Convex Optimization

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Fall 2014

Shan-Hung Wu (CS, NTHU)

Convex Optimization

Net DB-ML, Fall 2014 1 / 79

Optimization Problems

- Standard Forms and Terminology
- Problem Classes

2 Convexity

- Convex Sets
- Convex Functions
- 3 Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
 - Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- 5 Duality
 - Weak Duality
 - Strong Duality

Optimization Problems

• Standard Forms and Terminology

Problem Classes

2 Convexity

- Convex Sets
- Convex Functions
- **3** Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- 4 Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- Duality
 - Weak Duality
 - Strong Duality

Functional Form

• An *optimization problem* is to minimize an *objective* (or cost) function $f : \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$:

 $\min_{\boldsymbol{x}} f(\boldsymbol{x})$
subject to $\boldsymbol{x} \in C$

where $C \subseteq \mathbb{R}^n$ is called the *feasible set* containing *feasible points* (or variables)

- If $C = \mathbb{R}^n$, we say the optimization problem is unconstrained
- Maximizing f equals to minimizing -f
- C can be a set of function *constrains*, i.e.,

$$C = \{ \boldsymbol{x} : \boldsymbol{g}_i(\boldsymbol{x}) \leqslant 0, i = 1, \cdots, m \}$$

- Sometimes, we single out equality constrains $C = \{x : g_i(x) \leq 0, h_j(x) = 0, i = 1, \dots, m, j = 1, \dots, p\}$
- Each equality constrain can be written as two inequality constrains

• We can always assume that the objective is a linear function of the variables, via the *epigraph* $(epi(f) := \{(x, t) \in \mathbb{R}^{n+1} : x \in \mathbb{R}^n, t \ge f(x)\})$ representation of the problem

$$\min_{\boldsymbol{x},t} t \\ \text{subject to } f(\boldsymbol{x}) - t \leqslant 0, \boldsymbol{x} \in C$$

- The objective function is $A: \mathbb{R}^{n+1} \to \mathbb{R}$, with values $A(\mathbf{x}, t) = t$
- Consider the t-sublevel set of A (i.e., {x : t ≥ A(x)}), the problem amounts to finding the smallest t for which the corresponding sub-level set intersects the set of points satisfying the constraints

Geometric View

Functional form: $\min_{x} 0.9x_{1}^{2} - 0.4x_{1}x_{2} - 0.6x_{2}^{2} - 6.4x_{1} - 0.8x_{2} : -1 \le x_{1} \le 2, 0 \le x_{2} \le 3$ Epigraph form: $\min_{x,t} t : t \ge 0.9x_{1}^{2} - 0.4x_{1}x_{2} - 0.6x_{2}^{2} - 6.4x_{1} - 0.8x_{2}, -1 \le x_{1} \le 2, 0 \le x_{2} \le 3$

The level sets of the objective function are shown as blue lines, and the feasible set is the light-blue box. The problem amounts to find the smallest value of t such that t = f(x)for some feasible x. The two dots are the unconstrained and constrained optimal values respectively

Terminology (1)

• $p^* := \inf_{x} f(x) : x \in C$ is called the *optimal value*, which

- may not exist if the problem is infeasible
- may not be attained (e.g., in $\min_x e^{-x}$, $p^* = 0$ is attained only when $x \to \infty$)
- ullet We allow p^* to take on the values ∞ and $-\infty$ when the problem is either
 - infeasible (the feasible set is empty), or
 - unbounded below (there exists feasible points such that $f(\mathbf{x}) \to -\infty$), respectively
- A feasible point x^* is called the *optimal point* if $f(x^*) = p^*$
- The *optimal set* X^* is the set of all optimal points, i.e., $X^* := \{x \in C : f(x) = p^*\} = \arg\min_x f(x) : x \in C$
- We say the problem is *attained* iff $C \neq \emptyset$ and p^* is attained (or equivalently, $X^* \neq \emptyset$)

Terminology (2)

• The ϵ -suboptimal set X^{ϵ} is defined as $X^{\epsilon} := \{x \in C : f(x) \leq p^* + \epsilon\}$

An ϵ -suboptimal set is marked in darker color. This corresponds to the set of feasible points that achieves an objective value less or equal than $p^* + \epsilon$

• In practice, we may be only interested in suboptimal solutions

A point z is *locally optimal* if there is a value δ > 0 such that z is optimal for problem (with new objective f̃(x, z) = f(x))

$$\min_{\mathbf{x}} f(\mathbf{x}) : \mathbf{z}, \mathbf{x} \in C, \|\mathbf{x} - \mathbf{z}\| \leq \delta$$

• That is, a local minimizer minimizes f, but only for its nearby points in the feasible set

Minima of a nonlinear function. The value at a local minimizer is not necessarily the (global) optimal value of the problem, unless f is a "convex" function (in the sense that epi(f) is a "convex" set)

Optimization Problems

- Standard Forms and Terminology
- Problem Classes

2 Convexity

- Convex Sets
- Convex Functions
- **3** Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- 4 Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- **Duality**
 - Weak Duality
 - Strong Duality

• Linear Programming (LP) has the form:¹

$$\mathsf{min}_{oldsymbol{x}} \, oldsymbol{c}^{ op} oldsymbol{x}$$
 subject to $oldsymbol{G} oldsymbol{x} \leqslant oldsymbol{h}, oldsymbol{A} oldsymbol{x} = oldsymbol{b}$

where $\boldsymbol{c} \in \mathbb{R}^n$, $\boldsymbol{G} \in \mathbb{R}^{m \times n}$, $\boldsymbol{h} \in \mathbb{R}^m$, $\boldsymbol{A} \in \mathbb{R}^{p \times n}$, and $\boldsymbol{b} \in \mathbb{R}^p$

- The objective and the m+p constrain functions are all affine (i.e., translated linear)
 - Note min_x $c^{\top}x + d$ for some fixed $d \in \mathbb{R}$ amounts to min_x $c^{\top}x$

Shan-Hung Wu (CS, NTHU)

¹The term "programming" has nothing to do with computer programs. It is named so due to historical reasons.

• Quadratic Programming (QP) has the form:

$$\min_{x} x^{\top} Q x + c^{\top} x$$
subject to $G x \leq h, A x = b$

where $\boldsymbol{Q} \in \mathbb{R}^{n \times n}$, $\boldsymbol{c} \in \mathbb{R}^{n}$, $\boldsymbol{G} \in \mathbb{R}^{m \times n}$, $\boldsymbol{h} \in \mathbb{R}^{m}$, $\boldsymbol{A} \in \mathbb{R}^{p \times n}$, and $\boldsymbol{b} \in \mathbb{R}^{p}$

• The objective is a quadratic function, and the m+p constrain functions are affine

• A *convex optimization* problem is of the form:

 $\min_{\boldsymbol{x}} f(\boldsymbol{x})$
subject to $\boldsymbol{x} \in C$

where f is a convex function, and C is a convex set

- In particular, with constrains $C = \{x : g_i(x) \leq 0, h_j(x) = 0, i = 1, \dots, m, j = 1, \dots, p\}$
 - gi must be convex functions
 - h_j must be affine functions (since h_j can be expressed as two g's, the only way to make both g's convex is by letting h_j affine)
- Includes LP, QP with positive semidefinite **Q**, and more

