Linear Algebra and Geometry

Shan-Hung Wu
shwu@cs.nthu.edu.tw
Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Spring 2013

Outline

(1) Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**
(2) Geometry
- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
(3) Point Set Topology**
- Topological Spaces
- Manifolds

Notation

- The conditional $A \Rightarrow B$ reads either "if A than B," " A only if B," " A is sufficient for B," or " B is necessary for A "
- The biconditional $A \Leftrightarrow B$ reads " A if and only if (or iff) B "
- $\{x: x \in \mathbb{R}, x>5\}$ or $\{x \in \mathbb{R}: x>5\}$ reads "the set of all x such that x is real and x is greater than 5 "
- We denote a function as $f: \mathcal{V} \rightarrow \mathcal{W}$. The \mathcal{V} and \mathcal{W} are called domain and codomain (or target) of f respectively
- Titles marked with ${ }^{* *}$ can be skipped for the first time reading
- Statements marked with [Proof] mean you are encouraged to prove it yourself
- Statements marked with [Homework] are your assignments

Outline

(1) Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**
(2) Geometry
- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
(3) Point Set Topology**
- Topological Spaces
- Manifolds

Vector Spaces

Definition (Vector Space)

The set $\mathcal{V}=\left\{\left[v_{1}, v_{2}, \cdots, v_{n}\right]^{\top}: v_{i} \in \mathbb{R}\right\} \subseteq \mathbb{R}^{n}$ is called a vector space over \mathbb{R}^{a} iff there are maps:

1) Vector addition $\mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$, denoted by $\boldsymbol{v}+\boldsymbol{w}$ for all $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}$,
2) Scalar multiplication $\mathbb{R} \times \mathcal{V} \rightarrow \mathcal{V}$, denoted by $a \cdot v$ or $a v$ for all $a \in \mathbb{R}$ and $v \in \mathcal{V}$;
with the following properties:
a) For all $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}, \boldsymbol{v}+\boldsymbol{w}=\boldsymbol{w}+\boldsymbol{v}$ (commutativity);
b) For all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}, \boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})=(\boldsymbol{u}+\boldsymbol{w})+\boldsymbol{v}$ (associativity);
c) There exists $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{0}+\boldsymbol{v}=\boldsymbol{v}$ for all $\boldsymbol{v} \in \mathcal{V}$;
d) For each $\boldsymbol{v} \in \mathcal{V}$, there exists $(-\boldsymbol{v}) \in \mathcal{V}$ with $\boldsymbol{v}+(-\boldsymbol{v})=\mathbf{0}$;
e) For all $a \in \mathbb{R}$ and $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}, a(\boldsymbol{v}+\boldsymbol{w})=a \boldsymbol{w}+a \boldsymbol{v}$ (distributivity);
f) For all $a, b \in \mathbb{R}$ and $\boldsymbol{v} \in \mathcal{V},(a+b) \boldsymbol{v}=a \boldsymbol{v}+b \boldsymbol{v}$ (distributivity);
g) For all $a, b \in \mathbb{R}$ and $v \in \mathcal{V}, a \cdot(b \cdot v)=(a \cdot b) \cdot v$ (associativity);
h) For all $\boldsymbol{v} \in \mathcal{V}, 1 \cdot v=\boldsymbol{v}$.
${ }^{a}$ While any field is applicable, we focus on the real numbers here.

- We call the n-tuple v a vector and the scalar v_{i} the i th component of v

Bases and Coordinates $(1 / 2)$

Definition (Linear Independence)

A set of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}\right\}$ in a vector space \mathcal{V} is called linear independent iff $a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\cdots+a_{n} \boldsymbol{v}_{n}=0 \Rightarrow a_{1}=a_{2}=\cdots=a_{n}=0$.

- In other words, there is no vector in this set that can be the linear combination of others

Definition (Span)

A set of all linear combinations of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}$ is called the span of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}$, i.e., $\operatorname{span}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}\right)=\left\{\sum_{i=1}^{n} a_{i} \boldsymbol{v}_{i}: a_{1}, a_{2}, \cdots, a_{n} \in \mathbb{R}\right\}$.

Bases and Coordinates (2/2)

Definition (Basis)

A set of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}\right\}$ in a vector space \mathcal{V} forms a basis iff: a) $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}$ are linear independent; b) span $\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}\right)=\mathcal{V}$.

- All bases of a space \mathcal{V} must have the same number of vectors [Proof], and this number is called the dimension of \mathcal{V}, denoted as $\operatorname{dim}(\mathcal{V})$
- Any $\boldsymbol{v} \in \mathcal{V}$ can be expressed as $\boldsymbol{v}=\sum_{i=1}^{n} a_{i} \boldsymbol{v}_{i}$, and the coefficients a_{i}, $i=1,2, \cdots, n$, are called the coordinates of v with respect to the basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}\right\}$
- The coordinates of a vector change with the basis
- The natural basis for \mathbb{R}^{n} is $\boldsymbol{e}_{1}=[1,0, \cdots, 0]^{\top}, \boldsymbol{e}_{2}=[0,1, \cdots, 0]^{\top}, \cdots, \boldsymbol{e}_{n}=[0,0, \cdots, 1]^{\top}$
- The coordinates of a vector with respect to this basis are identical to the components

Subspaces

Definition (Subspace)

A subset \mathcal{U} of a vector space \mathcal{V} is called a subspace if \mathcal{U} is closed under the vector addition and scalar multiplication.

- That is, if $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{U}$, then $\boldsymbol{v}+\boldsymbol{w} \in \mathcal{U}$ and $a \boldsymbol{v} \in \mathcal{U}$ for all a
- Every subspace must contain $\mathbf{0}$

Subspaces

Definition (Subspace)

A subset \mathcal{U} of a vector space \mathcal{V} is called a subspace if \mathcal{U} is closed under the vector addition and scalar multiplication.

- That is, if $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{U}$, then $\boldsymbol{v}+\boldsymbol{w} \in \mathcal{U}$ and $a \boldsymbol{v} \in \mathcal{U}$ for all a
- Every subspace must contain $\mathbf{0}$, as $\forall \boldsymbol{v} \in \mathcal{U},-\boldsymbol{v}$ exists and $\boldsymbol{v}+(-\boldsymbol{v})=\mathbf{0} \in \mathcal{U}$

Sum Spaces

Definition (Sum Space)

Let \mathcal{W} and \mathcal{U} be two subspaces of \mathcal{V}, the set $\{\boldsymbol{w}+\boldsymbol{u}: \boldsymbol{w} \in \mathcal{W}, \boldsymbol{u} \in \mathcal{U}\}$ is called the sum space of \mathcal{W} and \mathcal{U}, denoted by $\mathcal{W}+\mathcal{U}$.

- $\mathcal{W}+\mathcal{U}$ is a subspace of \mathcal{V} [Proof]
- $\operatorname{dim}(\mathcal{W}+\mathcal{U})=\operatorname{dim}(\mathcal{W})+\operatorname{dim}(\mathcal{U})-\operatorname{dim}(\mathcal{W} \cap \mathcal{U})$
- Let $\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{k}\right\}$ be a basis for $\mathcal{W} \cap \mathcal{U}$, then we can find $\left\{\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{m}\right\}$ and $\left\{\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{n}\right\}$ such that $\left\{\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{m}, \boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{k}\right\}$ and $\left\{\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{n}, \boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{k}\right\}$ are the bases for \mathcal{W} and \mathcal{U} respectively
- We can see that $\left\{\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{m}, \boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{n}, \boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{k}\right\}$ is a basis for $\mathcal{W}+\mathcal{U}$ [Proof]
- Therefore, $\operatorname{dim}(\mathcal{W}+\mathcal{U})=m+n+k=(m+k)+(n+k)-k=$ $\operatorname{dim}(\mathcal{W})+\operatorname{dim}(\mathcal{U})-\operatorname{dim}(\mathcal{W} \cap \mathcal{U})$

Linear Transformation

Definition (Linear Transformation)

A function $\mathcal{L}: \mathcal{V} \rightarrow \mathcal{W}$, where \mathcal{V} and \mathcal{W} are vector spaces, is called a linear transformation iff:

1) $\mathcal{L}(a v)=a \mathcal{L}(\boldsymbol{v})$ for every $\boldsymbol{v} \in \mathcal{V}$ and $a \in \mathbb{R}$;
2) $\mathcal{L}(\boldsymbol{v}+\boldsymbol{w})=\mathcal{L}(\boldsymbol{v})+\mathcal{L}(\boldsymbol{w})$ for every $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}$.

Definition (Range)

The range (or image) of a linear transformation $\mathcal{L}: \mathcal{V} \rightarrow \mathcal{W}$ is $\{\mathcal{L}(\boldsymbol{v}): \boldsymbol{v} \in \mathcal{V}\}$, denoted as $\mathcal{R}(\mathcal{L})$ (or $\operatorname{im}(\mathcal{L})$).

Definition (Nullspace)

The nullspace (or kernel) of a linear transformation $\mathcal{L}: \mathcal{V} \rightarrow \mathcal{W}$ is $\{\boldsymbol{v} \in \mathcal{V}: \mathcal{L}(\boldsymbol{v})=\mathbf{0}\}$, denoted as $\mathcal{N}(\mathcal{L})($ or $\operatorname{ker}(\mathcal{L}))$.

- $\mathcal{R}(\mathcal{L})$ and $\mathcal{N}(\mathcal{L})$ are subspaces of \mathcal{W} and \mathcal{V} respectively [Proof]

Dimension Theorem

Theorem

Let $\mathcal{L}: \mathcal{V} \rightarrow \mathcal{W}$ be a linear transformation, we have $\operatorname{dim}(\mathcal{V})=\operatorname{dim}(\mathcal{R}(\mathcal{L}))+\operatorname{dim}(\mathcal{N}(\mathcal{L}))$.

Proof.

Let $\left\{\boldsymbol{v}_{i}\right\}_{i}$ and $\left\{\boldsymbol{w}_{j}\right\}_{j}$ be the bases for $\mathcal{N}(\mathcal{L})$ and $\mathcal{R}(\mathcal{L})$ respectively ${ }^{\text {a }}$. There exists $\left\{\boldsymbol{u}_{j}\right\}_{j} \in \mathcal{V}$ such that $\mathcal{L}\left(\boldsymbol{u}_{j}\right)=\boldsymbol{w}_{j}$. We claim that the set $\left\{\boldsymbol{v}_{i}\right\}_{i} \cup\left\{\boldsymbol{u}_{j}\right\}_{j}$ forms a basis of \mathcal{V}.
We first prove that $\operatorname{span}\left(\boldsymbol{v}_{i}, \boldsymbol{u}_{j}\right)=\mathcal{V}$. Given any $\boldsymbol{v} \in \mathcal{V}$, there exist scalars $\left\{y_{j}\right\}_{j}$ such that $\mathcal{L}(\boldsymbol{v})=\sum_{j} y_{j} \boldsymbol{w}_{j}$. We have
$0=\mathcal{L}(\boldsymbol{v})-\sum_{j} y_{j} \boldsymbol{w}_{j}=\mathcal{L}(\boldsymbol{v})-\sum_{j} y_{j} \mathcal{L}\left(\boldsymbol{u}_{j}\right)=\mathcal{L}\left(\boldsymbol{v}-\sum_{j} y_{j} \boldsymbol{u}_{j}\right)$. So $\boldsymbol{v}-\sum_{j} y_{j} \boldsymbol{u}_{j} \in \mathcal{N}(\mathcal{L})$, implying that there exists $\left\{\alpha_{i}\right\}_{i}$ such that
$\boldsymbol{v}-\sum_{j} y_{j} \boldsymbol{u}_{j}=\sum_{i} \alpha_{i} \boldsymbol{v}_{i}$. Therefore, $\boldsymbol{v}=\sum_{i} \alpha_{i} \boldsymbol{v}_{i}+\sum_{j} y_{j} \boldsymbol{u}_{j}$. Next, we prove that $\boldsymbol{v}_{i}, \boldsymbol{u}_{j}$ are linear independent. If
$\sum_{i} \alpha_{i} \boldsymbol{v}_{i}+\sum_{j} y_{j} \boldsymbol{u}_{j}=\mathbf{0}$, we have
$\mathbf{0}=\mathcal{L}(\mathbf{0})=\mathcal{L}\left(\sum_{i} \alpha_{i} \boldsymbol{v}_{i}+\sum_{j} y_{j} \boldsymbol{u}_{j}\right)=\mathcal{L}\left(\sum_{i} \alpha_{i} \boldsymbol{v}_{i}\right)+\mathcal{L}\left(\sum_{j} y_{j} \boldsymbol{u}_{j}\right)=\sum_{j} y_{j} \boldsymbol{w}_{j}$, implying that $y_{j}=0$ for all j. Substitute y_{i} back to the equation $\sum_{i} \alpha_{i} \boldsymbol{v}_{i}+\sum_{j} y_{j} \boldsymbol{u}_{j}=\mathbf{0}$ we have $\sum_{i} \alpha_{i} \boldsymbol{v}_{i}=\mathbf{0}$, meaning $\alpha_{i}=0$ for all i.

