Linear Algebra and Geometry

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Spring 2013

Shan-Hung Wu (CS, NTHU)

Linear Algebra and Geometry

NetDB-ML, Spring 2013

Outline

- Linear Algebra
 - Vector Spaces, Linear Transformations, and Matrices
 - Matrices
 - Eigenvalues and Eigenvectors
 - Inner Products and Norms
 - Positive Definite Matrices and Quadratic Forms**
 - Matrix Norms
 - Matrix Exponential and Logarithm**
 - 2 Geometry
 - Affine Spaces
 - Line Segments and Curves
 - Hyperplanes
 - Convex Sets
 - Neighborhoods
- 3 Point Set Topology**
 - Topological Spaces
 - Manifolds

90

- The conditional A ⇒ B reads either "if A than B," "A only if B," "A is sufficient for B," or "B is necessary for A"
- The biconditional $A \Leftrightarrow B$ reads "A if and only if (or iff) B"
- $\{x : x \in \mathbb{R}, x > 5\}$ or $\{x \in \mathbb{R} : x > 5\}$ reads "the set of all x such that x is real and x is greater than 5"
- We denote a function as f: V → W. The V and W are called *domain* and *codomain* (or *target*) of f respectively
- Titles marked with ** can be skipped for the first time reading
- Statements marked with [Proof] mean you are encouraged to prove it yourself
- Statements marked with [Homework] are your assignments

Outline

- Linear Algebra
 - Vector Spaces, Linear Transformations, and Matrices
 - Matrices
 - Eigenvalues and Eigenvectors
 - Inner Products and Norms
 - Positive Definite Matrices and Quadratic Forms**
 - Matrix Norms
 - Matrix Exponential and Logarithm**
 - Geometr
 - Affine Spaces
 - Line Segments and Curves
 - Hyperplanes
 - Convex Sets
 - Neighborhoods
- 3 Point Set Topology**
 - Topological Spaces
 - Manifolds

Shan-Hung Wu (CS, NTHU)

Vector Spaces

Definition (Vector Space)

The set $\mathcal{V} = \{ [v_1, v_2, \cdots, v_n]^\top : v_i \in \mathbb{R} \} \subset \mathbb{R}^n$ is called a *vector space* over \mathbb{R}^a iff there are maps: 1) Vector addition $\mathcal{V} \times \mathcal{V} \to \mathcal{V}$, denoted by $\mathbf{v} + \mathbf{w}$ for all $\mathbf{v}, \mathbf{w} \in \mathcal{V}$, 2) Scalar multiplication $\mathbb{R} \times \mathcal{V} \to \mathcal{V}$, denoted by $a \cdot \mathbf{v}$ or $a\mathbf{v}$ for all $a \in \mathbb{R}$ and $\mathbf{v} \in \mathcal{V}$: with the following properties: a) For all $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}, \boldsymbol{v} + \boldsymbol{w} = \boldsymbol{w} + \boldsymbol{v}$ (commutativity); b) For all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}, \ \boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w}) = (\boldsymbol{u} + \boldsymbol{w}) + \boldsymbol{v}$ (associativity); c) There exists $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{0} + \mathbf{v} = \mathbf{v}$ for all $\mathbf{v} \in \mathcal{V}$; d) For each $\mathbf{v} \in \mathcal{V}$, there exists $(-\mathbf{v}) \in \mathcal{V}$ with $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$; e) For all $a \in \mathbb{R}$ and $v, w \in \mathcal{V}$, a(v + w) = aw + av (distributivity); f) For all $a, b \in \mathbb{R}$ and $\mathbf{v} \in \mathcal{V}$, $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$ (distributivity); g) For all $a, b \in \mathbb{R}$ and $v \in \mathcal{V}$, $a \cdot (b \cdot v) = (a \cdot b) \cdot v$ (associativity); h) For all $\boldsymbol{v} \in \mathcal{V}$. $1 \cdot \boldsymbol{v} = \boldsymbol{v}$.

^aWhile any field is applicable, we focus on the real numbers here.

• We call the *n*-tuple *v* a *vector* and the scalar *v_i* the *i*th *component* of *v*

Shan-Hung Wu (CS, NTHU)

Linear Algebra and Geometry

Definition (Linear Independence)

A set of vectors $\{v_1, v_2, \dots, v_n\}$ in a vector space \mathcal{V} is called *linear independent* iff $a_1v_1 + a_2v_2 + \dots + a_nv_n = 0 \Rightarrow a_1 = a_2 = \dots = a_n = 0$.