Combinatorial Optimization

- In combinatorial optimization, some (or all) the variables are Boolean or integers, reflecting discrete choices to be made
 - E.g., Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be an incidence matrix of a directed graph where $A_{i,j}$ equals to 1 if the arc j starts at node i; -1 if j ends at i; 0 otherwise. The problem of finding the shortest path between nodes 1 and m can be expressed as

$$\min_{\mathbf{x}} \mathbf{1}^{\top} \mathbf{x} : \mathbf{A} \mathbf{x} = [1, 0, \cdots, 0, -1]^{\top}, \mathbf{x} \in \{0, 1\}^{n}$$

- E.g., the traveling salesman problem
- Generally, extremely hard to solve
- However, they can often be approximately solved with linear or convex programming
 - E.g., the LP-*relaxed* single-pair shortest path problem:

$$\min_{\mathbf{x}} \mathbf{1}^{\top} \mathbf{x} : \mathbf{A} \mathbf{x} = [1, 0, \cdots, 0, -1]^{\top}, \mathbf{0} \leqslant \mathbf{x} \in \mathbb{R}^{n} \leqslant \mathbf{1}$$

Shan-Hung Wu (CS, NTHU)

- We say a problem is hard if cannot be solved in a reasonable amount of time and/or memory space
- Roughly speaking, convex problems are easy; non-convex ones are hard
- Of course, not all convex problems are easy, but a (reasonably large) subset
 - E.g., LP and QP with positive semidefinite $oldsymbol{Q}$
- Conversely, some non-convex problems are actually easy
 - E.g., the LP-relaxed single-pair shortest path problem has optimal points turn out to be Boolean, so these points are also optimal to the original problem

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- 2 Convexity
 - Convex Sets
 - Convex Functions
- **3** Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- 4 Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- **Duality**
 - Weak Duality
 - Strong Duality

Definition (Convex Set)

A set *C* of points is *convex* iff for any $x, y \in C$ and $\theta \in [0, 1]$, we have $(1-\theta)x + \theta y \in C$.

- The point $(1-\theta)x + \theta y$ is called the *convex combination* of points x and y
- Non-convex set:
- Any convex set you know?

Definition (Convex Set)

A set *C* of points is *convex* iff for any $x, y \in C$ and $\theta \in [0, 1]$, we have $(1-\theta)x + \theta y \in C$.

- The point $(1-\theta)x + \theta y$ is called the *convex combination* of points x and y
- Non-convex set:
- Any convex set you know? ℝⁿ, non-negative orthant ℝⁿ₊, Ø, {x}, line segments, etc.

- A set is said to be a *convex cone* if it is convex, and has the property that if *x* ∈ *C*, then θ*x* ∈ *C* for every θ ≥ 0
 - E.g., \mathbb{R}^n , \mathbb{R}^n_+ , union of scalings of a convex set (must contains **0**)

More Examples

- Subspaces and affine subspaces such as lines, hyperplanes, and higher-dimensional ''flat'' sets
- Half-spaces, linear varieties (polyhedra, intersections of half-spaces)
- The *convex hulls* of a set of points $\{x_1, \dots, x_m\}$ is a convex set:

$$Co(\mathbf{x}_1,\cdots,\mathbf{x}_m) := \left\{ \sum_{i=1}^m \theta_i \mathbf{x}_i : \theta_i \ge 0, \forall i, \sum_{i=1}^m \theta_i = 1 \right\}$$

• Norm balls: $N = \{ \boldsymbol{x} : \| \boldsymbol{x} \| \leqslant 1 \}$, where $\| \cdot \|$ is some norm on \mathbb{R}^n

• As for any
$$\mathbf{x}, \mathbf{y} \in \mathbf{N}$$
,
 $\|(1-\theta)\mathbf{x}+\theta\mathbf{y}\| \leq \|(1-\theta)\mathbf{x}\| + \|\theta\mathbf{y}\| = (1-\theta)\|\mathbf{x}\| + \theta\|\mathbf{y}\| \leq 1$

• The set of all (symmetric) positive semidefinite matrices, denoted by $\mathbb{S}^n_+ \subset \mathbb{R}^{n \times n}$, is a convex cone

• For any
$$\boldsymbol{A}, \boldsymbol{B} \in \mathbb{S}_{+}^{n}$$
 and $\boldsymbol{x} \in \mathbb{R}^{n}$,
 $\boldsymbol{x}^{\top}((1-\theta)\boldsymbol{A}+\theta\boldsymbol{B})\boldsymbol{x} = \boldsymbol{x}^{\top}(1-\theta)\boldsymbol{A}\boldsymbol{x} + \boldsymbol{x}^{\top}\boldsymbol{\theta}\boldsymbol{B}\boldsymbol{x} \ge 0$

Operations That Preserve Convexity

- Given a convex set $C_1, C_2 \subseteq \mathbb{R}^n$,
 - Scaling: $\beta C = \{\beta x : x \in C\}$ is convex for any $\beta \in \mathbb{R}$
 - Sum: $C_1 + C_2 = \{x_1 + x_2 : x_1 \in C_1, x_2 \in C_2\}$ is convex
 - Augmentation: $\{(x_1, x_2) : x_1 \in C_1, x_2 \in C_2\} \subseteq \mathbb{R}^{2n}$ is convex
 - *Intersection:* $C_1 \cap C_2$ is convex [Homework]
- Affine transformation: if a map $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine, and C is convex, then the set

$$f(C) := \{f(\mathbf{x}) : \mathbf{x} \in C\}$$

is convex [Proof]

• In particular, the projection of a convex set on a subspace is convex

Optimization Problems

- Standard Forms and Terminology
- Problem Classes

2 Convexity

Convex Sets

Convex Functions

3 Convex Optimization

- Optimality
- Disciplined Convex Programming and CVX
- LP and QP
- Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- **Duality**
 - Weak Duality
 - Strong Duality

Definition (Convex Function)

A function $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ is *convex* iff a) \mathcal{D} is convex; and b) for any $x, y \in \mathcal{D}$ and $\theta \in [0, 1]$, we have $f((1-\theta)x + \theta y) \leq (1-\theta)f(x) + \theta f y)$

- Condition a) is necessary (what if D is union of two line segments?)
- Alternatively, f is *convex* iff its epigraph $epi(f) := \{(x, t) \in \mathbb{R}^{n+1} : x \in \mathbb{R}^n, t \ge f(x)\}$ is convex
- We say that a function f is
 - strictly convex if $f((1-\theta)\mathbf{x}+\theta\mathbf{y}) < (1-\theta)f(\mathbf{x})+\theta f\mathbf{y})$ for $\mathbf{x} \neq \mathbf{y}$
- **concave** if -f is convex

More Alternate Definitions

• First-order condition: if $f \in \mathbb{C}^1$ is differentiable (that is, \mathcal{D} is open and the gradient exists everywhere on \mathcal{D}), then f is convex iff for any x and y, $f(y) \ge f(x) + \nabla f(x)^\top (y - x)$

- I.e., the graph of *f* is bounded below everywhere by anyone of its tangent planes
- Restriction to a line: f is convex iff its restriction to **any** line is convex, i.e., for every $x_0, v \in \mathbb{R}^n$, the function $g(t) := f(x_0 + tv)$ is convex when $x_0 + tv \in \mathcal{D}$
- Second-order condition: If f is twice differentiable, then it is convex iff its Hessian ∇² f is positive semidefinite everywhere on D; i.e., for any x ∈ D, ∇² f(x) ≥ O