[^0]
Matrix Representation (1/2)

- Given two bases $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}\right\}$ in \mathbb{R}^{n} and $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{m}\right\}$ in \mathbb{R}^{m}, $\mathcal{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ can be represented by a matrix $\boldsymbol{A}, \boldsymbol{A} \in \mathbb{R}^{m \times n}$, such that for every $\boldsymbol{v} \in \mathcal{V}$ and $\boldsymbol{w} \in \mathcal{W}, \mathcal{L}(\boldsymbol{v})=\boldsymbol{w}$, we have $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$, where $\boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{\top}$ and $\boldsymbol{y}=\left[y_{1}, y_{2}, \cdots, y_{m}\right]^{\top}$ are coordinates of \boldsymbol{v} and \boldsymbol{w} respectively
- By definition,

$$
\begin{aligned}
\mathcal{L}(\boldsymbol{v}) & =\mathcal{L}\left(x_{1} \boldsymbol{v}_{1}+\cdots+x_{n} \boldsymbol{v}_{n}\right)=x_{1} \mathcal{L}\left(\boldsymbol{v}_{1}\right)+\cdots+x_{n} \mathcal{L}\left(\boldsymbol{v}_{n}\right) \\
& =x_{1}\left(a_{11} \boldsymbol{w}_{1}+\cdots+a_{m 1} \boldsymbol{w}_{m}\right)+\cdots+x_{n}\left(a_{1 n} \boldsymbol{w}_{1}+\cdots+a_{m n} \boldsymbol{w}_{m}\right) \\
\mathcal{L}(\boldsymbol{v}) & =\boldsymbol{w}=y_{1} \boldsymbol{w}_{1}+\cdots+y_{m} \boldsymbol{w}_{m}
\end{aligned}
$$

- Comparing the coefficients of \boldsymbol{w}_{i} we have

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]
$$

Matrix Representation (2/2)

- Rewrite \boldsymbol{A} as $\left[\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}\right]$ where \boldsymbol{a}_{i} denote columns, we have $\boldsymbol{y}=x_{1} \boldsymbol{a}_{1}+\cdots+x_{n} \boldsymbol{a}_{n}$
- \boldsymbol{y} is a linear combination of the columns of \boldsymbol{A}
- Why a function \mathcal{L} satisfying $\mathcal{L}(a v)=a \mathcal{L}(\boldsymbol{v})$ and $\mathcal{L}(\boldsymbol{v}+\boldsymbol{w})=\mathcal{L}(\boldsymbol{v})+\mathcal{L}(\boldsymbol{w})$ for every $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}, a \in \mathbb{R}$ is called "linear?"

Matrix Representation (2/2)

- Rewrite \boldsymbol{A} as $\left[\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}\right]$ where \boldsymbol{a}_{i} denote columns, we have $\boldsymbol{y}=x_{1} \boldsymbol{a}_{1}+\cdots+x_{n} \boldsymbol{a}_{n}$
- \boldsymbol{y} is a linear combination of the columns of \boldsymbol{A}
- Why a function \mathcal{L} satisfying $\mathcal{L}(a v)=a \mathcal{L}(\boldsymbol{v})$ and $\mathcal{L}(\boldsymbol{v}+\boldsymbol{w})=\mathcal{L}(\boldsymbol{v})+\mathcal{L}(\boldsymbol{w})$ for every $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}, a \in \mathbb{R}$ is called "linear?"
- We can see from the matrix representation that each $y_{j}, 1 \leqslant j \leqslant m$, is mapped from a "linear function" f_{j} over x_{1}, \cdots, x_{n}, i.e.,

$$
f_{j}\left(x_{1}, \cdots, x_{n}\right)=a_{j 1} x_{1}+\cdots+a_{j n} x_{n}=y_{j}
$$

Outline

(1) Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**
(2) Geometry
- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
(3) Point Set Topology**
- Topological Spaces
- Manifolds

Rank of a Matrix

Definition (Rank)

Given an $m \times n$ matrix \boldsymbol{A} and let $\boldsymbol{a}_{\boldsymbol{i}}$ be the i th column of \boldsymbol{A}. The number of linear independent columns of \boldsymbol{A} is called the rank of \boldsymbol{A}, denoted as $\operatorname{rank}(\boldsymbol{A})$.

- $\operatorname{rank}(\boldsymbol{A})=\operatorname{dim}\left(\operatorname{span}\left(\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}\right)\right)=\operatorname{dim}(\mathcal{R}(\boldsymbol{A}))$
- $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}\left(\boldsymbol{A}^{\top}\right)$ [Proof: Using the Dimension Theorem]
- $\operatorname{rank}(\boldsymbol{A}+\boldsymbol{B}) \leqslant \operatorname{rank}(\boldsymbol{A})+\operatorname{rank}(\boldsymbol{B})[\operatorname{Proof:} \mathcal{R}(\boldsymbol{A}+\boldsymbol{B}) \subseteq \mathcal{R}(\boldsymbol{A})+\mathcal{R}(\boldsymbol{B})$, and $\operatorname{dim}(\mathcal{R}(\boldsymbol{A})+\mathcal{R}(\boldsymbol{B})) \leqslant \operatorname{dim}(\mathcal{R}(\boldsymbol{A})+\operatorname{dim}(\mathcal{R}(\boldsymbol{B}))]$
- $\operatorname{rank}(\boldsymbol{A B}) \leqslant \min \{\operatorname{rank}(\boldsymbol{A}), \operatorname{rank}(\boldsymbol{B})\}[\operatorname{Proof:~} \mathcal{R}(\boldsymbol{A B}) \subseteq \mathcal{R}(\boldsymbol{A})]$
- $\operatorname{rank}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\operatorname{rank}(\boldsymbol{A})$

Column and Row Operations

- The rank of \boldsymbol{A} is invariant under the column (resp. row) operations [Proof]:
- Multiplying columns (resp. rows) of \boldsymbol{A} by nonzero scalars
- Interchanging the columns (resp. rows)
- Adding to a given column (resp. row) a linear combination of other columns (resp. rows)
- Denote $\boldsymbol{A} \stackrel{C}{\sim} B$ and $\boldsymbol{A} \stackrel{r}{\sim} B$ respectively if we can obtain B by performing the column and row operations over \boldsymbol{A}
- If $\boldsymbol{A} \stackrel{c}{\sim} \boldsymbol{B}$ or $\boldsymbol{A} \stackrel{r}{\sim} \boldsymbol{B}$, then $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{B})$
- E.g., $[a, b, c]^{\top}[a, b, c] \stackrel{r}{\sim}\left[\begin{array}{lll}a & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and has rank 1

Trace

Definition (Trace)

Given an $n \times n$ square matrix \boldsymbol{A}, the trace of \boldsymbol{A} is defined as $\operatorname{tr}(\boldsymbol{A})=\sum_{i=1}^{n} a_{i, i}$.

- $\operatorname{tr}(\boldsymbol{A}+\boldsymbol{B})=\operatorname{tr}(\boldsymbol{A})+\operatorname{tr}(\boldsymbol{B})$, and $\operatorname{tr}(\boldsymbol{A})=\operatorname{tr}\left(\boldsymbol{A}^{\top}\right)$ [Proof]
- $\operatorname{tr}(\boldsymbol{A B})=\operatorname{tr}(\boldsymbol{B A})$ [Proof]
- \boldsymbol{A} and \boldsymbol{B} need not be square
- In particular, $\operatorname{tr}\left(\boldsymbol{x}^{\top} \boldsymbol{x}\right)=\operatorname{tr}\left(\boldsymbol{x} \boldsymbol{x}^{\top}\right)$
- Cyclic property: $\operatorname{tr}(\boldsymbol{A B C})=\operatorname{tr}(C A B)=\operatorname{tr}(B C A)$ [Proof]
- Generally, $\operatorname{tr}(\boldsymbol{C B A}) \neq \operatorname{tr}(\boldsymbol{A B C})$, unless both $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} are symmetric (i.e., equal to their transpose):
$\operatorname{tr}(\boldsymbol{A B C})=\operatorname{tr}\left(\boldsymbol{A}^{\top} \boldsymbol{B}^{\top} \boldsymbol{C}^{\top}\right)=\operatorname{tr}\left((\boldsymbol{C B} \boldsymbol{A})^{\top}\right)=\operatorname{tr}(\boldsymbol{C B A})$

Determinant (1/2)

Definition (Determinant)

Given an $n \times n$ square matrix \boldsymbol{A}, where $\boldsymbol{A}=\left[\boldsymbol{a}_{i}, \cdots, \boldsymbol{a}_{n}\right]$, there exists a unique function det: $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$, satisfying the properties:
a) $\operatorname{det}\left(\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{k-1}, \alpha \boldsymbol{a}_{k}^{(1)}+\beta \boldsymbol{a}_{k}^{(2)}, \boldsymbol{a}_{k+1}, \cdots, \boldsymbol{a}_{n}\right)=$
$\alpha \operatorname{det}\left(\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{k-1}, \boldsymbol{a}_{k}^{(1)}, \boldsymbol{a}_{k+1}, \cdots, \boldsymbol{a}_{n}\right)+$
$\beta \operatorname{det}\left(a_{1}, \cdots, a_{k-1}, a_{k}^{(2)}, a_{k+1}, \cdots, a_{n}\right), \forall \alpha, \beta \in \mathbb{R}$;
b) $\operatorname{det}\left(\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{i}, \cdots, \boldsymbol{a}_{j}, \cdots, \boldsymbol{a}_{n}\right)=0$ if $\boldsymbol{a}_{i}=\boldsymbol{a}_{j}$ for some i and j;
c) $\operatorname{det}\left(\boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{n}\right)=1$.

We call $\operatorname{det}(\boldsymbol{A})$ the determinant of \boldsymbol{A}.

- Let $\boldsymbol{I}_{n}=\left[\boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{n}\right]$ be an identity matrix, we have $\operatorname{det}\left(\boldsymbol{I}_{n}\right)=1$
- $\operatorname{det}(\boldsymbol{A})$ changes its sign if we interchanges the columns of \boldsymbol{A} [Proof]

Determinant $(2 / 2)$

- The unique function det $: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ can be written as

$$
\operatorname{det}(\boldsymbol{A})=\sum_{k=1}^{n}(-1)^{k+1} a_{1 k} \operatorname{det}\left(\boldsymbol{A}_{1 k}\right)
$$

where $\boldsymbol{A}_{i j}$ is the $(n-1) \times(n-1)$ matrix obtained by deleting the i th row and jth column [Proof]

- The determinant of \boldsymbol{A} can be also regarded as the sign volume of the image of the unit cube

Theorem

Given any $c \in \mathbb{R}$ and $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{n \times n}$, we have a) $\left.\operatorname{det}(c \boldsymbol{A})=c^{n} \operatorname{det}(\boldsymbol{A}) ; b\right)$ $\left.\operatorname{det}\left(\boldsymbol{A}^{\top}\right)=\operatorname{det}(\boldsymbol{A}) ; c\right) \operatorname{det}(\boldsymbol{A B})=\operatorname{det}(\boldsymbol{A}) \operatorname{det}(\boldsymbol{B})$.