 In other words, there is no vector in this set that can be the *linear* combination of others

Definition (Span)

A set of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is called the *span* of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$, i.e., $span(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) = \{\sum_{i=1}^n a_i \mathbf{v}_i : a_1, a_2, \dots, a_n \in \mathbb{R}\}$.

Definition (Basis)

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ in a vector space \mathcal{V} forms a **basis** iff: a) $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linear independent; b) $span(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) = \mathcal{V}$.

- All bases of a space V must have the same number of vectors [Proof], and this number is called the *dimension* of V, denoted as *dim*(V)
- Any $\mathbf{v} \in \mathcal{V}$ can be expressed as $\mathbf{v} = \sum_{i=1}^{n} a_i \mathbf{v}_i$, and the coefficients a_i , $i = 1, 2, \dots, n$, are called the *coordinates* of \mathbf{v} with respect to the basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$
 - The coordinates of a vector change with the basis
- The *natural basis* for \mathbb{R}^n is $e_1 = [1, 0, \dots, 0]^\top, e_2 = [0, 1, \dots, 0]^\top, \dots, e_n = [0, 0, \dots, 1]^\top$
 - The coordinates of a vector with respect to this basis are identical to the components

Definition (Subspace)

A subset $\mathcal U$ of a vector space $\mathcal V$ is called a *subspace* if $\mathcal U$ is closed under the vector addition and scalar multiplication.

- That is, if $v, w \in \mathcal{U}$, then $v + w \in \mathcal{U}$ and $av \in \mathcal{U}$ for all a
- Every subspace must contain 0

Definition (Subspace)

A subset \mathcal{U} of a vector space \mathcal{V} is called a *subspace* if \mathcal{U} is closed under the vector addition and scalar multiplication.

- That is, if $v, w \in \mathcal{U}$, then $v + w \in \mathcal{U}$ and $av \in \mathcal{U}$ for all a
- Every subspace must contain 0, as ∀v ∈ U, -v exists and v + (-v) = 0 ∈ U

Definition (Sum Space)

Let \mathcal{W} and \mathcal{U} be two subspaces of \mathcal{V} , the set $\{w + u : w \in \mathcal{W}, u \in \mathcal{U}\}$ is called the *sum space* of \mathcal{W} and \mathcal{U} , denoted by $\mathcal{W} + \mathcal{U}$.

- W + U is a subspace of V [Proof]
- $dim(W + U) = dim(W) + dim(U) dim(W \cap U)$
 - Let $\{\boldsymbol{v}_1, \dots, \boldsymbol{v}_k\}$ be a basis for $\mathcal{W} \cap \mathcal{U}$, then we can find $\{\boldsymbol{w}_1, \dots, \boldsymbol{w}_m\}$ and $\{\boldsymbol{u}_1, \dots, \boldsymbol{u}_n\}$ such that $\{\boldsymbol{w}_1, \dots, \boldsymbol{w}_m, \boldsymbol{v}_1, \dots, \boldsymbol{v}_k\}$ and $\{\boldsymbol{u}_1, \dots, \boldsymbol{u}_n, \boldsymbol{v}_1, \dots, \boldsymbol{v}_k\}$ are the bases for \mathcal{W} and \mathcal{U} respectively
 - We can see that $\{w_1, \dots, w_m, u_1, \dots, u_n, v_1, \dots, v_k\}$ is a basis for $W + \mathcal{U}$ [Proof]
 - Therefore, *dim*(W+U) = *m* + *n* + *k* = (*m* + *k*) + (*n* + *k*) *k* = *dim*(W) + *dim*(U) *dim*(W ∩ U)

Linear Transformation

Definition (Linear Transformation)

A function $\mathcal{L}: \mathcal{V} \to \mathcal{W}$, where \mathcal{V} and \mathcal{W} are vector spaces, is called a *linear transformation* iff:

- 1) $\mathcal{L}(a\mathbf{v}) = a\mathcal{L}(\mathbf{v})$ for every $\mathbf{v} \in \mathcal{V}$ and $a \in \mathbb{R}$;
- 2) $\mathcal{L}(\mathbf{v} + \mathbf{w}) = \mathcal{L}(\mathbf{v}) + \mathcal{L}(\mathbf{w})$ for every $\mathbf{v}, \mathbf{w} \in \mathcal{V}$.