Examples

- f(x) = e^{ax} for a ∈ ℝ, f(x) = |x|, f(x) = -log x on ℝ₊₊ (strict positive real numbers), negative entropy f(x) = x log x on ℝ₊₊
- Affine functions f(x) = Ax + b
- Quadratic functions $f(x) = x^{\top}Ax + bx + c$ with positive semidefinite A
- Function $\lambda_{\max}(X)$ that maps an $n \times n$ symmetric matrix X to it maximum eigenvalue λ_{\max}
 - Since the condition $\lambda_{\max}(X) \leq t$ is equivalent to the condition that $tI X \in \mathbb{S}^n_+$, the epigraph is convex
- Norms

• As
$$\|(1-\theta)\mathbf{x}+\theta\mathbf{y}\| \leq \|(1-\theta)\mathbf{x}\|+\|\theta\mathbf{y}\| = (1-\theta)\|\mathbf{x}\|+\theta\|\mathbf{y}\|$$

• Log-sum-exp $f(\mathbf{x}) = \log \sum_{i} e^{x_i}$ (a smooth approximation to $f(\mathbf{x}) = \max\{x_i\}$)

Convexity of Sublevel Sets

• Convex functions give rise to a particularly important type of convex set, the *t*-sublevel set:

Theorem

Given a convex function $f : D \to \mathbb{R}$ and $t \in \mathbb{R}$. The t-sublevel set (i.e., $\{x \in D : f(x) \leq t\}$ is Convex.

Proof.	
[Homework]	

- Consider a inequality constrain $g \le 0$ in a convex optimization problem, if g is a convex function, then it defines a convex feasible set, the 0-sublevel set
 - When there are multiple inequality constrains, the final feasible set is the intersection of multiple convex sets, which is still convex

Shan-Hung Wu (CS, NTHU)

Convex Optimization

Operations That Preserve Convexity (1)

- Composition with an affine function: if A in $\mathbb{R}^{m \times n}$, b in \mathbb{R}^m and $f : \mathbb{R}^m \to \mathbb{R}$ is convex, then the function $g : \mathbb{R}^n \to \mathbb{R}$ with values $g(\mathbf{x}) = f(A\mathbf{x} + \mathbf{b})$ is convex
- **Point-wise maximum**: the pointwise maximum of a family of convex functions is convex—if $\{f_i\}_{i \in \mathcal{A}}$ is a family of convex functions, then the function $f(\mathbf{x}) := \max_{i \in \mathcal{A}} f_i(\mathbf{x})$ is convex
 - E.g., $f(x) = \max\{x_i\}$, induced matrix norm $\|A\| = \max_{x:\|x\|=1} \|Ax\|$ is convex
 - Extension: $\sup_{y \in A} f(x, y)$ is convex if for each $y \in A$, f(x, y) is convex in x
- Nonnegative weighted sum of convex functions is convex
 - E.g., entropy $f(\mathbf{x}) = -\sum_{i=1}^{n} x_i \log x_i$ for a distribution $\mathbf{x} \in [0,1]^n$ and $\mathbf{1}^{\top} \mathbf{x} = 1$ is concave
- Partial minimum: If f is a convex function in (y, z), then the function $g(y) := \min_{z} f(y, z)$ is convex
 - Note that joint convexity in (y, z) is essential

- Composition with monotone convex functions: if $f(\mathbf{x}) = h(g_1(\mathbf{x}), \cdots, g_k(\mathbf{x}))$, with $g_i : \mathbb{R}^n \to \mathbb{R}$ convex, $h : \mathbb{R}^k \to \mathbb{R}$ convex and non-decreasing in each variable, then f is convex
 - For simplicity, assume k = 1 and h, g ∈ C². The above conditions ensure that ∇²g₁(x) ∈ ℝ^{n×n} ≥ O, h''(y) ∈ ℝⁿ ≥ 0, and h'(y) ∈ ℝⁿ ≥ 0
 - Then for any $x \in \mathcal{D}$, (remember the chain and product rules?)

$$\nabla^2 f(\mathbf{x}) = (\nabla f)'(\mathbf{x})^\top = \left\{ [\nabla g_1(\mathbf{x})h'(g_1(\mathbf{x}))]' \right\}^\top \\ = \left\{ \nabla g_1(\mathbf{x})h''(g_1(\mathbf{x}))g_1'(\mathbf{x}) + (\nabla g_1)'(\mathbf{x})h'(g_1(\mathbf{x})) \right\}^\top \\ = h''(g_1(\mathbf{x})) \left\{ \nabla g_1(\mathbf{x})\nabla g_1(\mathbf{x})^\top \right\} + h'(g_1(\mathbf{x})) \left\{ \nabla^2 g_1(\mathbf{x}) \right\} \\ \succeq \mathbf{0}$$

• E.g., $\log \sum_{i} \exp(g_i)$ is convex if g_i is

Operations That Preserve Convexity (3)

- Let $g(x) = x^2$, $h(y) = y^2$ for $y \ge 0$, and $f(x) = h \circ g(x) = x^4$
- To show that epi(f) is convex, observe first that f(x) ≤ z in is equivalent to the existence of y such that h(y) ≤ z and g(x) ≤ y
- The above conditions ensure that the set $\{(x, y, z) : h(y) \leq z, g(x) \leq y\}$ in the space of (x, y, z)-variables is convex

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- 2 Convexity
 - Convex Sets
 - Convex Functions
- 3 Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
 - 4 Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
 - **Duality**
 - Weak Duality
 - Strong Duality

Problem Revisited

• Form:

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$

subject to $g_i(\boldsymbol{x}) \leqslant 0, h_j(\boldsymbol{x}) = 0, i = 1, \cdots, m, j = 1, \cdots, p$

where f is a **convex function**, g_i are **convex** functions, and h_j are **affine** functions

- epi(f) is a convex set
- $C = \{x : g_i(x) \leq 0, h_j(x) = 0, i = 1, \dots, m, j = 1, \dots, p\}$ is a convex set
 - g_i 's are convex implies that the 0-sublevel sets $\{x : g_i(x) \leq 0\}$ are convex sets
 - C is the intersection of convex sublevel sets and hyperplanes
- The problem amounts to finding the "lowest" point in the set $epi(f) \cap \{(x, t) : x \in C, t \in \mathbb{R}\}$, which is convex
 - Local optimal points are also global optima

Theorem

For convex problems with objective $f : \mathcal{D} \to \mathbb{R}$, any locally optimal point is globally optimal. In addition, the optimal set is convex.

Proof.

Let y and x^* be a point and a local minimizer of f on the intersection of feasible set C and \mathcal{D} . We need to prove that $f(y) \ge f(x^*) = p^*$. By convexity of f and C, we have $x_{\theta} := \theta y + (1-\theta)x^*$, and:

$$f(\boldsymbol{x}_{\theta}) - f(\boldsymbol{x}^*) \leqslant \theta f(\boldsymbol{y}) + (1 - \theta) f(\boldsymbol{x}^*) - f(\boldsymbol{x}^*) = \theta(f(\boldsymbol{y}) - f(\boldsymbol{x}^*)).$$

Since x^* is a local minimizer, the left-hand side in this inequality is nonnegative for all small enough values of $\theta > 0$. We conclude that the right hand side is nonnegative, i.e., $f(y) \ge f(x^*) = p^*$ as claimed. Also, the optimal set is convex, since it can be written as $X^* = \{x \in C \cap D : f(x^*) \le p^*\}$. This ends our proof.

