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Notation

The conditional A⇒ B reads either �if A than B ,� �A only if B ,� �A is
su�cient for B ,� or �B is necessary for A�

The biconditional A⇔ B reads �A if and only if (or i�) B�

{x : x ∈R,x > 5} or {x ∈R : x > 5} reads �the set of all x such that x is
real and x is greater than 5�

We denote a function as f : V→W. The V and W are called domain
and codomain (or target) of f respectively

Titles marked with ** can be skipped for the �rst time reading

Statements marked with [Proof] mean you are encouraged to prove it
yourself

Statements marked with [Homework] are your assignments
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Vector Spaces

De�nition (Vector Space)

The set V= {[v1,v2, · · · ,vn]> : vi ∈ R}⊆ Rn is called a vector space over
Ra i� there are maps:
1) Vector addition V×V→ V, denoted by v +w for all v ,w ∈ V,
2) Scalar multiplication R×V→ V, denoted by a ·v or av for all a ∈R and
v ∈ V;
with the following properties:
a) For all v ,w ∈ V, v +w =w +v (commutativity);
b) For all u,v ,w ∈ V, u+(v +w) = (u+w)+v (associativity);
c) There exists 0 ∈ V such that 0+v = v for all v ∈ V;
d) For each v ∈ V, there exists (−v) ∈ V with v +(−v) = 0;
e) For all a ∈ R and v ,w ∈ V, a(v +w) = aw +av (distributivity);
f) For all a,b ∈ R and v ∈ V, (a+b)v = av +bv (distributivity);
g) For all a,b ∈ R and v ∈ V, a · (b ·v) = (a ·b) ·v (associativity);
h) For all v ∈ V, 1 ·v = v .

aWhile any �eld is applicable, we focus on the real numbers here.

We call the n-tuple v a vector and the scalar vi the ith component
of v
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Bases and Coordinates (1/2)

De�nition (Linear Independence)

A set of vectors {v1,v2, · · · ,vn} in a vector space V is called linear
independent i� a1v1+a2v2+ · · ·+anvn = 0⇒ a1 = a2 = · · ·= an = 0.

In other words, there is no vector in this set that can be the linear
combination of others

De�nition (Span)

A set of all linear combinations of v1,v2, · · · ,vn is called the span of
v1,v2, · · · ,vn, i.e., span(v1,v2, · · · ,vn) = {

∑n
i=1 aiv i : a1,a2, · · · ,an ∈ R} .

Shan-Hung Wu (CS, NTHU) Linear Algebra and Geometry NetDB-ML, Spring 2013 6 / 90



Bases and Coordinates (2/2)

De�nition (Basis)

A set of vectors {v1,v2, · · · ,vn} in a vector space V forms a basis i�: a)
v1,v2, · · · ,vn are linear independent; b) span(v1,v2, · · · ,vn) = V.

All bases of a space V must have the same number of vectors [Proof],
and this number is called the dimension of V, denoted as dim(V)

Any v ∈ V can be expressed as v =
∑n

i=1 aiv i , and the coe�cients ai ,
i = 1,2, · · · ,n, are called the coordinates of v with respect to the
basis {v1,v2, · · · ,vn}

The coordinates of a vector change with the basis

The natural basis for Rn is
e1 = [1,0, · · · ,0]>,e2 = [0,1, · · · ,0]>, · · · ,en = [0,0, · · · ,1]>

The coordinates of a vector with respect to this basis are identical to
the components
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Subspaces

De�nition (Subspace)

A subset U of a vector space V is called a subspace if U is closed under
the vector addition and scalar multiplication.

That is, if v ,w ∈ U, then v +w ∈ U and av ∈ U for all a

Every subspace must contain 0

, as ∀v ∈ U, −v exists and
v +(−v) = 0 ∈ U
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Sum Spaces

De�nition (Sum Space)

Let W and U be two subspaces of V, the set {w +u :w ∈W,u ∈ U} is
called the sum space of W and U, denoted by W+U.

W+U is a subspace of V [Proof]

dim(W+U) = dim(W)+dim(U)−dim(W∩U)
Let {v1, · · · ,vk } be a basis for W∩U, then we can �nd {w1, · · · ,wm}

and {u1, · · · ,un} such that {w1, · · · ,wm,v1, · · · ,vk } and
{u1, · · · ,un,v1, · · · ,vk } are the bases for W and U respectively
We can see that {w1, · · · ,wm,u1, · · · ,un,v1, · · · ,vk } is a basis for
W+U [Proof]
Therefore, dim(W+U) =m+n+k = (m+k)+(n+k)−k =
dim(W)+dim(U)−dim(W∩U)
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Linear Transformation

De�nition (Linear Transformation)

A function L : V→W , where V and W are vector spaces, is called a linear
transformation i�:
1) L(av) = aL(v) for every v ∈ V and a ∈ R;
2) L(v +w) = L(v)+L(w) for every v ,w ∈ V.

De�nition (Range)

The range (or image) of a linear transformation L : V→W is
{L(v) : v ∈ V}, denoted as R(L) (or im(L)).

De�nition (Nullspace)

The nullspace (or kernel) of a linear transformation L : V→W is
{v ∈ V : L(v) = 0}, denoted as N(L) (or ker(L)).

R(L) and N(L) are subspaces of W and V respectively [Proof]
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Dimension Theorem

Theorem

Let L : V→W be a linear transformation, we have

dim(V) = dim(R(L))+dim(N(L)).

Proof.

Let {v i }i and {w j }j be the bases for N(L) and R(L) respectivelya. There
exists {uj }j ∈ V such that L(uj) =w j . We claim that the set {v i }i ∪ {uj }j
forms a basis of V.
We �rst prove that span(v i ,uj) = V. Given any v ∈ V, there exist scalars
{yj }j such that L(v) =

∑
j yjw j . We have

0= L(v)−
∑

j yjw j = L(v)−
∑

j yjL(uj) = L(v −
∑

j yjuj). So
v −
∑

j yjuj ∈N(L), implying that there exists {αi }i such that
v −
∑

j yjuj =
∑

i αiv i . Therefore, v =
∑

i αiv i +
∑

j yjuj .
Next, we prove that v i ,uj are linear independent. If∑

i αiv i +
∑

j yjuj = 0, we have
0= L(0) = L(

∑
i αiv i +

∑
j yjuj) = L(

∑
i αiv i )+L(

∑
j yjuj) =

∑
j yjw j ,

implying that yj = 0 for all j . Substitute yi back to the equation∑
i αiv i +

∑
j yjuj = 0 we have

∑
i αiv i = 0, meaning αi = 0 for all i .

aApparently, v i and w j are distinct.
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Matrix Representation (1/2)

Given two bases {v1,v2, · · · ,vn} in Rn and {w1,w2, · · · ,wm} in Rm,
L : Rn→ Rm can be represented by a matrix A, A ∈ Rm×n, such that
for every v ∈ V and w ∈W, L(v) =w , we have Ax = y , where
x = [x1,x2, · · · ,xn]> and y = [y1,y2, · · · ,ym]> are coordinates of v and
w respectively

By de�nition,

L(v) = L(x1v1+ · · ·+ xnvn) = x1L(v1)+ · · ·+ xnL(vn)

= x1(a11w1+ · · ·+am1wm)+ · · ·+ xn(a1nw1+ · · ·+amnwm),

L(v) =w = y1w1+ · · ·+ ymwm

Comparing the coe�cients of w i we have a11 · · · a1n
...