- Can be proved by either tedious calculation or the signed volume interpretation

Linear Equations (1/2)

- Given $\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{y} \in \mathbb{R}^{m}$, and $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$ represents a system of linear equations as follows:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+\cdots+a_{1 n} x_{n}=y_{1} \\
\vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}=y_{m}
\end{array}\right.
$$

Theorem

Let $[\boldsymbol{A}, \boldsymbol{y}]=\left[\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}, \boldsymbol{y}\right]$ be the augmented matrix, the system of linear equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$ has a solution iff $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}([\boldsymbol{A}, \boldsymbol{y}])$.

Linear Equations (2/2)

Proof.

$\Rightarrow: \boldsymbol{y}$ is a linear combination of the columns of \boldsymbol{A}, so $\operatorname{rank}([\boldsymbol{A}, \boldsymbol{y}])=\operatorname{dim}\left(\operatorname{span}\left(\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}, \boldsymbol{y}\right)\right)=\operatorname{dim}\left(\operatorname{span}\left(\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}\right)\right)=\operatorname{rank}(\boldsymbol{A})$. $\Leftarrow:$ Let $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}([\boldsymbol{A}, \boldsymbol{y}])=r$ and $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{r}$ be the linear independent columns of both \boldsymbol{A} and $[\boldsymbol{A}, \boldsymbol{y}]$. Since \boldsymbol{y} is not one of $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{r}$, it is their linear combination; that is, there exists x_{1}, \cdots, x_{r} such that $\boldsymbol{y}=x_{1} \boldsymbol{a}_{1}+\cdots+x_{r} \boldsymbol{a}_{r}$. So $\boldsymbol{x}=\left[x_{1}, \cdots, x_{r}\right]^{\top}$ is the solution.

Definition (Linear Variety)

The set $\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}\right\}$ is called the linear variety for $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{y} \in \mathbb{R}^{m}$.

- If x_{0} is a solution, then for all $x \in \mathcal{N}(\boldsymbol{A}), x_{0}+x$ is also a solution
- Is linear variety a subspace of \mathbb{R}^{n} ?

Linear Equations (2/2)

Proof.

$\Rightarrow: \boldsymbol{y}$ is a linear combination of the columns of \boldsymbol{A}, so $\operatorname{rank}([\boldsymbol{A}, \boldsymbol{y}])=\operatorname{dim}\left(\operatorname{span}\left(\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}, \boldsymbol{y}\right)\right)=\operatorname{dim}\left(\operatorname{span}\left(\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}\right)\right)=\operatorname{rank}(\boldsymbol{A})$. $\Leftarrow:$ Let $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}([\boldsymbol{A}, \boldsymbol{y}])=r$ and $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{r}$ be the linear independent columns of both \boldsymbol{A} and $[\boldsymbol{A}, \boldsymbol{y}]$. Since \boldsymbol{y} is not one of $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{r}$, it is their linear combination; that is, there exists x_{1}, \cdots, x_{r} such that $\boldsymbol{y}=x_{1} \boldsymbol{a}_{1}+\cdots+x_{r} \boldsymbol{a}_{r}$. So $\boldsymbol{x}=\left[x_{1}, \cdots, x_{r}\right]^{\top}$ is the solution.

Definition (Linear Variety)

The set $\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}\right\}$ is called the linear variety for $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{y} \in \mathbb{R}^{m}$.

- If x_{0} is a solution, then for all $x \in \mathcal{N}(\boldsymbol{A}), x_{0}+x$ is also a solution
- Is linear variety a subspace of \mathbb{R}^{n} ? No, as 0 is not included
- However, we still say that the linear variety has dimension r if $\operatorname{dim}(\mathcal{N}(\boldsymbol{A}))=r$

Cramer's Rule

Theorem (Cramer's Rule)

Given a square, invertible matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, the solution to a system of linear equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$ can be obtained by $x_{i}=\operatorname{det}\left(\boldsymbol{A}_{i}\right) / \operatorname{det}(\boldsymbol{A})$ for $i=1, \cdots, n$, where \boldsymbol{A}_{i} is the matrix formed by replacing the ith column of \boldsymbol{A} by the column vector \boldsymbol{y}.

- The proof is easy [Proof]

Invertibility

Definition (Nonsingular Matrix)

A square matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is nonsingular (or invertible) if there exists another matrix $\boldsymbol{B} \in \mathbb{R}^{n \times n}$ such that $\boldsymbol{A B}=\boldsymbol{B} \boldsymbol{A}=\boldsymbol{I}_{n}$. We call \boldsymbol{B} the inverse of \boldsymbol{A} and denote it as \boldsymbol{A}^{-1}.

- $\left(\boldsymbol{A}^{\top}\right)^{-1}=\left(\boldsymbol{A}^{-1}\right)^{\top}$ and $\operatorname{det}\left(\boldsymbol{A}^{-1}\right)=\operatorname{det}(\boldsymbol{A})^{-1}$ [Proof]

Theorem

Given $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, the following conditions are equivalent:
a) \boldsymbol{A} is invertible;
b) There exists a unique solution \boldsymbol{x} satisfying $\boldsymbol{A x}=\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$;
c) $\mathcal{N}(\boldsymbol{A})=\mathbf{0}$ (trivial kernel);
d) The columns are linearly independent (i.e., $\operatorname{rank}(\boldsymbol{A})=n$);
e) $\operatorname{det}(\boldsymbol{A}) \neq 0$;
f) \boldsymbol{A}^{\top} is invertible;
g) The rows of \boldsymbol{A} are linearly independent;
h) All of the eigenvalues of \boldsymbol{A} are nonzero (explained later).

Outline

(1) Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**
(2) Geometry
- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
(3) Point Set Topology**
- Topological Spaces
- Manifolds

Change of Basis

- Recall that given the bases of domain and range, a linear transformation can be represented by a matrix
- What's the relation between matrices obtained from different bases?

Definition (Change of Basis Matrix)

Consider two bases $\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ and $\left\{\boldsymbol{v}_{1}^{\prime}, \cdots, \boldsymbol{v}_{n}^{\prime}\right\}$ for \mathbb{R}^{n} and a vector $\boldsymbol{v} \in \mathbb{R}^{n}$. There are two sets of coordinates \boldsymbol{x}_{i} and $\boldsymbol{x}_{i}^{\prime}, 1 \leqslant i \leqslant n$, such that $\left[\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right]\left[x_{1}, \cdots, x_{n}\right]^{\top}=\boldsymbol{v}=\left[\boldsymbol{v}_{1}^{\prime}, \cdots, \boldsymbol{v}_{n}^{\prime}\right]\left[x_{1}^{\prime}, \cdots, x_{n}^{\prime}\right]^{\top}$. We call $\left[\boldsymbol{v}_{1}^{\prime}, \cdots, \boldsymbol{v}_{n}^{\prime}\right]^{-1}\left[\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right]$ the change of basis matrix (or transition matrix) from $\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ to $\left\{\boldsymbol{v}_{1}^{\prime}, \cdots, \boldsymbol{v}_{n}^{\prime}\right\}$.

Similar Matrices

Definition (Similar Matrices)

Two square matrices $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{n \times n}$ are similar if there exists nonsingular matrices $C \in \mathbb{R}^{n \times n}$ such that $\boldsymbol{A}=\boldsymbol{C}^{-1} \boldsymbol{B C}$.

- If \boldsymbol{A} and \boldsymbol{B} are similar, then $\operatorname{tr}(\boldsymbol{A})=\operatorname{tr}(\boldsymbol{B})$ and $\operatorname{det}(\boldsymbol{A})=\operatorname{det}(\boldsymbol{B})$ [Proof]
- Let $\mathcal{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, $\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ and $\left\{\boldsymbol{v}_{1}^{\prime}, \cdots, \boldsymbol{v}_{n}^{\prime}\right\}$ be two bases of domain, $\left\{\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{m}\right\}$ and $\left\{\boldsymbol{w}_{1}^{\prime}, \cdots, \boldsymbol{w}_{m}^{\prime}\right\}$ be two bases of range, and \boldsymbol{S} and \boldsymbol{T} be the change of basis matrices from $\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ to $\left\{\boldsymbol{v}_{1}^{\prime}, \cdots, \boldsymbol{v}_{n}^{\prime}\right\}$ and $\left\{\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{m}\right\}$ to $\left\{\boldsymbol{w}_{1}^{\prime}, \cdots, \boldsymbol{w}_{m}^{\prime}\right\}$ respectively. We have the following relations:

- Similar matrices correspond to the same linear transform with respect to different bases

Eigen Decomposition

- Why do we need eigenvalues and eigenvectors?
- Given a linear transformation, we want to find a basis (if existing) such that the corresponding matrix representation \boldsymbol{D} is diagonal
- So, given coordinates $\boldsymbol{x} \in \mathbb{R}^{n}$ with respect to this basis, the effect of the transformation is just a scaling to each coordinate, as $\boldsymbol{D} \boldsymbol{x}=\left[d_{11} x_{1}, \cdots, d_{n n} x_{n}\right]^{\top}$
- An example application to compression: We can drop small $d_{i j} s$ without changing the original transformation too much

Eigenvalues and Eigenvectors (1/3)

Definition (Eigenvalues and Eigenvectors)

Given $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, a nonzero vector \boldsymbol{x} satisfying $\boldsymbol{A x}=\lambda \boldsymbol{x}$, where λ is a scalar (possibly complex), is called the eigenvector of \boldsymbol{A}, and λ is called the eigenvalue.

- \boldsymbol{x} is an eigenvector iff the matrix $\boldsymbol{\lambda I}-\boldsymbol{A}$ is singular, as $\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x} \Rightarrow \lambda \boldsymbol{x}-\boldsymbol{A} \boldsymbol{x}=\mathbf{0} \Rightarrow(\lambda \boldsymbol{I}-\boldsymbol{A}) \boldsymbol{x}=\mathbf{0}$ and $\lambda \boldsymbol{I}-\boldsymbol{A}$ has nontrivial kernel (note x is nonzero by definition)
- We have $0=\operatorname{det}(\lambda \boldsymbol{I}-\boldsymbol{A})=\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}$; that is, the characteristic polynomial of \boldsymbol{A} equals 0
- The eigenvalues are the roots (possibly with multiplicity) of the above equation
- For each eigenvalue λ_{i}, we can obtain its corresponding eigenvectors by solving $\left(\lambda_{i} \boldsymbol{I}-\boldsymbol{A}\right) \boldsymbol{x}=\mathbf{0}$

Multiplicities

- The eigenvector (i.e., solution to $\left.\left(\lambda_{i} \boldsymbol{I}-\boldsymbol{A}\right) \boldsymbol{x}=\mathbf{0}\right)$ of an eigenvalue λ_{i} is not unique
- If $\boldsymbol{A} \boldsymbol{x}=\lambda_{i} \boldsymbol{x}$, so does $\boldsymbol{A}(c \boldsymbol{x})=\lambda_{i}(c \boldsymbol{x})$ for any $c \in \mathbb{R}$
- $\mathcal{N}\left(\lambda_{i} \boldsymbol{I}-\boldsymbol{A}\right)$, called the eigenspace of λ_{i}, has dimension at least 1
- Algebraic multiplicity of an eigenvalue λ_{i} is the multiplicity of the corresponding root of the characteristic polynomial
- Geometric multiplicity of λ_{i} is the dimension of $\mathcal{N}\left(\lambda_{i} I-\boldsymbol{A}\right)$, the number of linear independent eigenvectors we solve from
$\left(\lambda_{i} \boldsymbol{I}-\boldsymbol{A}\right) \boldsymbol{x}=\mathbf{0}$
- Geometric multiplicity must be less than or equal to the algebraic multiplicity
- We may not be able to find n linear independent eigenvectors for a matrix

Eigenvalues and Eigenvectors (2/3)

Theorem

If $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ has n linear independent eigenvectors $\left\{\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{n}\right\}$, then $\left\{\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{n}\right\}$ form a basis of \mathbb{R}^{n}.

