dual(α) =min(u,t)∈A t+αu = t∗+αu∗

Given any �xed α> 0, {(u, t) : t = dual(α)−αu} is a line with slop
−α intercepting A at (t∗,u∗)

The line intercepts {(u, t) : u = 0} at (0,dual(α))

The dual problem is to �nd the best line intercepting A that produce
the highest intercept with {(u, t) : u = 0}

Generalizable to the cases of multiple inequality constraints + equality
constraints
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Remarks

The dual function dual may not be easy to compute: it is itself an
optimization problem!

Duality works best when dual can be computed in closed form

Even if it is possible to compute dual , it might not be easy to
maximize: convex problems are not always easy to solve

A lower bound might not be of great practical interest: often we need
a sub-optimal solution

Duality does not seem at �rst to o�er a way to compute such a primal
point

However, duality is a powerful tool in understanding the problem
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Strong Duality

Primal problem:

minx∈Rn f (x)
subject to gi (x)6 0,hj(x) = 0, i = 1, · · · ,m, j = 1, · · · ,p

p∗ := inf
x :gi (x)60,hj (x)=0 f (x)

Dual problem:

max
α>0

inf
x∈Rn

f (x)+

m∑
i=1

αigi (x)+

p∑
j=1

βjhj(x)

d∗ := supα>0 infx∈Rn L(x ,α,β)

We say that strong duality holds if the duality gap is zero: d∗ = p∗
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Slater's Su�cient Condition for Strong Duality (1)

How to make (0,d∗) = (0,p∗)?

One su�cient condition:

1 A= {(u, t) : u> g(x), t > f (x)}
(the blue area) is a convex set

2 The line
{(u, t) : t = dual(α)−αu} is
not vertical (so d∗ is attained)
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Slater's Su�cient Condition for Strong Duality (2)

The above two points imply:

1 The primal problem is convex

Since {u : u > g(x)} and {t : t > f (x)} are convex, so does A [Proof]

2 Slater condition: the primal problem is strictly feasible:
∃x : gi (x)<0,hj(x) = 0

The interior points of A= {(u, t) : u > g(x), t > f (x)} (the blue area)
cut into the area {(u, t) : u < 0}
If gi (x) is a�ne, we can relax the feasibility above by gi (x)6 0

Su�cient condition for strong duality, but not necessary
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Solving the Dual Problem

Suppose the strong duality holds, then by solving the dual problem, we
obtain:

The primal value p∗ = d∗

Furthermore, x∗ if we can write x∗ in a close form with respect to α
and β in dual(α,β;x) := inf

x∈Rn L(x ,α,β)

Why solving the dual problem instead?

We gain insights to the primal problem
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Karush-Kuhn-Tucker (KKT) Conditions

Theorem

Suppose f , gi , and hj are continuously di�erentiable at x∗, and the primal

problem is attained, convex, and satis�es the Slate condition. Then a

primal variable x∗ is optimal i� there exists α∗ and β∗ such that the

following conditions, called Karush-Kuhn-Tucker (KKT) conditions are

satis�ed:

Lagrangian stationarity:
∇f (x∗)+

∑m
i=1α

∗
i ∇gi (x∗)+

∑p
j=1β

∗
j ∇hj(x∗) = 0

Primal feasibility: gi (x
∗)6 0 and hj(x

∗) = 0 for all i = 1, · · · ,m and

j = 1, · · · ,p
Dual feasibility: α∗i > 0 for all i = 1, · · · ,m
Complementary slackness: α∗i gi (x

∗) = 0 for all i = 1, · · · ,m
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Complementary Slackness

Why α∗i gi (x
∗) = 0 for all i = 1, · · · ,m?

When strong duality holds and both primal and dual problems are
attained, by (x∗,α∗,β∗), we have

f (x∗)+
m∑
i=1

α∗i gi (x
∗)+

p∑
j=1

β∗j hj (x
∗) = dual(α∗,β∗;x∗) = d∗ = p∗ = f (x∗)

Since α∗ > 0, each term in
∑m

i=1α
∗
i gi (x

∗) must be 0

So what?

If α∗i > 0, then gi (x
∗) = 0

We can tell from the values of α∗i 's which inequality constraint is
active
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Example

Suppose A ∈ Rm×n, in the primal problem:

minx∈Rn
1
2‖x‖

2

subject to Ax 6 b

Dual problem:
minα∈Rm

1
2‖A

>α‖2+b>α
subject to α> 0

x∗ = A>α

We now solve m instead of n variables

If n�m, solving the dual problem takes less time

Furthermore, by complementary slackness, α>(Ax −b) = 0

We can tell that the j-th constraint is active (i.e., Aj ,·x = bj) i� αj 6= 0
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