. . .
...

am1 · · · amn


 x1

...
xn

=

 y1
...
ym
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Matrix Representation (2/2)

Rewrite A as [a1, · · · ,an] where ai denote columns, we have
y = x1a1+ · · ·+ xnan

y is a linear combination of the columns of A

Why a function L satisfying L(av) = aL(v) and
L(v +w) = L(v)+L(w) for every v ,w ∈ V,a ∈ R is called �linear?�

We can see from the matrix representation that each yj , 16 j 6m, is
mapped from a �linear function� fj over x1, · · · ,xn, i.e.,
fj(x1, · · · ,xn) = aj1x1+ · · ·+ajnxn = yj
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Rank of a Matrix

De�nition (Rank)

Given an m×n matrix A and let ai be the ith column of A. The number
of linear independent columns of A is called the rank of A, denoted as
rank(A).

rank(A) = dim(span(a1, · · · ,an)) = dim(R(A))

rank(A) = rank(A>) [Proof: Using the Dimension Theorem]

rank(A+B)6 rank(A)+ rank(B) [Proof: R(A+B)⊆ R(A)+R(B),
and dim(R(A)+R(B))6 dim(R(A)+dim(R(B))]

rank(AB)6min{rank(A), rank(B)} [Proof: R(AB)⊆ R(A)]

rank(A>A) = rank(A)
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Column and Row Operations

The rank of A is invariant under the column (resp. row) operations
[Proof]:

Multiplying columns (resp. rows) of A by nonzero scalars
Interchanging the columns (resp. rows)
Adding to a given column (resp. row) a linear combination of other
columns (resp. rows)

Denote A
c
∼ B and A

r
∼ B respectively if we can obtain B by

performing the column and row operations over A

If A
c
∼ B or A

r
∼ B, then rank(A) = rank(B)

E.g., [a,b,c]>[a,b,c]
r
∼

 a b c

0 0 0
0 0 0

 and has rank 1
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Trace

De�nition (Trace)

Given an n×n square matrix A, the trace of A is de�ned as
tr(A) =

∑n
i=1 ai ,i .

tr(A+B) = tr(A)+ tr(B), and tr(A) = tr(A>) [Proof]

tr(AB) = tr(BA) [Proof]

A and B need not be square
In particular, tr(x>x) = tr(xx>)

Cyclic property: tr(ABC ) = tr(CAB) = tr(BCA) [Proof]

Generally, tr(CBA) 6= tr(ABC ), unless both A, B, and C are
symmetric (i.e., equal to their transpose):
tr(ABC ) = tr(A>B>C>) = tr((CBA)>) = tr(CBA)
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Determinant (1/2)

De�nition (Determinant)

Given an n×n square matrix A, where A= [ai , · · · ,an], there exists a
unique function det : Rn×n→ R, satisfying the properties:

a) det(a1, · · · ,ak−1,αa
(1)
k +βa

(2)
k ,ak+1, · · · ,an) =

αdet(a1, · · · ,ak−1,a
(1)
k ,ak+1, · · · ,an)+

βdet(a1, · · · ,ak−1,a
(2)
k ,ak+1, · · · ,an), ∀α,β ∈ R;

b) det(a1, · · · ,ai , · · · ,aj , · · · ,an) = 0 if ai = aj for some i and j ;
c) det(e1, · · · ,en) = 1.
We call det(A) the determinant of A.

Let I n = [e1, · · · ,en] be an identity matrix, we have det(I n) = 1

det(A) changes its sign if we interchanges the columns of A [Proof]
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Determinant (2/2)

The unique function det : Rn×n→ R can be written as

det(A) =

n∑
k=1

(−1)k+1a1kdet(A1k),

where Aij is the (n−1)× (n−1) matrix obtained by deleting the ith
row and jth column [Proof]

The determinant of A can be also regarded as the sign volume of
the image of the unit cube

Theorem

Given any c ∈ R and A,B ∈ Rn×n, we have a) det(cA) = cndet(A); b)
det(A>) = det(A); c) det(AB) = det(A)det(B).

Can be proved by either tedious calculation or the signed volume
interpretation
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Linear Equations (1/2)

Given x ∈ Rn, y ∈ Rm, and A ∈ Rm×n, Ax = y represents a system of
linear equations as follows:

a11x1+ · · ·+a1nxn = y1
...

am1x1+ · · ·+amnxn = ym

Theorem

Let [A,y ] = [a1, · · · ,an,y ] be the augmented matrix, the system of linear

equations Ax = y has a solution i� rank(A) = rank([A,y ]).
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Linear Equations (2/2)

Proof.

⇒: y is a linear combination of the columns of A, so
rank([A,y ]) = dim(span(a1, · · · ,an,y)) = dim(span(a1, · · · ,an)) = rank(A).
⇐: Let rank(A) = rank([A,y ]) = r and a1, · · · ,ar be the linear
independent columns of both A and [A,y ]. Since y is not one of
a1, · · · ,ar , it is their linear combination; that is, there exists x1, · · · ,xr such
that y = x1a1+ · · ·+ xrar . So x = [x1, · · · ,xr ]> is the solution.

De�nition (Linear Variety)

The set {x ∈ Rn : Ax = y } is called the linear variety for A ∈ Rm×n and
y ∈ Rm.

If x0 is a solution, then for all x ∈N(A), x0+x is also a solution
Is linear variety a subspace of Rn?

No, as 0 is not included
However, we still say that the linear variety has dimension r if
dim(N(A)) = r
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Cramer's Rule

Theorem (Cramer's Rule)

Given a square, invertible matrix A ∈ Rm×n, the solution to a system of

linear equations Ax = y can be obtained by xi = det(Ai )/det(A) for
i = 1, · · · ,n, where Ai is the matrix formed by replacing the ith column of

A by the column vector y .