Definition (Range)

The *range* (or *image*) of a linear transformation $\mathcal{L} : \mathcal{V} \to \mathcal{W}$ is $\{\mathcal{L}(\mathbf{v}) : \mathbf{v} \in \mathcal{V}\}$, denoted as $\mathcal{R}(\mathcal{L})$ (or $im(\mathcal{L})$).

Definition (Nullspace)

The *nullspace* (or *kernel*) of a linear transformation $\mathcal{L} : \mathcal{V} \to \mathcal{W}$ is $\{ \mathbf{v} \in \mathcal{V} : \mathcal{L}(\mathbf{v}) = \mathbf{0} \}$, denoted as $\mathcal{N}(\mathcal{L})$ (or $ker(\mathcal{L})$).

• $\mathcal{R}(\mathcal{L})$ and $\mathcal{N}(\mathcal{L})$ are subspaces of $\mathcal W$ and $\mathcal V$ respectively [Proof]

Shan-Hung Wu (CS, NTHU)

Linear Algebra and Geometry

Dimension Theorem

Theorem

Let $\mathcal{L}: \mathcal{V} \to \mathcal{W}$ be a linear transformation, we have $\dim(\mathcal{V}) = \dim(\mathcal{R}(\mathcal{L})) + \dim(\mathcal{N}(\mathcal{L})).$

Proof.

Let $\{\mathbf{v}_i\}_i$ and $\{\mathbf{w}_i\}_i$ be the bases for $\mathcal{N}(\mathcal{L})$ and $\mathcal{R}(\mathcal{L})$ respectively^a. There exists $\{\boldsymbol{u}_i\}_i \in \mathcal{V}$ such that $\mathcal{L}(\boldsymbol{u}_i) = \boldsymbol{w}_i$. We claim that the set $\{\boldsymbol{v}_i\}_i \cup \{\boldsymbol{u}_i\}_i$ forms a basis of \mathcal{V} We first prove that $span(\mathbf{v}_i, \mathbf{u}_i) = \mathcal{V}$. Given any $\mathbf{v} \in \mathcal{V}$, there exist scalars $\{y_i\}_i$ such that $\mathcal{L}(\mathbf{v}) = \sum_i y_j \mathbf{w}_j$. We have $0 = \mathcal{L}(\mathbf{v}) - \sum_{i} y_{i} \mathbf{w}_{i} = \mathcal{L}(\mathbf{v}) - \sum_{i} y_{i} \mathcal{L}(\mathbf{u}_{i}) = \mathcal{L}(\mathbf{v} - \sum_{i} y_{i} \mathbf{u}_{i}).$ So $\mathbf{v} - \sum_{i} y_{j} \mathbf{u}_{j} \in \mathcal{N}(\mathcal{L})$, implying that there exists $\{\alpha_{i}\}_{i}$ such that $\mathbf{v} - \sum_{i} y_{i} \mathbf{u}_{i} = \sum_{i} \alpha_{i} \mathbf{v}_{i}$. Therefore, $\mathbf{v} = \sum_{i} \alpha_{i} \mathbf{v}_{i} + \sum_{i} y_{i} \mathbf{u}_{i}$. Next, we prove that $\boldsymbol{v}_i, \boldsymbol{u}_i$ are linear independent. If $\sum_{i} \alpha_{i} \boldsymbol{v}_{i} + \sum_{j} y_{j} \boldsymbol{u}_{j} = \boldsymbol{0}$, we have $\mathbf{0} = \mathcal{L}(\mathbf{0}) = \mathcal{L}(\sum_{i} \alpha_{i} \mathbf{v}_{i} + \sum_{i} y_{j} \mathbf{u}_{j}) = \mathcal{L}(\sum_{i} \alpha_{i} \mathbf{v}_{i}) + \mathcal{L}(\sum_{i} y_{j} \mathbf{u}_{j}) = \sum_{i} y_{j} \mathbf{w}_{j},$ implying that $y_i = 0$ for all j. Substitute y_i back to the equation $\sum_{i} \alpha_i \mathbf{v}_i + \sum_{i} y_i \mathbf{u}_i = \mathbf{0}$ we have $\sum_{i} \alpha_i \mathbf{v}_i = \mathbf{0}$, meaning $\alpha_i = \mathbf{0}$ for all *i*.