- Given coordinates $x \in \mathbb{R}^{n}$ with respect to this basis, the effect of the transformation is just a scaling to each coordinate, as $\boldsymbol{A}\left(x_{1} \boldsymbol{u}_{1}+\cdots+x_{n} \boldsymbol{u}_{n}\right)=x_{1} \boldsymbol{A}\left(\boldsymbol{u}_{1}\right)+\cdots+x_{n} \boldsymbol{A}\left(\boldsymbol{u}_{n}\right)=x_{1} \lambda_{1} \boldsymbol{u}_{1}+\cdots+x_{n} \lambda_{n} \boldsymbol{u}_{n}$
- Under this basis, the transformation can be represented by a diagonal matrix \boldsymbol{D}, where $d_{i i}=\lambda_{i}$ (counting the multiplicity)
- We say \boldsymbol{A} is diagonalizable if there exists a basis such that
$\boldsymbol{A}=\boldsymbol{T}^{-1} \boldsymbol{D} \boldsymbol{T}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{-1}$, where $\boldsymbol{U}=\left[\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{n}\right]$ and $\boldsymbol{T}=\boldsymbol{U}^{-1}\left[\boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{n}\right]$
- \boldsymbol{T} is the change of basis matrix from the natural basis to $\left\{\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{n}\right\}$:

$$
\begin{array}{rll}
\mathbb{R}^{n} \\
\boldsymbol{T}=\left[\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{n}\right]^{-1} \downarrow \\
\mathbb{R}^{n}
\end{array} \xrightarrow{\boldsymbol{A}} \begin{aligned}
& \mathbb{R}^{n} \\
& \downarrow \boldsymbol{D}
\end{aligned} \quad \begin{aligned}
& \left.\downarrow \boldsymbol{R}_{1}, \cdots, \boldsymbol{u}_{n}\right]^{-1}
\end{aligned}
$$

Eigenvalues and Eigenvectors (3/3)

- $\operatorname{tr}(\boldsymbol{A})=\sum_{i=1}^{n} \lambda_{i}$ and $\operatorname{det}(\boldsymbol{A})=\prod_{i=1}^{n} \lambda_{i}$ [Proof]
- If two matrices $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{n \times n}$ are similar, then their characteristic polynomials (and eigenvalues) are equal, as $\operatorname{det}(\lambda \boldsymbol{I}-\boldsymbol{A})=\operatorname{det}\left(\lambda \boldsymbol{I}-\boldsymbol{T}^{-1} \boldsymbol{B} \boldsymbol{T}\right)=\operatorname{det}\left(\lambda \boldsymbol{T}^{-1} \boldsymbol{T}-\boldsymbol{T}^{-1} \boldsymbol{B} \boldsymbol{T}\right)=$ $\operatorname{det}\left(\boldsymbol{T}^{-1}\right) \operatorname{det}(\lambda \boldsymbol{I}-\boldsymbol{B}) \operatorname{det}(\boldsymbol{T})=\operatorname{det}(\lambda \boldsymbol{I}-\boldsymbol{B})$

Theorem

A square matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is invertible iff all eigenvalues of \boldsymbol{A} are nonzero.

- The above theorem dose not imply any consequence between the diagonalizability and invertibility of a matrix
- E.g., $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is diagonalizable but not invertible, yet $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ is invertible but not diagonalizable

Outline

(1) Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**
(2) Geometry
- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
(3) Point Set Topology**
- Topological Spaces
- Manifolds

Inner Products

Definition (Inner Product)

A function $\langle\cdot, \cdot\rangle: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{C}$ is called the inner product if it satisfies:
a) $\langle\boldsymbol{x}, \boldsymbol{x}\rangle \geqslant 0, \forall \boldsymbol{x} \in \mathcal{V}$ and the equality holds iff $\boldsymbol{x}=\mathbf{0}$ (positivity);
b) $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\overline{\langle\boldsymbol{y}, \boldsymbol{x}\rangle}, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}$ (conjugate symmetry);
c) $\langle\boldsymbol{x}+\boldsymbol{y}, \boldsymbol{z}\rangle=\langle\boldsymbol{x}, \boldsymbol{z}\rangle+\langle\boldsymbol{y}, \boldsymbol{z}\rangle, \forall \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathcal{V}$ (additivity);
d) $\langle r \boldsymbol{x}, \boldsymbol{y}\rangle=r\langle\boldsymbol{x}, \boldsymbol{y}\rangle, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}, r \in \mathbb{C}$ (homogeneity).

- Note we have $\langle\boldsymbol{x}, r \boldsymbol{y}\rangle=\bar{r}\langle\boldsymbol{x}, \boldsymbol{y}\rangle$ based on properties b) and d)
- A common example is the Euclidean inner product:

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\sum_{i=1}^{n} x_{i} y_{i}=\boldsymbol{x}^{\top} \boldsymbol{y} \text { for any } \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}
$$

- Two vectors \boldsymbol{x} and \boldsymbol{y} are said to be orthogonal if $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=0$
- The Euclidean norm of \boldsymbol{x} is defined as $\|\boldsymbol{x}\|=\sqrt{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$
- A vector space with an inner product/norm defined is called the inner product/normed space respectively

Cauchy-Schwarz Inequality

Theorem (Cauchy-Schwarz Inequality)

For any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, we have $|\langle\boldsymbol{x}, \boldsymbol{y}\rangle| \leqslant\|\boldsymbol{x}\|\|\boldsymbol{y}\|$ and the equality holds iff $\boldsymbol{x}=\alpha \boldsymbol{y}$ for some $\alpha \in \mathbb{R}$.

Proof.

The proof is obvious when $\boldsymbol{x}=0$ or $\boldsymbol{y}=0$. Otherwise, consider the case where \boldsymbol{x} and \boldsymbol{y} are unit vectors; that is, $\|\boldsymbol{x}\|=\|\boldsymbol{y}\|=1$. Then $0 \leqslant\|x-y\|^{2}=\langle x-y, x-y\rangle=\|x\|^{2}-2\langle x, y\rangle+\|y\|^{2}=2-2\langle x, y\rangle$, implying $\langle\boldsymbol{x}, \boldsymbol{y}\rangle \leqslant 1$. The equality holds iff $\boldsymbol{x}=\boldsymbol{y}$. Similarly, by $0 \leqslant\|\boldsymbol{x}+\boldsymbol{y}\|^{2}$ we have $\langle\boldsymbol{x}, \boldsymbol{y}\rangle \geqslant-1$ and the equality holds iff $\boldsymbol{x}=-\boldsymbol{y}$. For any nonzero vectors \boldsymbol{x} and \boldsymbol{y}, we have
$-1 \leqslant\langle\boldsymbol{x} /\|\boldsymbol{x}\|, \boldsymbol{y} /\|\boldsymbol{y}\|\rangle \leqslant 1 \Rightarrow|\langle\boldsymbol{x}, \boldsymbol{y}\rangle| \leqslant\|\boldsymbol{x}\|\|\boldsymbol{y}\|$ and the equality holds iff $\boldsymbol{x} /\|\boldsymbol{x}\|= \pm \boldsymbol{y} /\|\boldsymbol{y}\|$; that is, $\boldsymbol{x}=\alpha \boldsymbol{y}$ for some $\alpha \in \mathbb{R}$.

- Since $-1 \leqslant\langle\boldsymbol{x}, \boldsymbol{y}\rangle /\|\boldsymbol{x}\|\|\boldsymbol{y}\| \leqslant 1$, we can define the included angle θ of x and y by $\cos \theta=\langle\boldsymbol{x}, \boldsymbol{y}\rangle /\|x\|\|y\|$

Norms

Definition (Vector Norm)

A function $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}$ is called the vector norm if it satisfies:
a) $\|\boldsymbol{x}\| \geqslant 0, \forall x \in \mathcal{V}$ and the equality holds iff $\boldsymbol{x}=\mathbf{0}$ (positivity);
b) $\|r x\|=|r|\|x\|, \forall x \in \mathcal{V}, r \in \mathbb{R}$ (homogeneity);
c) $\|\boldsymbol{x}+\boldsymbol{y}\| \leqslant\|\boldsymbol{x}\|+\|\boldsymbol{y}\|, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}$ (triangle inequality).

- The Euclidean norm is a vector norm [Proof]
- We can define the p-norm directly without going through the inner product first: $\|\boldsymbol{x}\|_{p}=\left\{\begin{array}{cc}\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p} & 1 \leqslant p<\infty \\ \max \left\{\left|x_{i}\right|\right\}_{i} & p=\infty\end{array}\right.$
- Euclidean norm is also known as the 2-norm

Symmetric and Hermitian Matrices (1/2)

- A matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is symmetric if $\boldsymbol{A}^{\top}=\boldsymbol{A}$; and antisymmetric if $\boldsymbol{A}^{\top}=-\boldsymbol{A}$
- A matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is Hermitian if $\boldsymbol{A}=\boldsymbol{A}^{*}$ (conjugate transpose); and antihermitian if $\boldsymbol{A}^{*}=-\boldsymbol{A}$

Theorem

All eigenvalues of a real symmetric matrix are real.

Proof.

Let $\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}$, where $\boldsymbol{x} \neq \mathbf{0}$. We have $\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle=\langle\lambda \boldsymbol{x}, \boldsymbol{x}\rangle=\lambda\langle\boldsymbol{x}, \boldsymbol{x}\rangle$. On the other hand, $\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle=\boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{x}=\left\langle\boldsymbol{x}, \boldsymbol{A}^{T} \boldsymbol{x}\right\rangle=\bar{\lambda}\langle\boldsymbol{x}, \boldsymbol{x}\rangle$. This implies $\lambda\langle\boldsymbol{x}, \boldsymbol{x}\rangle=\bar{\lambda}\langle\boldsymbol{x}, \boldsymbol{x}\rangle \Rightarrow(\lambda-\bar{\lambda})\langle\boldsymbol{x}, \boldsymbol{x}\rangle=\mathbf{0}$. Since $\langle\boldsymbol{x}, \boldsymbol{x}\rangle>0$ for any $\boldsymbol{x} \neq \mathbf{0}$, $\lambda-\bar{\lambda}$ must be 0 ; that is, λ is real.

Symmetric and Hermitian Matrices $(2 / 2)$

Theorem

Any real symmetric matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ has n eigenvectors that are mutually orthogonal.

Proof.

Here we only prove a special case where the n eigenvalues are distinct. Suppose $\boldsymbol{A} \boldsymbol{x}_{1}=\lambda_{1} \boldsymbol{x}_{1}$ and $\boldsymbol{A} \boldsymbol{x}_{2}=\lambda_{2} \boldsymbol{x}_{2}$, where $\lambda_{1} \neq \lambda_{2}$. Then $\left\langle\boldsymbol{A} \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right\rangle=\left\langle\lambda_{1} \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right\rangle=\lambda_{1}\left\langle\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right\rangle$. However, $\left\langle\boldsymbol{x}_{1}, \boldsymbol{A}^{T} \boldsymbol{x}_{2}\right\rangle=\left\langle\boldsymbol{x}_{1}, \boldsymbol{A} \boldsymbol{x}_{2}\right\rangle=\left\langle\boldsymbol{x}_{1}, \lambda_{2} \boldsymbol{x}_{2}\right\rangle=\lambda_{2}\left\langle\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right\rangle$. Therefore we have $\lambda_{1}\left\langle x_{1}, x_{2}\right\rangle=\lambda_{2}\left\langle x_{1}, x_{2}\right\rangle$. Since $\lambda_{1} \neq \lambda_{2},\left\langle x_{1}, x_{2}\right\rangle=0$.

- Real symmetric matrices are always diagonalizable
- $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{\top}$, where $\boldsymbol{U}=\left[\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{n}\right]$ and \boldsymbol{u}_{i} are the eigenvectors of \boldsymbol{A}
- Since the columns of \boldsymbol{U} are orthogonal with each other, $\boldsymbol{U}^{\top} \boldsymbol{U}$ is diagonal
- By picking the eigenvectors of unit norm, we have $\boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{I}$, and therefore $\boldsymbol{U}^{-1}=\boldsymbol{U}^{\boldsymbol{T}}$

Orthogonal and Unitary Matrices

- A matrix \boldsymbol{U} having inverse as \boldsymbol{U}^{\top} is called the orthogonal matrix
- If $\boldsymbol{U} \in \mathbb{C}^{n \times n}$ and $\boldsymbol{U}^{*} \boldsymbol{U}=\boldsymbol{I}$, then \boldsymbol{U} is called the unitary matrix
- Unitary (and orthogonal) matrices are always invertible and diagonalizable [Proof]
- Given any orthogonal (or unitary) matrix \boldsymbol{U}, we have $\|\boldsymbol{U} \boldsymbol{x}\|_{2}=\sqrt{\boldsymbol{x}^{\top} \boldsymbol{U}^{\top} \boldsymbol{U} \boldsymbol{x}}=\|\boldsymbol{x}\|_{2}$
- As a linear transformation, \boldsymbol{U} preserves distance so the "shape" of a set of vectors in the domain can be preserved in the range
- Examples?