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- 2 Convexity
 - Convex Sets
 - Convex Functions
- 3 Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
 - 4 Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
 - **Duality**
 - Weak Duality
 - Strong Duality

Disciplined Convex Programming and CVX

- A convex optimization software can solve a convex optimization problem efficiently
 - E.g., CVX, optimization toolbox in Matlab (for LP and QP)
- But it cannot identify whether a problem, in an arbitrary form, is convex or not
 - Don't expect it to accept any problem you give, and tell you the problem is not convex
- Discipline convex optimization defines
 - A library of convex functions
 - The rule sets corresponding to operations that preserve convexity. E.g., sum, affine composition, pointwise maximum, partial minimization, composition with monotone convex functions, etc.

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- 2 Convexity
 - Convex Sets
 - Convex Functions
- 3 Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
 - Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
 - **Duality**
 - Weak Duality
 - Strong Duality

Shan-Hung Wu (CS, NTHU)

TBA

Outline

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- 2 Convexity
 - Convex Sets
 - Convex Functions
- **3** Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP

Algorithms

- Unconstrained Problems
- Constrained Problems
- Large-Scale Problems**
- **5** Duality
 - Weak Duality

• Form:

$\min_{\boldsymbol{x}} f(\boldsymbol{x})$

where f is convex

- For simplicity, here we assume $f\in {\mathbb C}^1$
- Optimality condition: x^* is optimal iff $\nabla f(x^*) = 0$
- For general f (other than affine or quadratic), we may not be able to solve x* in a close form
- In practice, suboptimal solutions may be acceptable
- There exist iterative algorithms that yield suboptimal points much faster

• Assumption: the problem is attained (i.e., $C \neq \emptyset$ and p^* is attained)

Algorithm 4.1: General Descent Method	
Input: $x^{(0)}$, an initial guess from \mathcal{D}	
1 repeat	
	Determine a $search~direction~d^{(t)} \in \mathbb{R}^n$;
3	<i>Line search</i> : Choose a <i>step size</i> $\eta^{(t)}$ such that
	$f(x^{(t)} + \eta^{(t)}d^{(t)}) < f(x^{(t)});$
4	Update rule: $\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} + \eta^{(t)} \mathbf{d}^{(t)}$;

5 until convergence criterion is satisfied;

- Convergence criterion: $\| \mathbf{x}^{(t+1)} \mathbf{x}^{(t)} \| \leq \epsilon$, $\| \nabla f(\mathbf{x}^{(t+1)}) \| \leq \epsilon$, etc.
- Line search could be exact: $\eta^{(t)} \leftarrow \arg\min_{\eta>0} \phi(\eta) := f(\boldsymbol{x}^{(t)} + \eta \boldsymbol{d}^{(t)})$, which minimizes f along the ray $\boldsymbol{x}^{(t+1)} = \boldsymbol{x}^{(t)} + \eta \boldsymbol{d}^{(t)}$, $\forall \eta \in \mathbb{R} > 0$

Backtracking Line Search

• In practice, $\eta^{(t)}$ is usually obtained by another iterations called *backtracking linear search*

- α , typically in [0.01, 0.3], indicates how much relaxation we accept to the descent direction predicted by the linear extrapolation
- β , typically in [0.1, 0.8], determines how fine-grained the search is

- Recall that when $f(x) = x^{\top}Qx + c^{\top}x$ is quadratic and $Q \succeq 0$, we cab obtain x^* by solving $Qx^* = -c$
 - No solution if c ∉ R(Q); otherwise X* = {-Q[†]c + z : z ∈ N(Q)} (remember how to solve linear equations using SVD?)
 - When $\boldsymbol{Q}\succ \mathbf{0}$, $\boldsymbol{x}^*=-\boldsymbol{Q}^{-1}\boldsymbol{c}$ is unique
 - Complexity?

- Recall that when $f(x) = x^{\top}Qx + c^{\top}x$ is quadratic and $Q \succeq 0$, we cab obtain x^* by solving $Qx^* = -c$
 - No solution if c ∉ R(Q); otherwise X* = {-Q[†]c + z : z ∈ N(Q)} (remember how to solve linear equations using SVD?)
 - When $oldsymbol{Q} \succ oldsymbol{0}$, $oldsymbol{x}^* = -oldsymbol{Q}^{-1}oldsymbol{c}$ is unique
 - Complexity? $O(n^3)$
- We can leverage the quadratic approximation of a general f to give an iterative algorithm

Newton's Method (2)

Assumption: f ∈ C² and is strictly convex (i.e., ∇²f(x) ≻ O everywhere)

Update rule:
$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - (\nabla^2 f(\mathbf{x}^{(t)}))^{-1} \nabla f(\mathbf{x}^{(t)});$$

- Based on a *local quadratic approximation* of the the function at the current point x_t : $\tilde{f}(\mathbf{x}) := f(\mathbf{x}^{(t)}) + \nabla f(\mathbf{x}^{(t)})(\mathbf{x} - \mathbf{x}^{(t)}) + \frac{1}{2}(\mathbf{x} - \mathbf{x}^{(t)})^\top \nabla^2 f(\mathbf{x}^{(t)})(\mathbf{x} - \mathbf{x}^{(t)})$
- $x^{(t+1)}$ is set to be a solution to the problem of minimizing \tilde{f}

Pros:

- No need for line search (although in practice, we often set $d^{(n)} = -(\nabla^2 f(x^{(t)}))^{-1} \nabla f(x^{(t)})$ and perform linear search)
- Converges fast (1 iteration for quadratic f)

• Cons:

- Computing $(\nabla^2 f(\boldsymbol{x}_t))^{-1}$ may be too costly for large-scale problems
- $\nabla^2 f(\mathbf{x}_t)$ may be singular or ill-conditioned (try $\mathbf{d}^{(n)} = -[\nabla^2 f(\mathbf{x}^{(t)}) + \mu \mathbf{I}]^{-1} \nabla f(\mathbf{x}^{(t)})$ instead)

- Might fail to converge for some convex functions
 - Works best for self-concordant functions, whose the Hessians do not vary too fast

 Failure of the Newton method. x₀ is chosen in a region where the function is almost linear. As a result, the quadratic approximation is almost a straight line, and the Hessian is close to zero, sending x₁ to a relatively large negative value. The method quickly diverges in this case

- Assumption: $f \in \mathbb{C}^1$
- Recall that at a given point x, ∇f(x) points to the steepest ascend direction

Search direction: $d^{(t)} = -\nabla f(\mathbf{x}^{(t)});$

• Since $\nabla f(\mathbf{x}^{(t)} + \eta^{(t)} \mathbf{d}^{(t)})^{\top} \mathbf{d}^{(t)} = 0$, the next gradient $\nabla f(\mathbf{x}^{(t+1)})$ is orthogonal to the current descent direction $\mathbf{d}^{(t)} = -\nabla f(\mathbf{x}^{(t)})$

Remarks

• Pros:

- Easy to implement
- Requires only the first order information on f (computing each iteration is cheap)

• Cons:

- Much more iterations (as compared to the Newton's method) to convergence
- "Zig-zagging" around a narrow valley with flat bottom
 - E.g., Rosenbrock's banana: $f(\mathbf{x}) = 100(x_2 - x_1^2) + (1 - x_1^2)$

Conjugate Gradient Descent (1)

- A simple variation of the gradient descent
 - Line search and update rule are the same
 - But tilt the next search direction to better aim at the minimum of the Hessian of *f*

Search direction: $d^{(t)} = -\nabla f(\mathbf{x}^{(t)}) + c^{(t)} d^{(t-1)}$ for some constant $c^{(t)}$;

•
$$c^{(t)}$$
 can be $\frac{\|\nabla f(\mathbf{x}^{(t)})\|^2}{\|\nabla f(\mathbf{x}^{(t-1)})\|^2}$,
 $\frac{(\nabla f(\mathbf{x}^{(t)}) - \nabla f(\mathbf{x}^{(t-1)}))^\top \nabla f(\mathbf{x}^{(t)})}{\|\nabla f(\mathbf{x}^{(t-1)})\|^2}$ etc.