^aApparently, v_i and w_j are distinct.

Matrix Representation (1/2)

- Given two bases {v₁, v₂, ..., v_n} in ℝⁿ and {w₁, w₂, ..., w_m} in ℝ^m, L: ℝⁿ → ℝ^m can be represented by a matrix A, A ∈ ℝ^{m×n}, such that for every v ∈ V and w ∈ W, L(v) = w, we have Ax = y, where x = [x₁, x₂, ..., x_n]^T and y = [y₁, y₂, ..., y_m]^T are coordinates of v and w respectively
 - By definition,

$$\mathcal{L}(\mathbf{v}) = \mathcal{L}(x_1\mathbf{v}_1 + \dots + x_n\mathbf{v}_n) = x_1\mathcal{L}(\mathbf{v}_1) + \dots + x_n\mathcal{L}(\mathbf{v}_n)$$

= $x_1(a_{11}\mathbf{w}_1 + \dots + a_{m1}\mathbf{w}_m) + \dots + x_n(a_{1n}\mathbf{w}_1 + \dots + a_{mn}\mathbf{w}_m),$
 $\mathcal{L}(\mathbf{v}) = \mathbf{w} = y_1\mathbf{w}_1 + \dots + y_m\mathbf{w}_m$

• Comparing the coefficients of **w**_i we have

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

Shan-Hung Wu (CS, NTHU)

• Rewrite **A** as $[a_1, \dots, a_n]$ where a_i denote columns, we have $y = x_1 a_1 + \dots + x_n a_n$

• y is a linear combination of the columns of A

• Why a function \mathcal{L} satisfying $\mathcal{L}(a\mathbf{v}) = a\mathcal{L}(\mathbf{v})$ and $\mathcal{L}(\mathbf{v} + \mathbf{w}) = \mathcal{L}(\mathbf{v}) + \mathcal{L}(\mathbf{w})$ for every $\mathbf{v}, \mathbf{w} \in \mathcal{V}, a \in \mathbb{R}$ is called "linear?"

• Rewrite **A** as $[a_1, \dots, a_n]$ where a_i denote columns, we have $y = x_1 a_1 + \dots + x_n a_n$

• y is a linear combination of the columns of A

- Why a function \mathcal{L} satisfying $\mathcal{L}(a\mathbf{v}) = a\mathcal{L}(\mathbf{v})$ and $\mathcal{L}(\mathbf{v} + \mathbf{w}) = \mathcal{L}(\mathbf{v}) + \mathcal{L}(\mathbf{w})$ for every $\mathbf{v}, \mathbf{w} \in \mathcal{V}, a \in \mathbb{R}$ is called "linear?"
 - We can see from the matrix representation that each y_j , $1 \le j \le m$, is mapped from a "linear function" f_j over x_1, \dots, x_n , i.e., $f_j(x_1, \dots, x_n) = a_{j1}x_1 + \dots + a_{jn}x_n = y_j$

Outline

1 Linear Algebra

• Vector Spaces, Linear Transformations, and Matrices

Matrices

- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**
- Geometr 🛛
 - Affine Spaces
 - Line Segments and Curves
 - Hyperplanes
 - Convex Sets
 - Neighborhoods
- 3 Point Set Topology**
 - Topological Spaces
 - Manifolds

Shan-Hung Wu (CS, NTHU)

Definition (Rank)

Given an $m \times n$ matrix A and let a_i be the *i*th column of A. The number of linear independent columns of A is called the *rank* of A, denoted as rank(A).