The proof is easy [Proof]
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Invertibility

De�nition (Nonsingular Matrix)

A square matrix A ∈ Rn×n is nonsingular (or invertible) if there exists
another matrix B ∈Rn×n such that AB =BA= I n. We call B the inverse
of A and denote it as A−1.

(A>)−1 = (A−1)> and det(A−1) = det(A)−1 [Proof]

Theorem

Given A ∈ Rn×n, the following conditions are equivalent:

a) A is invertible;

b) There exists a unique solution x satisfying Ax = y , x ,y ∈ Rn;

c) N(A) = 0 (trivial kernel);

d) The columns are linearly independent (i.e., rank(A) = n);

e) det(A) 6= 0;
f) A> is invertible;

g) The rows of A are linearly independent;

h) All of the eigenvalues of A are nonzero (explained later).
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Change of Basis

Recall that given the bases of domain and range, a linear
transformation can be represented by a matrix

What's the relation between matrices obtained from di�erent bases?

De�nition (Change of Basis Matrix)

Consider two bases {v1, · · · ,vn} and {v ′1, · · · ,v ′n} for Rn and a vector
v ∈ Rn. There are two sets of coordinates x i and x

′
i , 16 i 6 n, such that

[v1, · · · ,vn][x1, · · · ,xn]> = v = [v ′1, · · · ,v ′n][x ′1, · · · ,x ′n]>. We call
[v ′1, · · · ,v ′n]−1[v1, · · · ,vn] the change of basis matrix (or transition
matrix) from {v1, · · · ,vn} to {v ′1, · · · ,v ′n}.
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Similar Matrices

De�nition (Similar Matrices)

Two square matrices A,B ∈ Rn×n are similar if there exists nonsingular
matrices C ∈ Rn×n such that A= C−1BC .

If A and B are similar, then tr(A) = tr(B) and det(A) = det(B)
[Proof]
Let L : Rn→ Rm be a linear transformation, {v1, · · · ,vn} and
{v ′1, · · · ,v ′n} be two bases of domain, {w1, · · · ,wm} and {w ′1, · · · ,w ′m}
be two bases of range, and S and T be the change of basis matrices
from {v1, · · · ,vn} to {v ′1, · · · ,v ′n} and {w1, · · · ,wm} to {w ′1, · · · ,w ′m}
respectively. We have the following relations:

Rn A−−−−→ Rm

S ↓ ↓T
Rn −−−−→

B Rm

Similar matrices correspond to the same linear transform with respect
to di�erent bases
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Eigen Decomposition

Why do we need eigenvalues and eigenvectors?

Given a linear transformation, we want to �nd a basis (if existing) such
that the corresponding matrix representation D is diagonal
So, given coordinates x ∈ Rn with respect to this basis, the e�ect of
the transformation is just a scaling to each coordinate, as
Dx = [d11x1, · · · ,dnnxn]>
An example application to compression: We can drop small dii s
without changing the original transformation too much
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Eigenvalues and Eigenvectors (1/3)

De�nition (Eigenvalues and Eigenvectors)

Given A ∈ Rn×n, a nonzero vector x satisfying Ax = λx , where λ is a
scalar (possibly complex), is called the eigenvector of A, and λ is called
the eigenvalue.

x is an eigenvector i� the matrix λI −A is singular, as
Ax = λx ⇒ λx −Ax = 0⇒ (λI −A)x = 0 and λI −A has nontrivial
kernel (note x is nonzero by de�nition)

We have 0= det(λI −A) = λn+an−1λ
n−1+ · · ·+a1λ+a0; that is, the

characteristic polynomial of A equals 0

The eigenvalues are the roots (possibly with multiplicity) of the above
equation

For each eigenvalue λi , we can obtain its corresponding eigenvectors
by solving (λi I −A)x = 0
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Multiplicities

The eigenvector (i.e., solution to (λi I −A)x = 0) of an eigenvalue λi
is not unique

If Ax = λix , so does A(cx) = λi (cx) for any c ∈ R
N(λi I −A), called the eigenspace of λi , has dimension at least 1

Algebraic multiplicity of an eigenvalue λi is the multiplicity of the
corresponding root of the characteristic polynomial

Geometric multiplicity of λi is the dimension of N(λi I −A), the
number of linear independent eigenvectors we solve from
(λi I −A)x = 0

Geometric multiplicity must be less than or equal to the algebraic
multiplicity
We may not be able to �nd n linear independent eigenvectors for a
matrix
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Eigenvalues and Eigenvectors (2/3)

Theorem

If A ∈ Rn×n has n linear independent eigenvectors {u1, · · · ,un}, then

{u1, · · · ,un} form a basis of Rn.

Given coordinates x ∈ Rn with respect to this basis, the e�ect of the
transformation is just a scaling to each coordinate, as
A(x1u1+ · · ·+xnun)= x1A(u1)+ · · ·+xnA(un)= x1λ1u1+ · · ·+xnλnun

Under this basis, the transformation can be represented by a diagonal
matrix D, where dii = λi (counting the multiplicity)
We say A is diagonalizable if there exists a basis such that
A=T−1DT =UDU−1, where U = [u1, · · · ,un] and
T =U−1[e1, · · · ,en]
T is the change of basis matrix from the natural basis to {u1, · · · ,un}:

Rn A−−−−→ Rn

T = [u1, · · · ,un]
−1 ↓ ↓T = [u1, · · · ,un]

−1

Rn −−−−→
D Rn
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Eigenvalues and Eigenvectors (3/3)

tr(A) =
∑n

i=1λi and det(A) =
∏n

i=1λi [Proof]

If two matrices A,B ∈ Rn×n are similar, then their characteristic
polynomials (and eigenvalues) are equal, as
det(λI −A) = det(λI −T−1BT ) = det(λT−1T −T−1BT ) =
det(T−1)det(λI −B)det(T ) = det(λI −B)

Theorem

A square matrix A ∈ Rn×n is invertible i� all eigenvalues of A are nonzero.

The above theorem dose not imply any consequence between the
diagonalizability and invertibility of a matrix

E.g.,

[
1 0
0 0

]
is diagonalizable but not invertible, yet

[
1 0
1 1

]
is

invertible but not diagonalizable
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Inner Products

De�nition (Inner Product)

A function 〈·, ·〉 : V×V→ C is called the inner product if it satis�es:
a) 〈x ,x〉> 0,∀x ∈ V and the equality holds i� x = 0 (positivity);
b) 〈x ,y〉= 〈y ,x〉,∀x ,y ∈ V (conjugate symmetry);
c) 〈x +y ,z〉= 〈x ,z〉+ 〈y ,z〉 ,∀x ,y ,z ∈ V (additivity);
d) 〈rx ,y〉= r 〈x ,y〉 ,∀x ,y ∈ V, r ∈ C (homogeneity).