Orthogonal and Unitary Matrices

- A matrix \boldsymbol{U} having inverse as \boldsymbol{U}^{\top} is called the orthogonal matrix
- If $\boldsymbol{U} \in \mathbb{C}^{n \times n}$ and $\boldsymbol{U}^{*} \boldsymbol{U}=\boldsymbol{I}$, then \boldsymbol{U} is called the unitary matrix
- Unitary (and orthogonal) matrices are always invertible and diagonalizable [Proof]
- Given any orthogonal (or unitary) matrix \boldsymbol{U}, we have $\|\boldsymbol{U} \boldsymbol{x}\|_{2}=\sqrt{\boldsymbol{x}^{\top} \boldsymbol{U}^{\top} \boldsymbol{U} \boldsymbol{x}}=\|\boldsymbol{x}\|_{2}$
- As a linear transformation, \boldsymbol{U} preserves distance so the "shape" of a set of vectors in the domain can be preserved in the range
- Examples? Rotation, reflection etc.
- On the other hand, the Euclidean norm is unitarily invariant

Orthogonal Projection (1/3)

Definition (Orthogonal Complement)

Given a subspace \mathcal{V} of \mathbb{R}^{n}. The orthogonal complement of \mathcal{V} is defined by $\mathcal{V}^{\perp}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\langle\boldsymbol{v}, \boldsymbol{x}\rangle=0, \forall \boldsymbol{v} \in \mathcal{V}\right\}$.

Definition (Orthogonal Projector)

A matrix $\boldsymbol{P} \in \mathbb{R}^{n \times n}$ is called a orthogonal projector onto \mathcal{V} if $\boldsymbol{P x} \in \mathcal{V}$ and $x-P x \in \mathcal{V}^{\perp}$ for all $x \in \mathbb{R}^{n}$.

Orthogonal Projection (2/3)

Theorem

Given a matrix \boldsymbol{A}, we have $\mathcal{R}(\boldsymbol{A})^{\perp}=\mathcal{N}\left(\boldsymbol{A}^{\top}\right)$ and $\mathcal{N}(\boldsymbol{A})^{\perp}=\mathcal{R}\left(\boldsymbol{A}^{\top}\right)$.

Proof.

\subseteq : Suppose that $\boldsymbol{x} \in \mathcal{R}(\boldsymbol{A})^{\perp}$, we have $(\boldsymbol{A} \boldsymbol{y})^{\top} \boldsymbol{x}=\boldsymbol{y}^{\top}\left(\boldsymbol{A}^{\top} \boldsymbol{x}\right)=0$ for all $\boldsymbol{y} \in \mathbb{R}^{n}$, implying that $\boldsymbol{A}^{\top} \boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{x} \in \mathcal{N}\left(\boldsymbol{A}^{\top}\right)$. So $\mathcal{R}(\boldsymbol{A})^{\perp} \subseteq \mathcal{N}\left(\boldsymbol{A}^{\top}\right)$.〇: If now $\boldsymbol{x} \in \mathcal{N}\left(\boldsymbol{A}^{\top}\right)$, then $\boldsymbol{y}^{\top}\left(\boldsymbol{A}^{\top} \boldsymbol{x}\right)=(\boldsymbol{A} \boldsymbol{y})^{\top} \boldsymbol{x}=0$ for all $\boldsymbol{y} \in \mathbb{R}^{n}$, implying $\boldsymbol{x} \in \mathcal{R}(\boldsymbol{A})^{\perp}$ and $\mathcal{R}(\boldsymbol{A})^{\perp} \supseteq \mathcal{N}\left(\boldsymbol{A}^{\top}\right)$.
Thus $\mathcal{R}(\boldsymbol{A})^{\perp}=\mathcal{N}\left(\boldsymbol{A}^{\top}\right)$.

- The proof of $\mathcal{N}(\boldsymbol{A})^{\perp}=\mathcal{R}\left(\boldsymbol{A}^{\top}\right)$ follows from the above and the fact that $\left(\mathcal{V}^{\perp}\right)^{\perp}=\mathcal{V}$ [Proof].

Orthogonal Projection (3/3)

Theorem

A matrix \boldsymbol{P} is an orthogonal projector (on to $\mathcal{R}(\boldsymbol{P})$) iff $\boldsymbol{P}^{2}=\boldsymbol{P}=\boldsymbol{P}^{\top}$.

Proof.

\Rightarrow : Since $\boldsymbol{x}-\boldsymbol{P} \boldsymbol{x} \in \mathcal{R}(\boldsymbol{P})^{\perp}$ for all $\boldsymbol{x} \in \mathbb{R}^{n}$, we have $\mathcal{R}(\boldsymbol{I}-\boldsymbol{P}) \subseteq \mathcal{R}(\boldsymbol{P})^{\perp}$. But from the previous theorem $\mathcal{R}(\boldsymbol{P})^{\perp}=\mathcal{N}\left(\boldsymbol{P}^{\top}\right)$. This implies that $\mathcal{R}(\boldsymbol{I}-\boldsymbol{P}) \subseteq \mathcal{N}\left(\boldsymbol{P}^{\top}\right)$ and therefore $\boldsymbol{P}^{\top}(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{y}=\mathbf{0}$ for all $\boldsymbol{y} \in \mathbb{R}^{n}$. We have $\boldsymbol{P}^{\top}(\boldsymbol{I}-\boldsymbol{P})=\boldsymbol{O} \Rightarrow \boldsymbol{P}^{\top}=\boldsymbol{P}^{\top} \boldsymbol{P}$. It is easy to verify that $\boldsymbol{P}=\boldsymbol{P}^{\top}=\boldsymbol{P}^{2}$.
\Leftrightarrow : For any $\boldsymbol{x} \in \mathbb{R}^{n}$ we have
$(\boldsymbol{P y})^{\top}(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{x}=\boldsymbol{y}^{\top} \boldsymbol{P}^{\top}(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{x}=\boldsymbol{y}^{\top} \boldsymbol{O} \boldsymbol{x}=0$ for all $\boldsymbol{y} \in \mathbb{R}^{n}$. Thus, $(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{x} \in \mathcal{R}(\boldsymbol{P})^{\perp}$ and \boldsymbol{P} is an orthogonal projector.

Normal Equations (1/2)

- Linear varity includes all solutions of $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$
- What if $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has no solution (that is, \boldsymbol{b} is not a linear combination of the columns of \boldsymbol{A}, or $\boldsymbol{b} \notin \mathcal{R}(\boldsymbol{A}))$?

Normal Equations (1/2)

- Linear varity includes all solutions of $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$
- What if $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has no solution (that is, \boldsymbol{b} is not a linear combination of the columns of \boldsymbol{A}, or $\boldsymbol{b} \notin \mathcal{R}(\boldsymbol{A}))$?
- We can instead find \boldsymbol{x} in $\mathcal{R}(\boldsymbol{A})$ which is closest to \boldsymbol{b}

Theorem

Given $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$, finding $\boldsymbol{x} \in \mathbb{R}^{n}$ minimizing $\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|$ is equivalent to solving $\boldsymbol{A}^{\top} \boldsymbol{A x}=\boldsymbol{A}^{\top} \boldsymbol{b}$.

Proof.

We can see that $\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|$ is minimized when the $\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}$ is normal to $\mathcal{R}(\boldsymbol{A})$. That is, $\langle\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}, \boldsymbol{w}\rangle=0, \forall \boldsymbol{w} \in \mathcal{R}(\boldsymbol{A}) \Leftrightarrow\langle\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}, \boldsymbol{A} \boldsymbol{y}\rangle=0, \forall \boldsymbol{y} \in$ $\mathbb{R}^{n} \Leftrightarrow(\boldsymbol{A} \boldsymbol{y})^{\top}(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b})=0, \forall \boldsymbol{y} \in \mathbb{R}^{n} \Leftrightarrow \boldsymbol{y}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}^{\top} \boldsymbol{A}^{\top} \boldsymbol{b}=0, \forall \boldsymbol{y} \in \mathbb{R}^{n} \Leftrightarrow$ $\boldsymbol{y}^{\top}\left(\boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{A}^{\top} \boldsymbol{b}\right)=0, \forall \boldsymbol{y} \in \mathbb{R}^{n} \Leftrightarrow \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{A}^{\top} \boldsymbol{b}=0 \Leftrightarrow \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}=$ $\boldsymbol{A}^{\top} \boldsymbol{b}$.

Normal Equations (2/2)

- $\boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{\top} \boldsymbol{b}$ is called the normal equation (as $\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}$ is normal to $\mathcal{R}(\boldsymbol{A})$) and must have at least one solution
- $\boldsymbol{A}^{\top} \boldsymbol{b} \in \mathcal{R}\left(\boldsymbol{A}^{\top}\right)$
- Since $\mathcal{R}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right) \subseteq \mathcal{R}\left(\boldsymbol{A}^{\top}\right)$ and $\operatorname{rank}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\operatorname{rank}\left(\boldsymbol{A}^{\top}\right)$, we have $\mathcal{R}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\mathcal{R}\left(\boldsymbol{A}^{\top}\right)$
- That is, $\boldsymbol{A}^{\top} \boldsymbol{b} \in \mathcal{R}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)$
- $\boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{\top} \boldsymbol{b}$ has exactly one solution iff $\boldsymbol{A}^{\top} \boldsymbol{A}$ is invertible
- $\boldsymbol{A}^{\top} \boldsymbol{A}$ is symmetric, therefore diagonalizable
- $\boldsymbol{A}^{\top} \boldsymbol{A}$ is invertible iff all its eigenvalues are nonzero

Outline

(1) Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**
(2) Geometry
- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
(3) Point Set Topology**
- Topological Spaces
- Manifolds

Before We Start...

Caution!

This subsection requires the knowledge of matrix calculus.

Positive Definite Matrices (1/2)

Definition (Definite Matrices)

A matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is called positive definite (resp., positive semidefinite/negative definitive/negative semidefinite) iff for any $x \in \mathbb{R}^{n}$, $\boldsymbol{x} \neq \mathbf{0}$, we have $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}>0($ resp., $\geqslant 0 /<0 / \leqslant 0)$

- There is no loss of generality if we assume \boldsymbol{A} is symmetric
- As $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{x}^{\top}\left(\frac{1}{2} \boldsymbol{A}+\frac{1}{2} \boldsymbol{A}^{\top}\right) \boldsymbol{x}$ and the matrix $\frac{1}{2} \boldsymbol{A}+\frac{1}{2} \boldsymbol{A}^{\top}$ is always symmetric [Proof]

Theorem

A symmetric matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is positive definite (or semidefinite) iff all eigenvalues of \boldsymbol{A} are positive (or nonnegative).

Positive Definite Matrices (2/2)

Proof.

Let \boldsymbol{T} be an orthogonal matrix whose column are eigenvectors of \boldsymbol{A}. For any matrix, let $\boldsymbol{y}=\boldsymbol{T}^{-1} \boldsymbol{x}=\boldsymbol{T}^{\top} \boldsymbol{x}$. We have $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}^{\top} \boldsymbol{T}^{\top} \boldsymbol{A} \boldsymbol{T} \boldsymbol{y}=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2}$, and the proof follows.