• Designed to perform well on quadratic functions

$$(\boldsymbol{g}^{(t)} := \nabla f(\boldsymbol{x}^{(t)})$$

- Suppose $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{A}\mathbf{x} + \mathbf{b}^{\top}\mathbf{x}$ is quadratic (so that $\nabla f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$)
- Idea: instead of searching for $\mathbf{x}^{(t+1)}$ minimizing f along $\mathbf{x}^{(t)} \eta \nabla f(\mathbf{x}^{(t)})$, seek for $\mathbf{x}^{(t+1)}$ minimizing f in the affine space $\mathcal{W}^{(t+1)} := \mathbf{x}^{(0)} + span(\mathbf{d}^{(0)}, \mathbf{d}^{(1)}, \cdots, \mathbf{d}^{(t-1)}, \nabla f(\mathbf{x}^{(t)}))$

Lemma

If
$$\mathbf{x}^{(t+1)}$$
 is the minimizer of f in $\mathcal{W}^{(t+1)}$, then $\nabla f(\mathbf{x}^{(t+1)}) \bot \mathcal{W}^{(t+1)}$.

Proof.

Otherwise, we can decrease f along the projection of $\nabla f(\mathbf{x}^{(t+1)})$ onto $\mathcal{W}^{(t+1)}$, contradicting to that $\mathbf{x}^{(t+1)}$ is the minimizer.

Conjugate Gradient Descent (3)

Lemma

Let $\mathbf{x}^{(t)}$ be the minimizer of f in $\mathcal{W}^{(t)}$. From $\mathbf{x}^{(t)}$, the direction $\mathbf{d}^{(t)}$ points to the minimizer $\mathbf{x}^{(t+1)}$ in $\mathcal{W}^{(t+1)}$ iff $\mathbf{d}^{(t)\top}\mathbf{A}\mathbf{d}^{(i)} = 0$ for $0 \leq i \leq t-1$. The direction $\mathbf{d}^{(t)}$ is said to be conjugate to all previous $\mathbf{d}^{(i)}$.

Proof.

By definition, we have $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} + \eta \mathbf{d}^{(t)}$ and

$$\nabla f(\boldsymbol{x}^{(t+1)}) = \boldsymbol{A}\boldsymbol{x}^{(t+1)} + \boldsymbol{b} = \nabla f(\boldsymbol{x}^{(t)}) + \eta \boldsymbol{A}\boldsymbol{d}^{(t)}.$$

From the above lemma $\nabla f(\mathbf{x}^{(t+1)}) \bot \mathcal{W}^{(t+1)}$ and $\nabla f(\mathbf{x}^{(t)}) \bot \mathcal{W}^{(t)}$, we have

$$0 = \nabla f(\mathbf{x}^{(t+1)})^{\top} \nabla f(\mathbf{x}^{(t)}) = \|\nabla f(\mathbf{x}^{(t)})\|^2 + \eta \mathbf{d}^{(t)\top} \mathbf{A} \nabla f(\mathbf{x}^{(t)}),$$

implying $\eta \neq 0.$ Furthermore,

$$0 = \nabla f(\boldsymbol{x}^{(t+1)})^{\top} \boldsymbol{d}^{(i)} = \nabla f(\boldsymbol{x}^{(t)}) \boldsymbol{d}^{(i)} + \eta \boldsymbol{d}^{(t)\top} \boldsymbol{A} \boldsymbol{d}^{(i)} = \eta \boldsymbol{d}^{(t)\top} \boldsymbol{A} \boldsymbol{d}^{(i)},$$

implying $d^{(t)\top}Ad^{(i)} = 0$ for all *i*.

46 / 79

Conjugate Gradient Descent (4)

- How to find $d^{(t)}$ such that it is conjugate to all $d^{(i)}$?
- Notice that $\nabla f(\mathbf{x}^{(t+1)}) \nabla f(\mathbf{x}^{(t)}) = \mathbf{A}(\mathbf{x}^{(t+1)} \mathbf{x}^{(t)}) = \eta \mathbf{A} \mathbf{d}^{(t)}$ (see the proof of the above lemma).
- So, $\boldsymbol{d}^{(t)\top} \boldsymbol{A} \boldsymbol{d}^{(i)} = 0 \Rightarrow \boldsymbol{d}^{(t)\top} (\nabla f(\boldsymbol{x}^{(t+1)}) \nabla f(\boldsymbol{x}^{(t)})) = 0 \Rightarrow \boldsymbol{d}^{(t)\top} \nabla f(\boldsymbol{x}^{(t+1)}) = \boldsymbol{d}^{(t)\top} \nabla f(\boldsymbol{x}^{(t)}) = \text{some constant}$
- Since $\nabla f(\mathbf{x}^{(i)})$ forms an orthogonal family, we have $\mathbf{d}^{(t)}$ a scaling of $\sum_{i=0}^{t} \frac{\nabla f(\mathbf{x}^{(i)})}{\|\nabla f(\mathbf{x}^{(i)})\|^2}$
- Apply the above to $\boldsymbol{d}^{(0)}, \boldsymbol{d}^{(1)}, \cdots, \boldsymbol{d}^{(t)}$, we have $\boldsymbol{d}^{(t)} = -\nabla f(\boldsymbol{x}^{(t)}) + c^{(t)} \boldsymbol{d}^{(t-1)}$

• You can easily verify that $c^{(t)} = \frac{\|\nabla f(\mathbf{x}^{(t)})\|^2}{\|\nabla f(\mathbf{x}^{(t-1)})\|^2}$ makes the equation holds

47 / 79

Remarks

- Pros:
 - Easy to implement
 - Still a first order method (same cheap iterations as in gradient descent)
 - Converges fast (at most *n* iterations for quadratic function $f : \mathbb{R}^n \to \mathbb{R}$)
 - Can be applied to non-quadratic f, by replacing A with the Hessian of f
 - Works well if $\nabla^2 f(\mathbf{x}^{(t+1)})$ and $\nabla^2 f(\mathbf{x}^{(t)})$ do not vary too much
- Caution:
 - For general f, dⁿ may not be a descent direction. Set it to −∇f(x^(t)) in this case

Outline

- - Standard Forms and Terminology
 - Problem Classes
- - Convex Sets
 - Convex Functions
- - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- - Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
 - - Weak Duality
 - Strong Duality

Form:

 $\min_{\mathbf{x}} f(\mathbf{x})$ subject to $\mathbf{x} \in C = \{\mathbf{x} : g_i(\mathbf{x}) \leq 0, h_j(\mathbf{x}) = 0, i = 1, \cdots, m, j = 1, \cdots, p\}$

where f and g_i are convex, h_j are affine

- For simplicity, here we assume $f\in \mathbb{C}^1$
- Optimality condition: \mathbf{x}^* is optimal iff $\nabla f(\mathbf{x}^*)^\top (\mathbf{x} \mathbf{x}^*) \ge 0, \forall \mathbf{x} \in C$, as $f(\mathbf{x}) \ge f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*)$

- Define the active set A(x) at a point x as the set of constrains θ's such that θ(x) = 0, i.e., A(x) := {θ:θ(x) = 0}
 - Equality constrains h_j 's are always active
- Recall for any constrain θ, the gradient
 ∇θ(x) is orthogonal to a tangent line/space
 passing through the level set at x
- x^* occurs when
 - ∀j, ∇h_j(x*) and -∇f(x*) are *parallel* (i.e., -∇f(x*) = ν_j∇h_j(x*) for some ν_j ≠ 0)
 ∀i such that g_i is active, -∇g_i(x*) and -∇f(x*) are *opposite* (i.e., -∇f(x*) = λ_i∇g_j(x*) for some λ_i > 0)

- Assumption: the problem is attained (i.e., $C \neq \emptyset$ and p^* is attained)
- Iterative algorithms in the presence of constrains?