Note we have 〈x , ry〉= r 〈x ,y〉 based on properties b) and d)

A common example is the Euclidean inner product:
〈x ,y〉=

∑n
i=1 xiyi = x>y for any x ,y ∈ Rn

Two vectors x and y are said to be orthogonal if 〈x ,y〉= 0

The Euclidean norm of x is de�ned as ‖x‖=
√
〈x ,x〉=

√∑n
i=1 x

2
i

A vector space with an inner product/norm de�ned is called the inner
product/normed space respectively
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Cauchy-Schwarz Inequality

Theorem (Cauchy-Schwarz Inequality)

For any x ,y ∈ Rn, we have |〈x ,y〉|6 ‖x‖‖y‖ and the equality holds i�

x = αy for some α ∈ R.

Proof.

The proof is obvious when x = 0 or y = 0. Otherwise, consider the case
where x and y are unit vectors; that is, ‖x‖= ‖y‖= 1. Then
06 ‖x −y‖2 = 〈x −y ,x −y〉= ‖x‖2−2〈x ,y〉+‖y‖2 = 2−2〈x ,y〉,
implying 〈x ,y〉6 1. The equality holds i� x = y . Similarly, by
06 ‖x +y‖2 we have 〈x ,y〉>−1 and the equality holds i� x =−y . For
any nonzero vectors x and y , we have
−16 〈x/‖x‖ ,y/‖y‖〉6 1⇒ |〈x ,y〉|6 ‖x‖‖y‖ and the equality holds i�
x/‖x‖=±y/‖y‖; that is, x = αy for some α ∈ R.

Since −16 〈x ,y〉/‖x‖‖y‖6 1, we can de�ne the included angle θ
of x and y by cosθ= 〈x ,y〉/‖x‖‖y‖
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Norms

De�nition (Vector Norm)

A function ‖·‖ : V→ R is called the vector norm if it satis�es:
a) ‖x‖> 0,∀x ∈ V and the equality holds i� x = 0 (positivity);
b) ‖rx‖= |r |‖x‖ ,∀x ∈ V, r ∈ R (homogeneity);
c) ‖x +y‖6 ‖x‖+‖y‖ ,∀x ,y ∈ V (triangle inequality).

The Euclidean norm is a vector norm [Proof]

We can de�ne the p-norm directly without going through the inner

product �rst: ‖x‖p =
{

(
∑

i |xi |
p)1/p 16 p <∞

max{|xi |}i p =∞
Euclidean norm is also known as the 2-norm
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Symmetric and Hermitian Matrices (1/2)

A matrix A ∈ Rn×n is symmetric if A> = A; and antisymmetric if
A> =−A

A matrix A ∈ Cn×n is Hermitian if A= A∗ (conjugate transpose);
and antihermitian if A∗ =−A

Theorem

All eigenvalues of a real symmetric matrix are real.

Proof.

Let Ax = λx , where x 6= 0. We have 〈Ax ,x〉= 〈λx ,x〉= λ〈x ,x〉. On the
other hand, 〈Ax ,x〉= xTATx =

〈
x ,ATx

〉
= λ〈x ,x〉. This implies

λ〈x ,x〉= λ〈x ,x〉 ⇒ (λ−λ)〈x ,x〉= 0. Since 〈x ,x〉> 0 for any x 6= 0,
λ−λ must be 0; that is, λ is real.
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Symmetric and Hermitian Matrices (2/2)

Theorem

Any real symmetric matrix A ∈ Rn×n has n eigenvectors that are mutually

orthogonal.

Proof.

Here we only prove a special case where the n eigenvalues are distinct.
Suppose Ax1 = λ1x1 and Ax2 = λ2x2, where λ1 6= λ2. Then
〈Ax1,x2〉= 〈λ1x1,x2〉= λ1 〈x1,x2〉. However,〈
x1,A

Tx2
〉
= 〈x1,Ax2〉= 〈x1,λ2x2〉= λ2 〈x1,x2〉. Therefore we have

λ1 〈x1,x2〉= λ2 〈x1,x2〉. Since λ1 6= λ2, 〈x1,x2〉= 0.

Real symmetric matrices are always diagonalizable
A=UDU>, where U = [u1, · · · ,un] and u i are the eigenvectors of A
Since the columns of U are orthogonal with each other, U>U is
diagonal
By picking the eigenvectors of unit norm, we have U>U = I , and
therefore U−1 =UT
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Orthogonal and Unitary Matrices

A matrix U having inverse as U> is called the orthogonal matrix

If U ∈ Cn×n and U∗U = I , then U is called the unitary matrix

Unitary (and orthogonal) matrices are always invertible and
diagonalizable [Proof]

Given any orthogonal (or unitary) matrix U , we have

‖Ux‖2 =
√
x>U>Ux = ‖x‖2

As a linear transformation, U preserves distance so the �shape� of a set
of vectors in the domain can be preserved in the range
Examples?

Rotation, re�ection etc.
On the other hand, the Euclidean norm is unitarily invariant

Shan-Hung Wu (CS, NTHU) Linear Algebra and Geometry NetDB-ML, Spring 2013 38 / 90



Orthogonal and Unitary Matrices

A matrix U having inverse as U> is called the orthogonal matrix

If U ∈ Cn×n and U∗U = I , then U is called the unitary matrix

Unitary (and orthogonal) matrices are always invertible and
diagonalizable [Proof]

Given any orthogonal (or unitary) matrix U , we have

‖Ux‖2 =
√
x>U>Ux = ‖x‖2

As a linear transformation, U preserves distance so the �shape� of a set
of vectors in the domain can be preserved in the range
Examples? Rotation, re�ection etc.
On the other hand, the Euclidean norm is unitarily invariant

Shan-Hung Wu (CS, NTHU) Linear Algebra and Geometry NetDB-ML, Spring 2013 38 / 90



Orthogonal Projection (1/3)

De�nition (Orthogonal Complement)

Given a subspace V of Rn. The orthogonal complement of V is de�ned
by V⊥ = {x ∈ Rn : 〈v ,x〉= 0,∀v ∈ V}.