- What does positive definite mean anyway?
- Before we start, define the graph of a function $f: \mathcal{V} \rightarrow \mathbb{R}, \mathcal{V} \subseteq \mathbb{R}^{n}$, to be the set $\left\{\left[\boldsymbol{x}^{\top}, f(\boldsymbol{x})\right]^{\top}: x \in \mathcal{V}\right\}$

Principle Minors (1/2)

- A minor of $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is the determinant of a matrix obtained by deleting some row and column of \boldsymbol{A}
- The principle minors of \boldsymbol{A} are $\operatorname{det}(\boldsymbol{A})$ and $n-1$ minors obtained by successively deleting some row and column of \boldsymbol{A}
- The leading principle minors of \boldsymbol{A} are $\operatorname{det}(\boldsymbol{A})$ and $n-1$ minors obtained by successively deleting the last row and column of \boldsymbol{A}

Principle Minors (2/2)

- There is a simple way to check if a matrix is positive definite:

Theorem

A symmetric matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is positive definite iff its leading principle minors are positive.

Proof.

Since \boldsymbol{A} is symmetric, it is diagonalizable. We have $\operatorname{det}(\boldsymbol{A})=\operatorname{det}\left(\boldsymbol{T}^{-1} \boldsymbol{D} \boldsymbol{T}\right)=\operatorname{det}(\boldsymbol{T})^{-1} \operatorname{det}(\boldsymbol{D}) \operatorname{det}(\boldsymbol{T})=\operatorname{det}(\boldsymbol{D})=\prod_{i=1}^{n} \lambda_{i}$ and any minor of \boldsymbol{A} equals to the multiplication of remaining eigenvalues. Therefore, \boldsymbol{A} is positive definite $\Leftrightarrow \lambda_{i}>0$ for all $1 \leqslant i \leqslant n \Leftrightarrow$ the leading principle minors of \boldsymbol{A} are positive.

- Direction \Leftarrow is not true in the semidefinite cases: \boldsymbol{A} is positive semidefinite iff all principle minors (not only the leading principle minors) are nonnegative

Quadratic Forms (1/2)

- A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is quadratic iff it can be written as: $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}^{\top} \boldsymbol{x}+c$ (the scalar coefficients do not matter)
- \boldsymbol{A} is symmetric, and f is said to be a quadratic form if $\boldsymbol{b}=\mathbf{0}$ and $c=0$
- Our best intuition of a definite matrix is the shape of its corresponding quadratic form in a graph:

Figure : Quodratic form for a) positive definite; b) negative definite; c) positive definite but singular; d) indefinite matrix.

Quadratic Forms (2/2)

- Why $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}^{\top} \boldsymbol{x}+c$ is a paraboloid when \boldsymbol{A} is positive definite?
- Since \boldsymbol{A} is symmetric, we have $\boldsymbol{f}^{\prime}(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\top}\left(\boldsymbol{A}+\boldsymbol{A}^{\top}\right)-\boldsymbol{b}^{\top}=\boldsymbol{x}^{\top} \boldsymbol{A}-\boldsymbol{b}^{\top}$
- This implies that the solution to $\boldsymbol{A x}-\boldsymbol{b}=\mathbf{0}$, say \boldsymbol{x}^{*}, is a stationary point of f
- We can rewrite
$\boldsymbol{f}(\boldsymbol{x})=\frac{1}{2}\left(\boldsymbol{x}^{*}+\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)\right)^{\top} \boldsymbol{A}\left(\boldsymbol{x}^{*}+\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)\right)-\boldsymbol{b}^{\top}\left(\boldsymbol{x}^{*}+\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)\right)+c=$ $\cdots=f\left(\boldsymbol{x}^{*}\right)+\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{A}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)$ [Proof]

Outline

(1) Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**
(2) Geometry
- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
(3) Point Set Topology**
- Topological Spaces
- Manifolds

Matrix Norms

- The set of matrices $\mathbb{R}^{m \times n}$ can be viewed as a vector space $\mathbb{R}^{m n}$
- How to define a norm in this space?

Definition (Matrix Norm)

A function $\|\cdot\|: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is called the matrix norm if it satisfies:
a) $\|\boldsymbol{A}\| \geqslant 0, \forall \boldsymbol{A} \in \mathbb{R}^{m \times n}$ and the equality holds iff $\boldsymbol{A}=\boldsymbol{O}$ (positivity);
b) $\|r \boldsymbol{A}\|=|r|\|\boldsymbol{A}\|, \forall \boldsymbol{A} \in \mathbb{R}^{m \times n}, r \in \mathbb{R}$ (homogeneity);
c) $\|\boldsymbol{A}+\boldsymbol{B}\| \leqslant\|\boldsymbol{A}\|+\|B\|, \forall \boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{m \times n}$ (triangle inequality).

For our purpose, we consider only the sub-multiplicative norm that satisfies an additional property for square matrices:
d) $\|A B\| \leqslant\|A\|\|B\|, \forall A, B \in \mathbb{R}^{n \times n}$.

Frobenius Norms

- A common matrix norm is the Frobenius norm:

$$
\|\boldsymbol{A}\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}\right)^{1 / 2}
$$

- Equivalent to the Euclidean norm in $\mathbb{R}^{m n}$
- Is a sub-multiplicative norm [Proof]
- The Frobenius norm is unitarily invariant
- Given an unitary (or orthogonal) matrix \boldsymbol{U},

$$
\|\boldsymbol{U} \boldsymbol{A}\|_{F}=\left\|\boldsymbol{U} \boldsymbol{a}_{1}\right\|_{2}+\cdots+\left\|\boldsymbol{U} \boldsymbol{a}_{1}\right\|_{2}=\left\|\boldsymbol{a}_{1}\right\|_{2}+\cdots+\left\|\boldsymbol{a}_{1}\right\|_{2}=\|\boldsymbol{A}\|_{F}
$$

- If $A \in \mathbb{R}^{n \times n}$ is symmetric, then

$$
\|\boldsymbol{A}\|_{F}=\left\|\boldsymbol{U}^{\top} \boldsymbol{D} \boldsymbol{U}\right\|_{F}=\|\boldsymbol{D}\|_{F}=\sqrt{\sum_{i=1}^{n} \lambda_{i}^{2}}
$$

Low Rank Approximation

Theorem

Given a symmetric matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and $k<\operatorname{rank}(\boldsymbol{A})$, the solution to the problem

$$
\begin{aligned}
& \arg _{\boldsymbol{M}} \min \|\boldsymbol{A}-\boldsymbol{M}\|_{F} \\
& \text { subject to } \operatorname{rank}(\boldsymbol{M})=k
\end{aligned}
$$

is $\boldsymbol{M}=\boldsymbol{U} \widetilde{\boldsymbol{D}} \boldsymbol{U}^{\top}$, where the columns of \boldsymbol{U} are the eigenvectors of \boldsymbol{A} and $\widetilde{\boldsymbol{D}}$ is a diagonal matrix containing only the k largest eigenvalues of \boldsymbol{A} (with others being 0).

Proof.

We only give an intuitive proof here. Since \boldsymbol{A} is symmetric, we have $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{\top}$, where $\boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{I}$. Recall that the Frobenius norm is unitarily invariant, we have an equivalent objective: $\arg _{M} \min \left\|D-\boldsymbol{U}^{\top} \boldsymbol{M} \boldsymbol{U}\right\|_{F}$. Since \boldsymbol{D} is diagonal, $\boldsymbol{U}^{\top} \boldsymbol{M} \boldsymbol{U}$ should be diagonal too to minimize the objective, implying that $M=\boldsymbol{U} \widetilde{\boldsymbol{D}} \boldsymbol{U}^{\top}$ for some diagonal matrix $\widetilde{\boldsymbol{D}}$. Let λ_{i} and \widetilde{d}_{i} be the ith diagonal element of \boldsymbol{D} and $\widetilde{\boldsymbol{D}}$ respectively, we have $\left\|\boldsymbol{D}-\boldsymbol{U} \boldsymbol{M} \boldsymbol{U}^{\top}\right\|_{F}=\sqrt{\sum_{i=1}^{n}\left(\lambda_{i}-\widetilde{d}_{i}\right)^{2}}$. Since $\operatorname{rank}(\boldsymbol{M})=k$, only k of the $\tilde{d}_{i} s$ can be nonzero. Therefore, \boldsymbol{M} is the best approximation when these nonzero \tilde{d}_{i} s are the k largest eigenvalues of \boldsymbol{A}.

Induced Norms (1/2)

- We can define another type of matrix norms based on vector norms
- Let $\|\cdot\|_{(m)}$ and $\|\cdot\|_{(n)}$ be two vector norms, we define the induced norm for $\mathbb{R}^{m \times n}$ as: $\|\boldsymbol{A}\|=\max _{\|\boldsymbol{x}\|_{(n)}=1}\|\boldsymbol{A x}\|_{(m)}, \forall \boldsymbol{A} \in \mathbb{R}^{m \times n}$
- We say that a matrix norm $\|\cdot\|$ is induced by (or compatible with) the vector norms $\|\cdot\|_{(m)}$ and $\|\cdot\|_{(n)}$ if for all $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, $\|\boldsymbol{A} \boldsymbol{x}\|_{(\boldsymbol{m})} \leqslant\|\boldsymbol{A}\|\|\boldsymbol{x}\|_{(n)}$
- The induced norm is a sub-multiplicative norm [Homework]

Induced Norms (2/2)

Theorem

Given $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, the matrix norm $\|\boldsymbol{A}\|$ induced by the Euclidean norm equals $\sqrt{\lambda_{\max }}$, where $\lambda_{\text {max }}$ is the largest eigenvalue of the matrix $\boldsymbol{A}^{\top} \boldsymbol{A}$.

Proof.

Since $\boldsymbol{A}^{\top} \boldsymbol{A} \in \mathbb{R}^{n \times n}$ is symmetric, from our previous discussions we know that $\boldsymbol{A}^{\top} \boldsymbol{A}$ is diagonalizable. Let $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n}$ be its eigenvalues and x_{1}, \cdots, x_{n} be the orthonormal set of eigenvectors corresponding to these eigenvalues ${ }^{a}$. Consider an arbitrary $\boldsymbol{x},\|x\|_{(2)}=1$, we have $\boldsymbol{x}=c_{1} \boldsymbol{x}_{1}+\cdots+c_{n} \boldsymbol{x}_{n}$ and $\langle\boldsymbol{x}, \boldsymbol{x}\rangle=c_{1}^{2}+\cdots+c_{n}^{2}=1$. Furthermore, $\|\boldsymbol{A} \boldsymbol{x}\|_{(2)}^{2}=\left\langle\boldsymbol{x}, \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}\right\rangle=\left\langle c_{1} \boldsymbol{x}_{1}+\cdots+c_{n} \boldsymbol{x}_{n}, c_{1} \lambda_{1} \boldsymbol{x}_{1}+\cdots+c_{n} \lambda_{n} \boldsymbol{x}_{n}\right\rangle=$ $\lambda_{1} c_{1}^{2}+\cdots+\lambda_{n} c_{n}^{2} \leqslant \lambda_{1}\left(c_{1}^{2}+\cdots+c_{n}^{2}\right)=\lambda_{1}$, implying that $\|\boldsymbol{A} \boldsymbol{x}\|_{(2)} \leqslant \sqrt{\lambda_{1}}$. Note the maximum of $\|\boldsymbol{A} \boldsymbol{x}\|_{(2)}$ is attainable when $\boldsymbol{x}=\boldsymbol{x}_{1}$. Therefore, $\|\boldsymbol{A}\|=\sqrt{\lambda_{1}}=\sqrt{\lambda_{\text {max }}}$.

[^1]
Rayleigh's Quotient

- Applying the similar argument above, we have:

Theorem (Rayleigh's Quotient)

Given a symmetric matrix $P \in \mathbb{R}^{n \times n}$, then $\forall x \in \mathbb{R}^{n}$,

$$
\lambda_{\min } \leqslant \frac{\boldsymbol{x}^{\top} \boldsymbol{P} \boldsymbol{x}}{\boldsymbol{x}^{\top} \boldsymbol{x}} \leqslant \lambda_{\max }
$$

where $\lambda_{\min }$ and $\lambda_{\max }$ are the smallest and largest eigenvalues of P respectively.