- Assumption: the problem is attained (i.e., $C \neq \emptyset$ and p^* is attained)
- Iterative algorithms in the presence of constrains?
- Transform the constrained problem into a unconstrained one, or
 Make sure that x^(t+1) falls inside the feasible set during each iteration

- For equality constrains $h_j(x) = 0$
- Idea: penalize non-admissible solutions
- Create "barrier functions" $\psi_j(\mathbf{x})$ such that $\psi_j(\mathbf{x}) = 0$ if $h_j(\mathbf{x}) = 0$; $\psi_j(\mathbf{x}) \gg 0$ otherwise
 - E.g., $\psi_j(\textbf{\textit{x}}) = \mu \| \textbf{\textit{h}}_j(\textbf{\textit{x}}) \|^2$ for some large μ
- Solve the unconstrained problem: $\min_{\mathbf{x}} f(\mathbf{x}) + \mu \sum_{j=1}^{p} \psi_j(\mathbf{x})$
 - Objective is still convex
- A solution falls outside the feasible set, an "exterior point"

- For inequality constrains $g_i(x) \leq 0$
- Assumption: the original problem is *strictly* feasible (i.e., there exists $x \in X^*$ such that $g_i(x) < 0$ for all i)
- Idea: penalize non-admissible solutions
- Create barrier functions $\psi_i(\mathbf{x})$ such that $\psi_i(\mathbf{x}) = 0$ if $g_i(\mathbf{x}) \leq 0$; $\psi_i(\mathbf{x}) \gg 0$ otherwise
 - E.g., the *logarithmic barrier* $\psi_i(\mathbf{x}) = -\mu \log(-g_i(\mathbf{x}))$ for some μ
- Solve the unconstrained problem (still convex): $\min_{\mathbf{x}} f(\mathbf{x}) - \mu \sum_{i=1}^{m} \log(-g_i(\mathbf{x}))$
- A solution falls inside the feasible set, an ''interior point''

- For μ large, solving the above problem results in a point well aligned/inside the feasible set
- As $\mu \to 0$ the solution converges to a global minimizer for the original, constrained problem
 - In fact, the theory of convex optimization says that if we set $\mu = m/\epsilon$ (or $\mu = p/\epsilon$ for equality constrains), then the minimizer is ϵ -suboptimal.
- $\bullet\,$ In practice, we solve the unconstrained problem several times, with $\mu\,$ from large to small

Projected Gradient Descent (1)

- $\mathbf{x}^{(t+1)}$ may fall outside C during an iteration
- Idea: if so, project $x^{(t+1)}$ onto the boundary of C

Update rule: $\mathbf{x}^{(t+1)} \leftarrow \mathbf{P}(\mathbf{x}^{(t)} - \eta^{(t)} \nabla f(\mathbf{x}^{(t)}))$ for some projector \mathbf{P} ;

- For simplicity, we consider only the affine constrains here
- Suppose x^(t) is already on the boundary of C
- We can identify the active set $\mathcal{A}(\pmb{x}^{(t)})$ at $\pmb{x}^{(t)}$
- Define the tangent space of active constrains at $\mathbf{x}^{(t)}$: $\bigcap_{\theta \in \mathcal{A}(\mathbf{x}^{(t)})} \{\mathbf{x} : \nabla \theta(\mathbf{x}^{(t)})^{\top} (\mathbf{x} - \mathbf{x}^{(t)}) = 0\}$
- We seek for the projection of x^(t+1) onto that tangent space

Projected Gradient Descent (2)

• Since $x^{(t)}$ is already in the tangent space, the update rule can be written as $\mathbf{x}^{(t+1)} \leftarrow (\mathbf{x}^{(t)} - \mathbf{n}^{(t)} \mathbf{P} \nabla f(\mathbf{x}^{(t)}))$ (recall $\boldsymbol{P}^2 = \boldsymbol{P}$) • $\nabla \theta(\mathbf{x}^{(t)})^{\top} (\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}) = 0$ implies $\nabla \theta(\boldsymbol{x}^{(t)})^{\top}(-\boldsymbol{\eta}^{(t)}\boldsymbol{P}\nabla f(\boldsymbol{x}^{(t)})) = \boldsymbol{0}$ Let $\boldsymbol{\Theta} = \left[\nabla \theta_1(\boldsymbol{x}^{(t)}), \cdots, \nabla \theta_a(\boldsymbol{x}^{(t)}) \right] \in$

• We instead seek for the projection of $-\nabla f(\mathbf{x}^{(t)})$ onto $\{\mathbf{x}: \mathbf{\Theta}^{\top}\mathbf{x} = \mathbf{0}\}$

• Target:
$$-\mathbf{P}\nabla f(\mathbf{x}^{(t)}) \in \{\mathbf{x}: \mathbf{\Theta}^{\top}\mathbf{x} = \mathbf{0}\}$$
. How to find \mathbf{P} ?

- Target: $-\mathbf{P}\nabla f(\mathbf{x}^{(t)}) \in \{\mathbf{x} : \mathbf{\Theta}^{\top}\mathbf{x} = \mathbf{0}\}$. How to find \mathbf{P} ?
- Recall from the fundamental theorem of linear algebra that $\{ \mathbf{x} : \mathbf{\Theta}^{\top} \mathbf{x} = \mathbf{0} \} = \mathcal{R}(\mathbf{\Theta})^{\perp} = span(\nabla \theta_1(\mathbf{x}^{(t)}), \cdots, \nabla \theta_a(\mathbf{x}^{(t)}))^{\perp}$
- Also, recall that the projection of any point y onto $\Re(\Theta)$ is Θx^* , where $x^* = (\Theta^{\top} \Theta)^{-1} \Theta^{\top} y$ is the solution to the least square problem

$$\arg\min_{\mathbf{x}} \|\mathbf{\Theta}\mathbf{x} - \mathbf{y}\|^2$$

• Let $Q = \Theta(\Theta^{\top}\Theta)^{-1}\Theta^{\top}$, the projection of y onto $\Re(\Theta)^{\perp}$ is y - Qy = (I - Q)y, so P = I - Q

The Changing Active Sets

We may encounter −*P*∇f(x^(t)) = 0 during an iteration. Should we stop?