De�nition (Orthogonal Projector)

A matrix P ∈ Rn×n is called a orthogonal projector onto V if Px ∈ V and
x −Px ∈ V⊥ for all x ∈ Rn.
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Orthogonal Projection (2/3)

Theorem

Given a matrix A, we have R(A)⊥ =N(A>) and N(A)⊥ = R(A>).

Proof.

⊆: Suppose that x ∈ R(A)⊥, we have (Ay)>x = y>(A>x) = 0 for all
y ∈ Rn, implying that A>x = 0 and x ∈N(A>). So R(A)⊥ ⊆N(A>).
⊇: If now x ∈N(A>), then y>(A>x) = (Ay)>x = 0 for all y ∈ Rn,
implying x ∈ R(A)⊥ and R(A)⊥ ⊇N(A>).
Thus R(A)⊥ =N(A>).

The proof of N(A)⊥ = R(A>) follows from the above and the fact
that (V⊥)⊥ = V [Proof].
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Orthogonal Projection (3/3)

Theorem

A matrix P is an orthogonal projector (on to R(P)) i� P2 = P = P>.

Proof.

⇒: Since x −Px ∈ R(P)⊥ for all x ∈ Rn, we have R(I −P)⊆ R(P)⊥.
But from the previous theorem R(P)⊥ =N(P>). This implies that
R(I −P)⊆N(P>) and therefore P>(I −P)y = 0 for all y ∈ Rn. We have
P>(I −P) =O⇒ P> = P>P. It is easy to verify that P = P> = P2.
⇐: For any x ∈ Rn we have
(Py)>(I −P)x = y>P>(I −P)x = y>Ox = 0 for all y ∈ Rn. Thus,
(I −P)x ∈ R(P)⊥ and P is an orthogonal projector.
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Normal Equations (1/2)

Linear varity includes all solutions of Ax = b, where A ∈ Rm×n and
b ∈ Rm

What if Ax = b has no solution (that is, b is not a linear combination
of the columns of A, or b /∈ R(A))?

We can instead �nd x in R(A) which is closest to b

Theorem

Given A ∈ Rm×n and b ∈ Rm, �nding x ∈ Rn minimizing ‖Ax −b‖ is
equivalent to solving A>Ax = A>b.

Proof.

We can see that ‖Ax −b‖ is minimized when the Ax −b is normal to
R(A). That is, 〈Ax −b,w〉= 0,∀w ∈ R(A)⇔ 〈Ax −b,Ay〉= 0,∀y ∈
Rn⇔ (Ay)> (Ax −b) = 0,∀y ∈ Rn⇔ y>A>Ax −y>A>b = 0,∀y ∈ Rn⇔
y>
(
A>Ax −A>b

)
= 0,∀y ∈ Rn⇔ A>Ax −A>b = 0⇔ A>Ax =

A>b.
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Normal Equations (2/2)

A>Ax = A>b is called the normal equation (as Ax −b is normal to
R(A)) and must have at least one solution

A>b ∈ R(A>)
Since R(A>A)⊆ R(A>) and rank(A>A) = rank(A>), we have
R(A>A) = R(A>)
That is, A>b ∈ R(A>A)

A>Ax = A>b has exactly one solution i� A>A is invertible

A>A is symmetric, therefore diagonalizable
A>A is invertible i� all its eigenvalues are nonzero
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Before We Start...

Caution!

This subsection requires the knowledge of matrix calculus.
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Positive De�nite Matrices (1/2)

De�nition (De�nite Matrices)

A matrix A ∈ Rn×n is called positive de�nite (resp., positive
semide�nite/negative de�nitive/negative semide�nite) i� for any x ∈ Rn,
x 6= 0, we have x>Ax > 0 (resp., > 0/< 0/6 0)

There is no loss of generality if we assume A is symmetric

As x>Ax = x>( 1
2
A+ 1

2
A>)x and the matrix 1

2
A+ 1

2
A> is always

symmetric [Proof]

Theorem

A symmetric matrix A ∈ Rn×n is positive de�nite (or semide�nite) i� all

eigenvalues of A are positive (or nonnegative).
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Positive De�nite Matrices (2/2)

Proof.

Let T be an orthogonal matrix whose column are eigenvectors of A. For
any matrix, let y =T−1x =T>x . We have
x>Ax = y>T>ATy =

∑n
i=1λiy

2
i , and the proof follows.

What does positive de�nite mean anyway?

Before we start, de�ne the graph of a function f : V→ R, V⊆ Rn, to
be the set {[x>, f (x)]> : x ∈ V}
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Principle Minors (1/2)

A minor of A ∈ Rn×n is the determinant of a matrix obtained by
deleting some row and column of A

The principle minors of A are det(A) and n−1 minors obtained by
successively deleting some row and column of A

The leading principle minors of A are det(A) and n−1 minors
obtained by successively deleting the last row and column of A
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Principle Minors (2/2)

There is a simple way to check if a matrix is positive de�nite:

Theorem

A symmetric matrix A ∈ Rn×n is positive de�nite i� its leading principle

minors are positive.

Proof.

Since A is symmetric, it is diagonalizable. We have
det(A) = det(T−1DT ) = det(T )−1det(D)det(T ) = det(D) =

∏n
i=1λi

and any minor of A equals to the multiplication of remaining eigenvalues.
Therefore, A is positive de�nite ⇔ λi > 0 for all 16 i 6 n ⇔ the leading
principle minors of A are positive.

Direction ⇐ is not true in the semide�nite cases: A is positive
semide�nite i� all principle minors (not only the leading principle
minors) are nonnegative
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Quadratic Forms (1/2)

A function f : Rn→ R is quadratic i� it can be written as:
f (x) = 1

2x
>Ax −b>x + c (the scalar coe�cients do not matter)

A is symmetric, and f is said to be a quadratic form if b = 0 and c = 0

Our best intuition of a de�nite matrix is the shape of its corresponding
quadratic form in a graph:

Figure : Quodratic form for a) positive de�nite; b) negative de�nite; c) positive
de�nite but singular; d) inde�nite matrix.
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Quadratic Forms (2/2)

Why f (x) = 1
2x
>Ax −b>x + c is a paraboloid when A is positive

de�nite?

Since A is symmetric, we have
f ′(x) = 1

2x
>(A+A>)−b> = x>A−b>

This implies that the solution to Ax −b = 0, say x∗, is a stationary
point of f

We can rewrite
f (x) = 1

2(x
∗+(x −x∗))>A(x∗+(x −x∗))−b>(x∗+(x −x∗))+ c =

· · ·= f (x∗)+ 1
2(x −x∗)>A(x −x∗) [Proof]
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Matrix Norms

The set of matrices Rm×n can be viewed as a vector space Rmn

How to de�ne a norm in this space?