- $\frac{\boldsymbol{x}^{\top} \boldsymbol{P}_{\boldsymbol{x}}}{\boldsymbol{x}^{\top} \boldsymbol{x}}=\lambda_{i}$ when \boldsymbol{x} is the corresponding eigenvector of λ_{i}

Outline

(1) Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**
(2) Geometry
- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
(3) Point Set Topology**
- Topological Spaces
- Manifolds

Matrix Exponential

Caution!

This subsection requires the knowledge of Taylor's theorem.

- Given a scalar x, by Taylor's theorem we have $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$
- Similarly, given a square matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, we can define the matrix exponential as $e^{\boldsymbol{A}}=\sum_{k=0}^{\infty} \frac{\boldsymbol{A}^{k}}{k!}=\boldsymbol{I}+\boldsymbol{A}+\frac{\boldsymbol{A}^{2}}{2!}+\cdots \in \mathbb{R}^{n \times n}$

$$
\text { - } \left.e^{\boldsymbol{O}}=\boldsymbol{I},\left(e^{\boldsymbol{A}}\right)^{\top}=e^{\mathbf{A}^{\top}} \text { [Proof }\right]
$$

- Unlike the scalar version, $e^{\boldsymbol{A}+\boldsymbol{B}} \neq e^{\boldsymbol{A}} e^{\boldsymbol{B}}$ unless $\boldsymbol{A} \boldsymbol{B}=\boldsymbol{B} \boldsymbol{A}$
- If \boldsymbol{A} and \boldsymbol{B} commute, we can write $(\boldsymbol{A}+\boldsymbol{B})^{k}=\sum_{i=0}^{k}\binom{k}{i} \boldsymbol{A}^{i} \boldsymbol{B}^{k-i}$, so

$$
\begin{aligned}
& \frac{(\boldsymbol{A}+\boldsymbol{B})^{k}}{k!}=\sum_{i=0}^{k} \frac{\boldsymbol{A}^{i}}{i!} \frac{\boldsymbol{B}^{k-i}}{(k-i)!}, \text { implying } \\
& e^{\boldsymbol{A}+\boldsymbol{B}}=\sum_{k=0}^{\infty} \sum_{i=0}^{k} \frac{\boldsymbol{A}^{i}}{i!} \frac{\boldsymbol{B}^{k-i}}{(k-i)!}=\sum_{r=0}^{\infty} \frac{\boldsymbol{A}^{r}}{r!} \sum_{s=0}^{\infty} \frac{\boldsymbol{B}^{\boldsymbol{s}}}{5!}=e^{\boldsymbol{A}} e^{\boldsymbol{B}}
\end{aligned}
$$

- If $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{-1}$ is diagonalizable, we have $e^{\boldsymbol{A}}=\boldsymbol{U} e^{\boldsymbol{D}} \boldsymbol{U}^{-1}$, where $e^{\boldsymbol{D}}$ is a diagonal matrix whose the ith diagonal element equals to $e^{\lambda_{i}}$ [Proof]

Matrix Logarithm

- The exponential $e^{\boldsymbol{A}}$ of an anitsymmetric (resp. antihermitian) matrix \boldsymbol{A} is orthogonal (resp. unitary)

$$
\text { - }\left(e^{\boldsymbol{A}}\right)^{\top} e^{\boldsymbol{A}}=e^{\boldsymbol{A}^{\top}} e^{\boldsymbol{A}}=e^{-\boldsymbol{A}} e^{\boldsymbol{A}}=e^{\boldsymbol{O}}=\boldsymbol{I}
$$

- We call \boldsymbol{B} the matrix logarithm of \boldsymbol{A} iff $\boldsymbol{A}=e^{\boldsymbol{B}}$, denoted by $\ln \boldsymbol{A}$
- Not every matrix has a logarithm
- Nevertheless, if a matrix \boldsymbol{A} is diagonalizable, we can easily find its logarithm
- Let $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{-1}$, we have $\ln \boldsymbol{A}=\boldsymbol{U}(\ln \boldsymbol{D}) \boldsymbol{U}^{-1}$, where $\ln \boldsymbol{D}$ is a diagonal matrix whose the i th diagonal element equals to $\ln \lambda_{i}$ [Proof]

Outline

(1) Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**
(2) Geometry
- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
(3) Point Set Topology**
- Topological Spaces
- Manifolds

Affine Spaces (1/2)

- Recall that the linear variety is defined as $\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}\right\}$ for some $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{y} \in \mathbb{R}^{m}$
- If we can find a solution \boldsymbol{x}_{0}, then for any $\boldsymbol{v} \in \mathcal{N}(\boldsymbol{A}), \boldsymbol{x}=\boldsymbol{v}+\boldsymbol{x}_{0}$ is also a solution
- A linear variety is a "translated nullspace"
- Geometry discusses the properties of "shapes" in a vector space
- Since these shapes may not pass through the origin, they lie in the "translated subspaces"

Affine Spaces (2/2)

Definition (Affine Space)

Given a vector space \mathcal{V}, a set of points \mathcal{A} is called the affine space iff there exists a map $\mathcal{A} \times \mathcal{V} \rightarrow \mathcal{A}$, denoted by $a+v$ for all $a \in \mathcal{A}$ and $v \in \mathcal{V}$, with the following properties:
a) For all $a \in \mathcal{A}, a+\mathbf{0}=a$;
b) For all $\boldsymbol{a} \in \mathcal{A}$ and $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{V},(a+\boldsymbol{v})+\boldsymbol{w}=a+(\boldsymbol{v}+\boldsymbol{w})$;
c) For any $a, b \in \mathcal{A}$ there exists a unique $\boldsymbol{v} \in \mathcal{V}$ such that $a=b+\boldsymbol{v}$.

- Property c) can be written as $a-b=\boldsymbol{v}$
- Intuitively, an affine space is a "translated vector space" where the origin is undefined

Outline

(1) Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**

(2) Geometry

- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
(3) Point Set Topology**
- Topological Spaces
- Manifolds

Line Segments

Definition (Line Segment)

Given two points x and y in an affine space, the set $\{x+\delta(y-x): \delta \in[0,1]\}$ is called the line segment between x and y.

- A line segment is a "shape" in the affine space where x and y lie
- Note there is no reason why x and y cannot be vectors
- If points are vectors, they can be summed directly to get a new point (vector)
- A line segment between two vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ can be defined alternatively as the convex combination of \boldsymbol{x} and \boldsymbol{y}, i.e., $\left\{(1-\delta) \boldsymbol{x}+\delta \boldsymbol{y} \in \mathbb{R}^{n}: \delta \in[0,1]\right\}$
- We focus on the vector points from now on

Curves

Definition (Curve)

Let \mathcal{J} be an interval of real numbers. A curve is a continuous function $\gamma: \mathcal{J} \rightarrow \mathbb{R}^{n}$. We also say that the curve γ is parametrized by the continous function.

- E.g., let $\mathcal{J}=[0,2 \pi]$, we can define a circle (a closed curve) γ in \mathbb{R}^{2} parametrized by $\gamma(t)=[\cos (t), \sin (t)]^{\top}, \forall t \in \mathcal{J}$
- A curve is called the plane curve when $n=2$ and space curve when $n=3$

Outline

(1) Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**

(2) Geometry

- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
(3) Point Set Topology**
- Topological Spaces
- Manifolds

Hyperplanes (1/2)

Definition (Hyperplane)

Given $y \in \mathbb{R}$ and $\boldsymbol{a} \in R^{n}$ where $\boldsymbol{a} \neq \mathbf{0}$, the set $H=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a}^{\top} \boldsymbol{x}=y\right\}$ is called the hyperplane of \mathbb{R}^{n}.

- A hyperplane is an affine space translated from the subspace $\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a}^{\top} \boldsymbol{x}=0\right\}$ of \mathbb{R}^{n}
- Since the dimension of the subspace is always $n-1$, we say that the hyperplane always has dimension $n-1$
- A hyperplane H divides \mathbb{R}^{n} into the positive half-space $H_{+}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: a_{1} x_{1}+\cdots+a_{n} x_{n} \geqslant 0\right\}$ and negative half-space $H_{-}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: a_{1} x_{1}+\cdots+a_{n} x_{n} \leqslant 0\right\}$
- Both H_{+}and H_{-}are subspaces of \mathbb{R}^{n} [Proof]

Hyperplanes (2/2)

- For any $x_{1}, x 2 \in H$, the vector a is orthogonal to $x_{1}-x_{2}$ and is called the normal of H
- As $\left\langle\boldsymbol{a}, \boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\rangle=\boldsymbol{a}^{\top} \boldsymbol{x}_{1}-\boldsymbol{a}^{\top} \boldsymbol{x}_{2}=y-y=0$
- If a linear variety $\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}\right\}$ has dimension less than n (i.e., $\boldsymbol{A} \neq \boldsymbol{O})$, then it is the intersection of a finite number of hyperplanes

Outline

(1) Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**

(2) Geometry

- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
(3) Point Set Topology**
- Topological Spaces
- Manifolds

Convex Sets (1/2)

- So far we have seen many sets, e.g., vector spaces, subspaces, affine spaces, shapes (line segments and sets consisting of a single point), etc.

Definition (Convex Set)

A set Θ of points is convex iff for any $\boldsymbol{u}, \boldsymbol{w} \in \Theta$, we have $(1-\delta) \boldsymbol{u}+\delta \boldsymbol{v} \in \Theta, \forall \delta \in(0,1)$.

- Why "convex?"

Convex Sets (1/2)

- So far we have seen many sets, e.g., vector spaces, subspaces, affine spaces, shapes (line segments and sets consisting of a single point), etc.

Definition (Convex Set)

A set Θ of points is convex iff for any $\boldsymbol{u}, \boldsymbol{w} \in \Theta$, we have $(1-\delta) \boldsymbol{u}+\delta \boldsymbol{v} \in \Theta, \forall \delta \in(0,1)$.

- Why "convex?" Any line segment cannot have portions that fall outside of the convex set

Convex Sets $(2 / 2)$

- Examples: \mathbb{R}^{n}, a half-space, a hyperplane, a linear variety, a line or line segment, a set of a single point, etc.
- Convex subsets of \mathbb{R}^{n} have the following properties [Homework]:
- Given a convex set Θ and $\beta \in \mathbb{R}$, the set $\beta \Theta=\{\boldsymbol{x}: \boldsymbol{x}=\beta \boldsymbol{v}, \boldsymbol{v} \in \Theta\}$ is convex
- Given a convex sets Θ_{1} and Θ_{2}, the set

$$
\Theta_{1}+\Theta_{2}=\left\{\boldsymbol{x}: \boldsymbol{x}=\boldsymbol{v}_{1}+\boldsymbol{v}_{2}, \boldsymbol{v}_{1} \in \Theta_{1}, \boldsymbol{v}_{2} \in \Theta_{2}\right\} \text { is convex }
$$

- The intersection of convex sets is convex
- A point $x \in \Theta$ is called an extreme point of Θ iff there are no two distinct points $\boldsymbol{u}, \boldsymbol{v} \in \Theta$ such that $\boldsymbol{x}=(1-\delta) \boldsymbol{u}+\delta \boldsymbol{v}$ for some $\delta \in(0,1)$
- E.g., vertices (i.e., corners) of a polyhedron or endpoints of a line segment

Outline

(1) Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**

(2) Geometry

- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
(3) Point Set Topology**
- Topological Spaces
- Manifolds

Neighborhoods (1/2)

Definition (Neighborhood)

A neighborhood of a point $\boldsymbol{x} \in \mathbb{R}^{n}$ is the set $\left\{\boldsymbol{y} \in \mathbb{R}^{n}:\|\boldsymbol{y}-\boldsymbol{x}\|<\varepsilon\right\}$, where ε is some positive real number.

- A point x in a set S is said to be an interior point of S iff S contains some neighborhood of x
- A point x is said to be a boundary point of S iff every neighborhood of x contains a point in S and a point not in S
- x may or may not be an element of S
- The set of all boundary points of S is called the boundary of S
- An open set S contains a neighborhood of each of its points (i.e., contains only interior points)
- Given $a, b \in \mathbb{R}$, the sets (a, b) and $\left\{[a, b]^{\top}: a^{2}+5 b^{2}<1\right\}$ are open
- A set S is said to be closed if its complement $\mathbb{R}^{n} \backslash S$ is open (or intuitively, if it contains the boundary)
- $[a, b]$ is closed

Neighborhoods (1/2)

Definition (Neighborhood)

A neighborhood of a point $\boldsymbol{x} \in \mathbb{R}^{n}$ is the set $\left\{\boldsymbol{y} \in \mathbb{R}^{n}:\|\boldsymbol{y}-\boldsymbol{x}\|<\varepsilon\right\}$, where ε is some positive real number.