The Changing Active Sets

- We may encounter $-\mathbf{P}\nabla f(\mathbf{x}^{(t)}) = \mathbf{0}$ during an iteration. Should we stop?
- No, some constrains θ in $\mathcal{A}(\mathbf{x}^{(t)})$ may be "unnecessary," i.e., we cannot find $\eta > 0$ such that $\mathbf{x}^{(t)} - \eta \mathbf{P}_{\theta} \nabla f(\mathbf{x}^{(t)})$ is on the boundary of C,
 - $\boldsymbol{P}_{\boldsymbol{\theta}}$ projects $\boldsymbol{d}^{(t)}$ onto $\{\boldsymbol{x}: \nabla \boldsymbol{\theta}(\boldsymbol{y}^{(t)})^{\top} \boldsymbol{x} = 0\}$
 - We can obtain η by first solving $g(\mathbf{x}^{(t)} \eta \mathbf{P}_{\theta} \nabla f(\mathbf{x}^{(t)})) = 0$ for each another constrain $g \in C$, and then take the minimum of the solutions that are in $(0, \infty)$

• Remove all such constrains θ 's in $\mathcal{A}(\mathbf{x}^{(t)})$. Stop only if $\mathcal{A}(\mathbf{x}^{(t)}) = \emptyset$

59 / 79

Algorithm

Algorithm 4.3: Projected Gradient Descent Method

Input: $\mathbf{x}^{(0)}$, an initial guess from $\mathcal{D} \cap C$ 1 repeat $\boldsymbol{d}^{(t)} \leftarrow -\nabla f(\boldsymbol{x}^{(t)})$ 2 Determine $n^{(t)}$: 3 $\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} + \mathbf{n}^{(t)} \mathbf{d}^{(t)}$ 4 if $x^{(t+1)} \notin C$ then 5 $\mathbf{v}^{(t)} \leftarrow \mathbf{x}^{(t)} + \mathbf{n}' \mathbf{d}^{(t)}$ is the intersect between $\{\mathbf{x}^{(t)} + \mathbf{n} \mathbf{d}^{(t)} : \mathbf{n} > 0\}$ and 6 the boundary of C: $\mathcal{A}(\mathbf{y}^{(t)}) \leftarrow$ set of active constrains at $\mathbf{y}^{(t)}$, excluding those θ 's such that 7 there is no intersect between $\{x^{(t)} + \eta P_{\theta} d^{(t)} : \eta > 0\}$ and the boundary of C: if $\mathcal{A}(\mathbf{y}^{(t)}) \neq \emptyset$ then $\mathbf{x}^{(t+1)} \leftarrow \mathbf{y}^{(t)} + (\mathbf{n}^{(t)} - \mathbf{n}') \mathbf{P} \mathbf{d}^{(t)}$ else $\mathbf{x}^{(t+1)} \leftarrow \mathbf{v}^{(t)}$: 8 end 9 10 **until** convergence criterion is satisfied;

Outline

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- 2 Convexity
 - Convex Sets
 - Convex Functions
- **3** Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- 4

Algorithms

- Unconstrained Problems
- Constrained Problems
- Large-Scale Problems**
- Duality
 - Weak Duality
 - Strong Duality

Decomposition Methods

ТВА

Shan-Hung Wu (CS, NTHU)

- Next, we shows how the notion of *weak duality* allows to develop, in a systematic way, approximations of non-convex problems based on convex optimization.
- Starting with any given minimization problem, which we call the primal problem, we can form a dual problem, which
 - Is always convex (specifically, a concave maximization problem)
 - Provides a lower bound on the values of the primal
- When the primal is convex, the *strong duality* holds—the dual problem shares the same optimal value as that of the primal
 - Gives more insights to the optimality conditions

Outline

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- 2 Convexity
 - Convex Sets
 - Convex Functions
- **3** Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- 4 Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- 5 Duality
 - Weak Duality
 - Strong Duality

• Consider a primal problem:

$$\min_{m{x}\in\mathbb{R}^n}f(m{x})$$
 subject to $g_i(m{x})\leqslant 0$, $h_j(m{x})=0$, $i=1,\cdots$, $m,j=1,\cdots$, p

• f, g_i , and h_j can be arbitrary (need not be convex or affine)

- For simplicity, let f(x) = ∞ (resp., g_i(x) and h_j(x)) if x is not in the domain of f (resp., g_i and h_j)
- p^{*} := inf_{x:gi}(x)≤0,h_j(x)=0</sub> f(x) and x are call primal value and variables respectively

• Define a Lagrange function (or simply Lagrangian) $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ with values

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) := f(\mathbf{x}) + \sum_{i=1}^{m} \alpha_i g_i(\mathbf{x}) + \sum_{j=1}^{p} \beta_j h_j(\mathbf{x})$$

• Then the primal problem can be written as

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}\sup_{\boldsymbol{\alpha}\geq\boldsymbol{0}}\mathcal{L}(\boldsymbol{x},\boldsymbol{\alpha},\boldsymbol{\beta})$$

- $p^* = \inf_{x \in \mathbb{R}^n} \sup_{\alpha \ge 0} \mathcal{L}(x, \alpha, \beta)$
- This creates "barriers" that penalize $g_i(x) > 0$ and $h_j(x) \neq 0$
- The constrains $\alpha \ge 0$ are essential

• Given a primal problem $\min_{x \in \mathbb{R}^n} \sup_{\alpha \ge 0} \mathcal{L}(x, \alpha, \beta)$, define its *dual problem* as

$$\max_{\alpha \ge 0} \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \alpha, \beta)$$

• $d^* := \sup_{\alpha \ge 0} \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \alpha, \beta)$ is called the *dual value*

- It can be easily shown that $d^* = \sup_{\alpha \ge 0} \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \alpha, \beta) \le \inf_{x \in \mathbb{R}^n} \sup_{\alpha \ge 0} \mathcal{L}(x, \alpha, \beta) = p^*$ (called max-min inequality) [Homework]
 - d^* is a lower bound of p^*
 - $p^* d^*$ is called the *duality gap*
- $dual(\alpha, \beta; x) := \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \alpha, \beta)$ is called the *dual function*
 - Defined as a point-wise minimum (in x), therefore concave
- The dual problem max_{α≥0} dual(α, β) is always a concave-maximization problem (convex)

• Consider a primal problem:

$$\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{x}\|^2$$
 subject to $\boldsymbol{A}\boldsymbol{x} \leqslant \boldsymbol{b}$

•
$$dual(\alpha; \mathbf{x}) = \min_{\mathbf{x}} \frac{1}{2} ||\mathbf{x}||^2 + \alpha^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b}) = -\frac{1}{2} ||\mathbf{A}^{\top} \alpha||^2 - \mathbf{b}^{\top} \alpha$$
 [Proof]
• $\mathbf{x}^* = \mathbf{A}^{\top} \alpha$

• Dual problem:

$$\max_{\boldsymbol{\alpha}} - \frac{1}{2} \| \boldsymbol{A}^{\top} \boldsymbol{\alpha} \|^{2} - \boldsymbol{b}^{\top} \boldsymbol{\alpha}$$

subject to $\boldsymbol{\alpha} \ge \boldsymbol{0}$

• Equivalent to $\min_{\boldsymbol{\alpha} \ge \boldsymbol{0}} \frac{1}{2} \| \boldsymbol{A}^{\top} \boldsymbol{\alpha} \|^2 + \boldsymbol{b}^{\top} \boldsymbol{\alpha}$

Geometric Interpretation (1)

- Consider a primal problem: $\min_{x} f(x)$ subject to $g(x) \leq 0$
- Dual problem: $\max_{\alpha \ge 0} dual(\alpha) = \max_{\alpha \ge 0} \inf_{x} f(x) + \alpha g(x)$
- Let $A := \{(u, t) : u \ge g(x), t \ge f(x)\}$, the blue area