De�nition (Matrix Norm)

A function ‖·‖ : Rm×n→ R is called the matrix norm if it satis�es:
a) ‖A‖> 0,∀A ∈ Rm×n and the equality holds i� A=O (positivity);
b) ‖rA‖= |r |‖A‖ ,∀A ∈ Rm×n, r ∈ R (homogeneity);
c) ‖A+B‖6 ‖A‖+‖B‖ ,∀A,B ∈ Rm×n (triangle inequality).
For our purpose, we consider only the sub-multiplicative norm that
satis�es an additional property for square matrices:
d) ‖AB‖6 ‖A‖‖B‖ ,∀A,B ∈ Rn×n.
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Frobenius Norms

A common matrix norm is the Frobenius norm:

‖A‖F =
(∑m

i=1

∑n
j=1 a

2
ij

)1/2
Equivalent to the Euclidean norm in Rmn

Is a sub-multiplicative norm [Proof]

The Frobenius norm is unitarily invariant

Given an unitary (or orthogonal) matrix U ,
‖UA‖F = ‖Ua1‖2+ · · ·+‖Ua1‖2 = ‖a1‖2+ · · ·+‖a1‖2 = ‖A‖F

If A ∈ Rn×n is symmetric, then

‖A‖F =
∥∥U>DU∥∥

F
= ‖D‖F =

√∑n
i=1λ

2
i
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Low Rank Approximation

Theorem

Given a symmetric matrix A ∈ Rn×n and k < rank(A), the solution to the

problem
argMmin‖A−M‖F

subject to rank(M) = k

is M =UD̃U>, where the columns of U are the eigenvectors of A and D̃
is a diagonal matrix containing only the k largest eigenvalues of A (with

others being 0).

Proof.

We only give an intuitive proof here. Since A is symmetric, we have
A=UDU>, where U>U = I . Recall that the Frobenius norm is unitarily
invariant, we have an equivalent objective: argMmin

∥∥D−U>MU
∥∥
F
.

Since D is diagonal, U>MU should be diagonal too to minimize the
objective, implying that M =UD̃U> for some diagonal matrix D̃. Let λi
and d̃i be the ith diagonal element of D and D̃ respectively, we have∥∥D−UMU>

∥∥
F
=

√∑n
i=1(λi − d̃i )2. Since rank(M) = k , only k of the

d̃i s can be nonzero. Therefore, M is the best approximation when these
nonzero d̃i s are the k largest eigenvalues of A.

Shan-Hung Wu (CS, NTHU) Linear Algebra and Geometry NetDB-ML, Spring 2013 55 / 90



Induced Norms (1/2)

We can de�ne another type of matrix norms based on vector norms

Let ‖·‖(m) and ‖·‖(n) be two vector norms, we de�ne the induced

norm for Rm×n as: ‖A‖=max‖x‖(n)=1 ‖Ax‖(m) ,∀A ∈ Rm×n

We say that a matrix norm ‖·‖ is induced by (or compatible with)
the vector norms ‖·‖(m) and ‖·‖(n) if for all A ∈ Rm×n,

‖Ax‖(m) 6 ‖A‖‖x‖(n)
The induced norm is a sub-multiplicative norm [Homework]
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Induced Norms (2/2)

Theorem

Given A ∈ Rm×n, the matrix norm ‖A‖ induced by the Euclidean norm

equals
√
λmax, where λmax is the largest eigenvalue of the matrix A>A.

Proof.

Since A>A ∈ Rn×n is symmetric, from our previous discussions we know
that A>A is diagonalizable. Let λ1 > · · ·> λn be its eigenvalues and
x1, · · · ,xn be the orthonormal set of eigenvectors corresponding to these
eigenvaluesa. Consider an arbitrary x , ‖x‖(2) = 1, we have

x = c1x1+ · · ·+ cnxn and 〈x ,x〉= c21 + · · ·+ c2n = 1. Furthermore,
‖Ax‖2(2) =

〈
x ,A>Ax

〉
= 〈c1x1+ · · ·+ cnxn,c1λ1x1+ · · ·+ cnλnxn〉=

λ1c
2
1 + · · ·+λnc2n 6 λ1(c21 + · · ·+ c2n) = λ1, implying that ‖Ax‖(2) 6

√
λ1.

Note the maximum of ‖Ax‖(2) is attainable when x = x1. Therefore,

‖A‖=
√
λ1 =

√
λmax.

aActually, A>A is positive semide�nite, as

x
>
A
>
Ax = 〈Ax ,Ax〉> 0,∀x ∈ Rn. So λ1 > · · ·> λn > 0.
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Rayleigh's Quotient

Applying the similar argument above, we have:

Theorem (Rayleigh's Quotient)

Given a symmetric matrix P ∈ Rn×n, then ∀x ∈ Rn,

λmin 6
x>Px

x>x
6 λmax,

where λmin and λmax are the smallest and largest eigenvalues of P
respectively.

x
>
Px

x>x
= λi when x is the corresponding eigenvector of λi
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Matrix Exponential

Caution!

This subsection requires the knowledge of Taylor's theorem.

Given a scalar x , by Taylor's theorem we have ex =
∑∞

k=0
xk

k!

Similarly, given a square matrix A ∈ Rn×n, we can de�ne the matrix

exponential as eA =
∑∞

k=0
A

k

k! = I +A+ A
2

2! + · · · ∈ Rn×n

eO = I ,
(
eA
)>

= eA
>
[Proof]

Unlike the scalar version, eA+B 6= eAeB unless AB = BA

If A and B commute, we can write (A+B)k =
∑k

i=0

(
k
i

)
AiBk−i , so

(A+B)k

k! =
∑k

i=0

A
i

i!
B

k−i

(k−i)! , implying

eA+B =
∑∞

k=0

∑k
i=0

A
i

i!
B

k−i

(k−i)! =
∑∞

r=0

A
r

r !