- A point x in a set S is said to be an interior point of S iff S contains some neighborhood of x
- A point x is said to be a boundary point of S iff every neighborhood of x contains a point in S and a point not in S
- x may or may not be an element of S
- The set of all boundary points of S is called the boundary of S
- An open set S contains a neighborhood of each of its points (i.e., contains only interior points)
- Given $a, b \in \mathbb{R}$, the sets (a, b) and $\left\{[a, b]^{\top}: a^{2}+5 b^{2}<1\right\}$ are open
- A set S is said to be closed if its complement $\mathbb{R}^{n} \backslash S$ is open (or intuitively, if it contains the boundary)
- $[a, b]$ is closed

Neighborhoods (2/2)

- A set S that can be contained in a ball of finite radius is said to be bounded
- That is, for any point $\boldsymbol{x} \in S$, there exists some positive real number $r \in \mathbb{R}$ such that $\|\boldsymbol{x}\|<r$
- A set S is compact iff it is both closed and bounded
- Given $a, b \in \mathbb{R}$. Is (a, b) compact?
- How about $[a, b]$?

Outline

(1) Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**
(2) Geometry
- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
(3) Point Set Topology**
- Topological Spaces
- Manifolds

Point Set Topology

- Line segments, curves, surfaces, hyperplanes are basically sets of points
- Point set topology treat these sets as "spaces" and discusses their properties

Caution!

This section requires the knowledge of function continuity and limit.

Geometry vs. Topology

- Imagine that a shape is made by rubber
- It can be "deformed" (e.g., either rotated, sheared, flipped, scaled etc. by linear by transformations; or bended, stretched, twisted etc. by nonlinear functions)
- But not teared, or cut and then glued
- Geometry discusses the properties (e.g., volume, curvature, distance, angle, etc.) of shapes that are changed as they are deformed
- Topology discusses the shapes' nature which is unaffected by deformation

Topological Properties

- Examples of the topological properties?

Topological Properties

- Examples of the topological properties? Loosely speaking,
- Dimension (number of element in a basis)
- Compactness
- Connectedness
- Separation (we will see this later when talking about the Hausdorff spaces)
- Properties of a topological space are described using the open sets

Topological Spaces

Definition (Topological Space)

Given a set of point X. Let \mathcal{T} be a set of subsets of X. Then (X, \mathcal{T}) is called a topological space iff
a) Both \emptyset and X are in \mathcal{T};
b) Any union of arbitrary (possibly infinitely) many elements of \mathcal{T} is an element of \mathcal{T};
c) Any intersection of finitely many elements of \mathcal{T} is an element of \mathcal{T}. We call \mathcal{T} a topology on X, and the sets in \mathcal{T} are called the open sets.

- When $X=\mathbb{R}^{n}$, our previous definition of an open set (i.e., a set containing an ε-ball around each its point) is just a special case here
- The collection of those open sets is called the standard topology on \mathbb{R}^{n}
- We can define different topologies on \mathbb{R}^{n} such as the cofinite topology: $\mathcal{T}=\{X \backslash A: A=X$ or A is finite $\}$

Neighborhood

Definition (Neighborhood)

A neighborhood (or specifically, open neighborhood) of a point p in a topological space (X, \mathcal{T}) is an open set in \mathcal{T} containing p.

- Our previous definition of a neighborhood (i.e., an ε-ball) is a special case
- An ε-ball is itself an open set (with a particular shape)

Sequences and Limits

Definition (Limit of a Sequence)

In a topological space (X, \mathcal{T}), a point $p^{*} \in X$ is called the limit of a sequence of points $\left\{p^{(k)}\right\}_{k \in \mathbb{N}}$ in X iff for every neighborhood S of p^{*}, there exists $K \in \mathbb{N}$, such that $p^{(k)} \in S$ for all $k>K$.

- The limit of a sequence may not be unique, as the neighborhoods of points may not be separable
- Consider two points p and q in the cofinite topological space on \mathbb{R}, any neighborhood of $p($ e.g., $\mathbb{R} \backslash\{q\})$ and q (e.g., $\mathbb{R} \backslash\{p\}$) must overlap

Separation

- An important topological property is that whether two points are separable:

Definition (Hausdorff Space)

A topological space (X, \mathcal{T}) is Hausdorff iff given any two points p and q in X, if there exists a neighborhood U of p and V of q respectively such that $U \cap V=\emptyset$.

- Every sequence $\left\{p^{(k)}\right\}_{k}$ has a unique limit p^{*} in the Hausdorff space, and we write $\lim _{k \rightarrow \infty} p^{(k)}=p^{*}$
- We can then perform calculus in the Hausdorff spaces

Function Continuity (1/2)

Definition (Continuity)

A function $f: X \rightarrow Y$ between two topological spaces $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ is continuous iff given any open set $U \in \mathcal{T}_{Y}$, the inverse image $f^{-1}(U)=\{x \in X: f(x) \in U\}$ is open.

- How does this related with our previous definition of continuity?
- Recall that a function f is continuous at a iff $\lim _{x \rightarrow a} f(x)=f(a)$; that is, given any $\varepsilon>0$, there exists $\delta>0$ such that for all $x,\|x-a\|<\delta$, we have $\|f(x)-f(a)\|<\varepsilon$

Function Continuity (2/2)

Theorem

Let $\boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function between two standard topological spaces $\left(\mathbb{R}^{n}, \mathcal{T}_{n}\right)$ and $\left(\mathbb{R}^{m}, \mathcal{T}_{m}\right)$. For any $\boldsymbol{a} \in \mathbb{R}^{n}, \lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{f}(\mathbf{a})$ iff for any open set $U \in \mathcal{T}_{m}, f^{-1}(U)$ is open.

Proof.

\Rightarrow If $f^{-1}(U)=\emptyset$ we are done since the empty set is always open.
Otherwise, consider any point $\boldsymbol{a} \in f^{-1}(U)$. Since U is open, there exists $\varepsilon>0$ such that the set $\left\{\boldsymbol{y} \in \mathbb{R}^{m}:\|\boldsymbol{y}-\boldsymbol{f}(\boldsymbol{a})\|<\varepsilon\right\}$ is contained in U. By definition of $\lim _{\boldsymbol{x} \rightarrow \mathbf{a}} \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{f}(\mathbf{a})$, there exists $\delta>0$ such that the set $\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\|\boldsymbol{x}-\boldsymbol{a}\|<\delta\right\}$ is contained in $f^{-1}(U)$. Since for any point \boldsymbol{a}, its neighborhood is contained in $f^{-1}(U) . f^{-1}(U)$ is an open set. \Leftarrow Given any $\varepsilon>0$, define $U=\left\{\boldsymbol{y} \in \mathbb{R}^{m}:\|\boldsymbol{y}-\boldsymbol{f}(\boldsymbol{a})\|<\varepsilon\right\}$. Since $f^{-1}(U)$ is an open set and $\boldsymbol{a} \in f^{-1}(U)$, there exists $\delta>0$ such that $\left\{x \in \mathbb{R}^{n}:\|\boldsymbol{x}-\boldsymbol{a}\|<\delta\right\}$ is contained in $f^{-1}(U)$, implying that if $\|\boldsymbol{x}-\boldsymbol{a}\|<\delta$ then $\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{a})\|<\varepsilon$.

Homeomorphism

Definition (Homeomorphism)

Two topological spaces $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ are homeomorphic (or topological isomorphic) if there exists a function $f: X \rightarrow Y$ such that:
a) f is a bijection (i.e., one-to-one and onto);
b) f is an open map (i.e., for any open set $U \subseteq X,\{f(x): x \in U\} \subseteq Y$ is open);
c) f is continuous.

- Intuitively, two homeomorphic spaces are "the same" from the topological point of view
- All topological properties are preserved
- Is $(-1,1)$ homeomorphic to \mathbb{R} ?

Homeomorphism

Definition (Homeomorphism)

Two topological spaces $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ are homeomorphic (or topological isomorphic) if there exists a function $f: X \rightarrow Y$ such that:
a) f is a bijection (i.e., one-to-one and onto);
b) f is an open map (i.e., for any open set $U \subseteq X,\{f(x): x \in U\} \subseteq Y$ is open);
c) f is continuous.

- Intuitively, two homeomorphic spaces are "the same" from the topological point of view
- All topological properties are preserved
- Is $(-1,1)$ homeomorphic to \mathbb{R} ?
- Yes, as we can define $f:(-1,1) \rightarrow \mathbb{R}, f(x)=\tan \left(\frac{\pi}{2} x\right)$
- Also, $\left\{\left[x_{1}, x_{2}, x_{3}\right]^{\top} \in \mathbb{R}^{3}: x_{3}=x_{1}+x_{2}\right\}$ is homeomorphic to \mathbb{R}^{2}
- We say the function $\boldsymbol{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \boldsymbol{f}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, x_{1}+x_{2}\right)$, embeds \mathbb{R}^{2} into \mathbb{R}^{3}

Outline

(1) Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**
(2) Geometry
- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
(3) Point Set Topology**
- Topological Spaces
- Manifolds

Manifolds (1/2)

- Many complex shapes in the real world have a simple shape when we look at a just tiny portion of them

Definition (Manifold)

A manifold (M, \mathcal{T}) of dimension k embedded in \mathbb{R}^{n} is a Hausdorff space such that for any point $p \in M \subseteq \mathbb{R}^{n}$, there exists a small neighborhood of p which is homeomorphic to \mathbb{R}^{k}.

- Curves and surfaces are examples of manifolds of dimension 1 and 2 respectively
- The mapping between the local neighborhoods and \mathbb{R}^{k} need not be linear
- Consider a unit circle $M=\left\{\left[x_{1}, x_{2}\right]^{\top}: x_{1}^{2}+x_{2}^{2}=1\right\}$ in \mathbb{R}^{2}, any point \boldsymbol{p} lies in at least one of the 4 open sets $M_{\text {top }}=\left\{\left[x_{1}, x_{2}\right]^{\top} \in M: x_{2}>0\right\}$, $M_{\text {right }}=\left\{\left[x_{1}, x_{2}\right]^{\top} \in M: x_{1}>0\right\}, M_{\text {bottom }}$, and $M_{\text {left }}$
- Each of these sets is homeomorphic to \mathbb{R}^{k} (e.g., we can define $\left.f_{\text {top }}\left(x_{1}, x_{2}\right)=\tan \left(\frac{\pi}{2} x_{1}\right)\right)$

Manifolds (2/2)

- When we say a shape looks like a "donut" in a 3-dimensional space we are looking at its extrinsic properties from the 3-dimensional space
- Manifold provides an intrinsic pint of view of a shape
- All topological properties of a tiny portion of a manifold is the same with those of the Euclidean space
- Generally, a manifold can be constructed by "patching" the overlapping local neighborhoods (e.g., $M_{\text {top }}, M_{\text {right }}, M_{\text {bottom }}$, and $M_{\text {left }}$)
- The invertible mappings (e.g., $f_{\text {top }}, f_{\text {right }}, f_{\text {bottom }}$, and $f_{\text {left }}$) between these neighborhoods and \mathbb{R}^{k} are called charts
- A specific collection of charts which covers a manifold is called the atlas
- An atlas is not unique as we can use different combinations of charts to cover a manifold

[^0]: ${ }^{\text {a Apparently, }} \boldsymbol{v}_{\boldsymbol{i}}$ and $\boldsymbol{w}_{\boldsymbol{j}}$ are distinct.

[^1]: ${ }^{\text {a }}$ Actually, $\boldsymbol{A}^{\top} \boldsymbol{A}$ is positive semidefinite, as $\boldsymbol{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}=\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{A} \boldsymbol{x}\rangle \geqslant 0, \forall \boldsymbol{x} \in \mathbb{R}^{n}$. So $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n} \geqslant 0$.