• The solutions are feasible only in the dark blue area

Shan-Hung Wu (CS, NTHU)

Convex Optimization

NetDB-ML, Fall 2014 69 / 79

Geometric Interpretation (2)

- $\inf_{\mathbf{x}} f(\mathbf{x}) + \alpha g(\mathbf{x})$ is attained, so we can rewrite the dual function as $dual(\alpha) = \min_{(u,t) \in A} t + \alpha u = t^* + \alpha u^*$
- Given any fixed $\alpha \ge 0$, $\{(u, t) : t = dual(\alpha) \alpha u\}$ is a line with slop $-\alpha$ intercepting A at (t^*, u^*)

• The line intercepts $\{(u, t) : u = 0\}$ at $(0, dual(\alpha))$

 The dual problem is to find the best line intercepting A that produce the highest intercept with {(u, t) : u = 0}

Shan-Hung Wu (CS, NTHU)

- The dual function *dual* may not be easy to compute: it is itself an optimization problem!
 - Duality works best when *dual* can be computed in closed form
- Even if it is possible to compute *dual*, it might not be easy to maximize: convex problems are not always easy to solve
- A lower bound might not be of great practical interest: often we need a sub-optimal solution
 - Duality does not seem at first to offer a way to compute such a primal point
- However, duality is a powerful tool in understanding the problem

Outline

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- 2 Convexity
 - Convex Sets
 - Convex Functions
- **3** Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- 4 Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- 5 Duality
 - Weak Duality
 - Strong Duality

Primal problem:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x})$$
subject to $g_i(\boldsymbol{x}) \leq 0, h_j(\boldsymbol{x}) = 0, i = 1, \cdots, m, j = 1, \cdots, p$

•
$$p^* := \inf_{x:g_i(x) \leq 0, h_j(x) = 0} f(x)$$

• Dual problem:

$$\max_{\alpha \ge 0} \inf_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) + \sum_{i=1}^m \alpha_i g_i(\mathbf{x}) + \sum_{j=1}^p \beta_j h_j(\mathbf{x})$$

• $d^* := \sup_{\alpha \ge 0} \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \alpha, \beta)$

• We say that strong duality holds if the duality gap is zero: $d^* = p^*$

Slater's Sufficient Condition for Strong Duality (1)

• How to make $(0, d^*) = (0, p^*)$?

- How to make $(0, d^*) = (0, p^*)$?
- One sufficient condition:
 - $A = \{(u, t) : u \ge g(x), t \ge f(x)\}$ (the blue area) is a convex set
 - 2 The line
 - { $(u, t) : t = dual(\alpha) \alpha u$ } is not vertical (so d^* is attained)

- The above two points imply:
- The primal problem is convex
 - Since $\{u : u \ge g(x)\}$ and $\{t : t \ge f(x)\}$ are convex, so does A [Proof]
- Slater condition: the primal problem is strictly feasible: $\exists x : g_i(x) < 0, h_j(x) = 0$
 - The interior points of $A = \{(u, t) : u \ge g(x), t \ge f(x)\}$ (the blue area) cut into the area $\{(u, t) : u < 0\}$
 - If $g_i(x)$ is affine, we can relax the feasibility above by $g_i(x) \leqslant 0$
 - Sufficient condition for strong duality, but *not* necessary

- Suppose the strong duality holds, then by solving the dual problem, we obtain:
 - The primal value $p^* = d^*$
 - Furthermore, x^* if we can write x^* in a close form with respect to α and β in $dual(\alpha, \beta; x) := \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \alpha, \beta)$
- Why solving the dual problem instead?

- Suppose the strong duality holds, then by solving the dual problem, we obtain:
 - The primal value $p^* = d^*$
 - Furthermore, x^* if we can write x^* in a close form with respect to α and β in $dual(\alpha, \beta; x) := \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \alpha, \beta)$
- Why solving the dual problem instead?
 - We gain insights to the primal problem

Theorem

Suppose f, g_i , and h_j are continuously differentiable at x^* , and the primal problem is attained, convex, and satisfies the Slate condition. Then a primal variable x^* is optimal iff there exists α^* and β^* such that the following conditions, called Karush-Kuhn-Tucker (KKT) conditions are satisfied:

Lagrangian stationarity:

 $\nabla f(\mathbf{x}^*) + \sum_{i=1}^{m} \alpha_i^* \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^{p} \beta_j^* \nabla h_j(\mathbf{x}^*) = 0$ **Primal feasibility**: $g_i(\mathbf{x}^*) \leq 0$ and $h_j(\mathbf{x}^*) = 0$ for all $i = 1, \dots, m$ and $j = 1, \dots, p$ **Dual feasibility**: $\alpha_i^* \geq 0$ for all $i = 1, \dots, m$ **Complementary slackness**: $\alpha_i^* g_i(\mathbf{x}^*) = 0$ for all $i = 1, \dots, m$

- Why $\alpha_i^* g_i(\mathbf{x}^*) = 0$ for all $i = 1, \dots, m$?
- When strong duality holds and both primal and dual problems are attained, by (x^*, α^*, β^*) , we have

$$f(\mathbf{x}^*) + \sum_{i=1}^{m} \alpha_i^* g_i(\mathbf{x}^*) + \sum_{j=1}^{p} \beta_j^* h_j(\mathbf{x}^*) = dual(\alpha^*, \beta^*; \mathbf{x}^*) = d^* = p^* = f(\mathbf{x}^*)$$

Since α^{*} ≥ 0, each term in ∑^m_{i=1} α^{*}_ig_i(x^{*}) must be 0
So what?

- Why $\alpha_i^* g_i(\mathbf{x}^*) = 0$ for all $i = 1, \dots, m$?
- When strong duality holds and both primal and dual problems are attained, by (x^*, α^*, β^*) , we have

$$f(\mathbf{x}^*) + \sum_{i=1}^{m} \alpha_i^* g_i(\mathbf{x}^*) + \sum_{j=1}^{p} \beta_j^* h_j(\mathbf{x}^*) = dual(\alpha^*, \beta^*; \mathbf{x}^*) = d^* = p^* = f(\mathbf{x}^*)$$

- Since $\alpha^* \ge 0$, each term in $\sum_{i=1}^m \alpha_i^* g_i(x^*)$ must be 0
- So what? If $\alpha_i^* > 0$, then $g_i(x^*) = 0$
- We can tell from the values of α_i^* 's which inequality constraint is *active*

Example

• Suppose $\pmb{A} \in \mathbb{R}^{m imes n}$, in the primal problem:

 $\min_{\boldsymbol{x} \in \mathbb{R}^n} \frac{1}{2} \|\boldsymbol{x}\|^2$ subject to $\boldsymbol{A} \boldsymbol{x} \leqslant \boldsymbol{b}$

• Dual problem:

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^m} \frac{1}{2} \| \boldsymbol{A}^\top \boldsymbol{\alpha} \|^2 + \boldsymbol{b}^\top \boldsymbol{\alpha} \\ \text{subject to } \boldsymbol{\alpha} \geqslant \boldsymbol{0}$$

• $x^* = \mathbf{A}^\top \alpha$

• We now solve *m* instead of *n* variables

• If $n \gg m$, solving the dual problem takes less time

• Furthermore, by complementary slackness, $\pmb{lpha}^{ op}(\pmb{A}\pmb{x}-\pmb{b})=\pmb{0}$

• We can tell that the *j*-th constraint is active (i.e., $A_{j,i} x = b_j$) iff $\alpha_j \neq 0$