∑∞
s=0

B
s

s! = eAeB

If A=UDU−1 is diagonalizable, we have eA =UeDU−1, where eD is
a diagonal matrix whose the ith diagonal element equals to eλi [Proof]
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Matrix Logarithm

The exponential eA of an anitsymmetric (resp. antihermitian) matrix
A is orthogonal (resp. unitary)

(eA)>eA = eA
>
eA = e−AeA = eO = I

We call B the matrix logarithm of A i� A= eB , denoted by lnA

Not every matrix has a logarithm

Nevertheless, if a matrix A is diagonalizable, we can easily �nd its
logarithm

Let A=UDU−1, we have lnA=U(lnD)U−1, where lnD is a
diagonal matrix whose the ith diagonal element equals to lnλi [Proof]
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A�ne Spaces (1/2)

Recall that the linear variety is de�ned as {x ∈ Rn : Ax = y } for some
A ∈ Rm×n and y ∈ Rm

If we can �nd a solution x0, then for any v ∈N(A), x = v +x0 is also
a solution
A linear variety is a "translated nullspace"

Geometry discusses the properties of �shapes� in a vector space

Since these shapes may not pass through the origin, they lie in the
�translated subspaces�
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A�ne Spaces (2/2)

De�nition (A�ne Space)

Given a vector space V, a set of points A is called the a�ne space i�
there exists a map A×V→A, denoted by a+v for all a ∈A and v ∈ V,
with the following properties:
a) For all a ∈A, a+0= a;
b) For all a ∈A and v ,w ∈ V, (a+v)+w = a+(v +w);
c) For any a,b ∈A there exists a unique v ∈ V such that a = b+v .

Property c) can be written as a−b = v

Intuitively, an a�ne space is a �translated vector space� where the
origin is unde�ned
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Line Segments

De�nition (Line Segment)

Given two points x and y in an a�ne space, the set
{x +δ(y − x) : δ ∈ [0,1]} is called the line segment between x and y .

A line segment is a �shape� in the a�ne space where x and y lie

Note there is no reason why x and y cannot be vectors

If points are vectors, they can be summed directly to get a new point
(vector)
A line segment between two vectors x ,y ∈ Rn can be de�ned
alternatively as the convex combination of x and y , i.e.,
{(1−δ)x +δy ∈ Rn : δ ∈ [0,1]}

We focus on the vector points from now on
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Curves

De�nition (Curve)

Let I be an interval of real numbers. A curve is a continuous function
γ : I→ Rn. We also say that the curveγ is parametrized by the continous
function.

E.g., let I= [0,2π], we can de�ne a circle (a closed curve) γ in R2

parametrized by γ(t) = [cos(t),sin(t)]>,∀t ∈ I

A curve is called the plane curve when n = 2 and space curve when
n = 3
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Hyperplanes (1/2)

De�nition (Hyperplane)

Given y ∈ R and a ∈ Rn where a 6= 0, the set H = {x ∈ Rn : a>x = y } is
called the hyperplane of Rn.

A hyperplane is an a�ne space translated from the subspace
{x ∈ Rn : a>x = 0} of Rn

Since the dimension of the subspace is always n−1, we say that the
hyperplane always has dimension n−1

A hyperplane H divides Rn into the positive half-space
H+ = {x ∈ Rn : a1x1+ · · ·+anxn > 0} and negative half-space
H− = {x ∈ Rn : a1x1+ · · ·+anxn 6 0}

Both H+ and H− are subspaces of Rn [Proof]
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Hyperplanes (2/2)

For any x1,x2 ∈ H, the vector a is orthogonal to x1−x2 and is called
the normal of H

As 〈a,x1−x2〉= a>x1−a>x2 = y − y = 0

If a linear variety {x ∈ Rn : Ax = y } has dimension less than n (i.e.,
A 6=O), then it is the intersection of a �nite number of hyperplanes
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Convex Sets (1/2)

So far we have seen many sets, e.g., vector spaces, subspaces, a�ne
spaces, shapes (line segments and sets consisting of a single point),
etc.

De�nition (Convex Set)

A set Θ of points is convex i� for any u,w ∈Θ, we have
(1−δ)u+δv ∈Θ,∀δ ∈ (0,1).

Why �convex?�

Any line segment cannot have portions that fall outside
of the convex set
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Convex Sets (2/2)

Examples: Rn, a half-space, a hyperplane, a linear variety, a line or line
segment, a set of a single point, etc.

Convex subsets of Rn have the following properties [Homework]:

Given a convex set Θ and β ∈ R, the set βΘ= {x : x = βv ,v ∈Θ} is
convex
Given a convex sets Θ1 and Θ2, the set
Θ1+Θ2 = {x : x = v1+v2,v1 ∈Θ1,v2 ∈Θ2} is convex
The intersection of convex sets is convex

A point x ∈Θ is called an extreme point of Θ i� there are no two
distinct points u,v ∈Θ such that x = (1−δ)u+δv for some δ ∈ (0,1)

E.g., vertices (i.e., corners) of a polyhedron or endpoints of a line
segment
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Neighborhoods (1/2)

De�nition (Neighborhood)

A neighborhood of a point x ∈Rn is the set {y ∈Rn : ‖y −x‖< ε}, where
ε is some positive real number.

A point x in a set S is said to be an interior point of S i� S contains
some neighborhood of x
A point x is said to be a boundary point of S i� every neighborhood
of x contains a point in S and a point not in S

x may or may not be an element of S
The set of all boundary points of S is called the boundary of S

An open set S contains a neighborhood of each of its points (i.e.,
contains only interior points)

Given a,b ∈ R, the sets (a,b) and {[a,b]> : a2+5b2 < 1} are open

A set S is said to be closed if its complement Rn\S is open (or
intuitively, if it contains the boundary)

[a,b] is closed

How about [a,b)?

Neither closed nor open
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Neighborhoods (2/2)

A set S that can be contained in a ball of �nite radius is said to be
bounded

That is, for any point x ∈ S , there exists some positive real number
r ∈ R such that ‖x‖< r

A set S is compact i� it is both closed and bounded

Given a,b ∈ R. Is (a,b) compact?
How about [a,b]?
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Point Set Topology

Line segments, curves, surfaces, hyperplanes are basically sets of points

Point set topology treat these sets as �spaces� and discusses their
properties

Caution!

This section requires the knowledge of function continuity and limit.
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Geometry vs. Topology

Imagine that a shape is made by rubber

It can be �deformed� (e.g., either rotated, sheared, �ipped, scaled etc.
by linear by transformations; or bended, stretched, twisted etc. by
nonlinear functions)
But not teared, or cut and then glued

Geometry discusses the properties (e.g., volume, curvature, distance,
angle, etc.) of shapes that are changed as they are deformed
Topology discusses the shapes' nature which is una�ected by
deformation
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Topological Properties

Examples of the topological properties?

Loosely speaking,

Dimension (number of element in a basis)
Compactness
Connectedness
Separation (we will see this later when talking about the Hausdor�
spaces)

Properties of a topological space are described using the open sets

Shan-Hung Wu (CS, NTHU) Linear Algebra and Geometry NetDB-ML, Spring 2013 80 / 90



Topological Properties

Examples of the topological properties? Loosely speaking,

Dimension (number of element in a basis)
Compactness
Connectedness
Separation (we will see this later when talking about the Hausdor�
spaces)

Properties of a topological space are described using the open sets

Shan-Hung Wu (CS, NTHU) Linear Algebra and Geometry NetDB-ML, Spring 2013 80 / 90



Topological Spaces

De�nition (Topological Space)

Given a set of point X . Let T be a set of subsets of X . Then (X ,T) is
called a topological space i�
a) Both ∅ and X are in T;
b) Any union of arbitrary (possibly in�nitely) many elements of T is an
element of T;
c) Any intersection of �nitely many elements of T is an element of T.
We call T a topology on X , and the sets in T are called the open sets.

When X = Rn, our previous de�nition of an open set (i.e., a set
containing an ε-ball around each its point) is just a special case here

The collection of those open sets is called the standard topology on
Rn

We can de�ne di�erent topologies on Rn such as the co�nite topology:
T = {X\A : A= X or A is �nite}
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Neighborhood

De�nition (Neighborhood)

A neighborhood (or speci�cally, open neighborhood) of a point p in a
topological space (X ,T) is an open set in T containing p.

Our previous de�nition of a neighborhood (i.e., an ε-ball) is a special
case

An ε-ball is itself an open set (with a particular shape)
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Sequences and Limits

De�nition (Limit of a Sequence)

In a topological space (X ,T), a point p∗ ∈ X is called the limit of a
sequence of points {p(k)}k∈N in X i� for every neighborhood S of p∗, there
exists K ∈ N, such that p(k) ∈ S for all k > K .

The limit of a sequence may not be unique, as the neighborhoods of
points may not be separable

Consider two points p and q in the co�nite topological space on R, any
neighborhood of p (e.g., R\{q}) and q (e.g., R\{p}) must overlap
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Separation

An important topological property is that whether two points are
separable:

De�nition (Hausdor� Space)

A topological space (X ,T) is Hausdor� i� given any two points p and q in
X , if there exists a neighborhood U of p and V of q respectively such that
U ∩V = ∅.

Every sequence {p(k)}k has a unique limit p∗ in the Hausdor� space,
and we write limk→∞ p(k) = p∗

We can then perform calculus in the Hausdor� spaces
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Function Continuity (1/2)

De�nition (Continuity)

A function f : X → Y between two topological spaces (X ,TX ) and (Y ,TY )
is continuous i� given any open set U ∈ TY , the inverse image
f −1(U) = {x ∈ X : f (x) ∈ U} is open.

How does this related with our previous de�nition of continuity?

Recall that a function f is continuous at a i� limx→a f (x) = f (a); that
is, given any ε > 0, there exists δ > 0 such that for all x , ‖x −a‖< δ,
we have ‖f (x)− f (a)‖< ε
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Function Continuity (2/2)

Theorem

Let f : Rn→ Rm be a function between two standard topological spaces

(Rn,Tn) and (Rm,Tm). For any a ∈ Rn, limx→a f (x) = f (a) i� for any

open set U ∈ Tm, f
−1(U) is open.

Proof.

⇒ If f −1(U) = ∅ we are done since the empty set is always open.
Otherwise, consider any point a ∈ f −1(U). Since U is open, there exists
ε > 0 such that the set {y ∈ Rm : ‖y − f (a)‖< ε} is contained in U. By
de�nition of limx→a f (x) = f (a), there exists δ > 0 such that the set
{x ∈ Rn : ‖x −a‖< δ} is contained in f −1(U). Since for any point a, its
neighborhood is contained in f −1(U). f −1(U) is an open set.
⇐ Given any ε > 0, de�ne U = {y ∈ Rm : ‖y − f (a)‖< ε}. Since f −1(U) is
an open set and a ∈ f −1(U), there exists δ > 0 such that
{x ∈ Rn : ‖x −a‖< δ} is contained in f −1(U), implying that if ‖x −a‖< δ
then ‖f (x)− f (a)‖< ε.
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Homeomorphism

De�nition (Homeomorphism)

Two topological spaces (X ,TX ) and (Y ,TY ) are homeomorphic (or
topological isomorphic) if there exists a function f : X → Y such that:
a) f is a bijection (i.e., one-to-one and onto);
b) f is an open map (i.e., for any open set U ⊆ X , {f (x) : x ∈ U}⊆ Y is
open);
c) f is continuous.

Intuitively, two homeomorphic spaces are �the same� from the
topological point of view

All topological properties are preserved

Is (−1,1) homeomorphic to R?

Yes, as we can de�ne f : (−1,1)→ R, f (x) = tan(π
2
x)

Also, {[x1,x2,x3]
> ∈ R3 : x3 = x1+ x2} is homeomorphic to R2

We say the function f : R2→ R3, f (x1,x2) = (x1,x2,x1+ x2), embeds

R2 into R3
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Manifolds (1/2)

Many complex shapes in the real world have a simple shape when we
look at a just tiny portion of them

De�nition (Manifold)

A manifold (M,T) of dimension k embedded in Rn is a Hausdor� space
such that for any point p ∈M ⊆ Rn, there exists a small neighborhood of p
which is homeomorphic to Rk .

Curves and surfaces are examples of manifolds of dimension 1 and 2
respectively
The mapping between the local neighborhoods and Rk need not be
linear

Consider a unit circle M = {[x1,x2]
> : x2

1
+ x2

2
= 1} in R2, any point p

lies in at least one of the 4 open sets Mtop = {[x1,x2]
> ∈M : x2 > 0},

Mright = {[x1,x2]
> ∈M : x1 > 0}, Mbottom, and Mleft

Each of these sets is homeomorphic to Rk (e.g., we can de�ne
ftop(x1,x2) = tan(π

2
x1))
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Manifolds (2/2)

When we say a shape looks like a �donut� in a 3-dimensional space we
are looking at its extrinsic properties from the 3-dimensional space

Manifold provides an intrinsic pint of view of a shape

All topological properties of a tiny portion of a manifold is the same
with those of the Euclidean space

Generally, a manifold can be constructed by �patching� the overlapping
local neighborhoods (e.g., Mtop, Mright , Mbottom, and Mleft)

The invertible mappings (e.g., ftop, fright , fbottom, and fleft) between
these neighborhoods and Rk are called charts

A speci�c collection of charts which covers a manifold is called the
atlas

An atlas is not unique as we can use di�erent combinations of charts to
cover a manifold
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