- $rank(\mathbf{A}) = dim(span(\mathbf{a}_1, \cdots, \mathbf{a}_n)) = dim(\mathcal{R}(\mathbf{A}))$
- $rank(\mathbf{A}) = rank(\mathbf{A}^{\top})$ [Proof: Using the Dimension Theorem]
- $rank(A + B) \leq rank(A) + rank(B)$ [Proof: $\Re(A + B) \subseteq \Re(A) + \Re(B)$, and $dim(\Re(A) + \Re(B)) \leq dim(\Re(A) + dim(\Re(B))]$
- $rank(AB) \leq min\{rank(A), rank(B)\}$ [Proof: $\Re(AB) \subseteq \Re(A)$]

•
$$rank(\mathbf{A}^{\top}\mathbf{A}) = rank(\mathbf{A})$$

- The rank of **A** is invariant under the column (resp. row) operations [Proof]:
 - Multiplying columns (resp. rows) of **A** by nonzero scalars
 - Interchanging the columns (resp. rows)
 - Adding to a given column (resp. row) a linear combination of other columns (resp. rows)
- Denote A ~ B and A ~ B respectively if we can obtain B by performing the column and row operations over A
- If $\mathbf{A} \stackrel{c}{\sim} \mathbf{B}$ or $\mathbf{A} \stackrel{r}{\sim} \mathbf{B}$, then $rank(\mathbf{A}) = rank(\mathbf{B})$

• E.g.,
$$[a, b, c]^{\top}[a, b, c] \stackrel{r}{\sim} \begin{bmatrix} a & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 and has rank 1

Trace

Definition (Trace)

Given an $n \times n$ square matrix \boldsymbol{A} , the *trace* of \boldsymbol{A} is defined as $tr(\boldsymbol{A}) = \sum_{i=1}^{n} a_{i,i}$.

- $tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$, and $tr(\mathbf{A}) = tr(\mathbf{A}^{\top})$ [Proof]
- tr(AB) = tr(BA) [Proof]
 - **A** and **B** need not be square
 - In particular, $tr(\mathbf{x}^{\top}\mathbf{x}) = tr(\mathbf{x}\mathbf{x}^{\top})$
- Cyclic property: tr(ABC) = tr(CAB) = tr(BCA) [Proof]
 - Generally, $tr(CBA) \neq tr(ABC)$, unless both A, B, and C are symmetric (i.e., equal to their transpose): $tr(ABC) = tr(A^{\top}B^{\top}C^{\top}) = tr((CBA)^{\top}) = tr(CBA)$

Definition (Determinant)

Given an $n \times n$ square matrix \boldsymbol{A} , where $\boldsymbol{A} = [\boldsymbol{a}_i, \dots, \boldsymbol{a}_n]$, there exists a unique function $det : \mathbb{R}^{n \times n} \to \mathbb{R}$, satisfying the properties: a) $det(\boldsymbol{a}_1, \dots, \boldsymbol{a}_{k-1}, \alpha \boldsymbol{a}_k^{(1)} + \beta \boldsymbol{a}_k^{(2)}, \boldsymbol{a}_{k+1}, \dots, \boldsymbol{a}_n) = \alpha det(\boldsymbol{a}_1, \dots, \boldsymbol{a}_{k-1}, \boldsymbol{a}_k^{(1)}, \boldsymbol{a}_{k+1}, \dots, \boldsymbol{a}_n) + \beta det(\boldsymbol{a}_1, \dots, \boldsymbol{a}_{k-1}, \boldsymbol{a}_k^{(2)}, \boldsymbol{a}_{k+1}, \dots, \boldsymbol{a}_n), \forall \alpha, \beta \in \mathbb{R};$ b) $det(\boldsymbol{a}_1, \dots, \boldsymbol{a}_{i}, \dots, \boldsymbol{a}_j, \dots, \boldsymbol{a}_n) = 0$ if $\boldsymbol{a}_i = \boldsymbol{a}_j$ for some i and j; c) $det(\boldsymbol{e}_1, \dots, \boldsymbol{e}_n) = 1.$ We call $det(\boldsymbol{A})$ the *determinant* of \boldsymbol{A} .

• Let $I_n = [e_1, \cdots, e_n]$ be an *identity matrix*, we have $det(I_n) = 1$

• det(A) changes its sign if we interchanges the columns of A [Proof]

Determinant (2/2)

• The unique function $det: \mathbb{R}^{n imes n} o \mathbb{R}$ can be written as

$$det(\mathbf{A}) = \sum_{k=1}^{n} (-1)^{k+1} a_{1k} det(\mathbf{A}_{1k}),$$

where A_{ij} is the $(n-1) \times (n-1)$ matrix obtained by deleting the *i*th row and *j*th column [Proof]

 The determinant of A can be also regarded as the sign volume of the image of the unit cube

Theorem

Given any $c \in \mathbb{R}$ and $A, B \in \mathbb{R}^{n \times n}$, we have a) $det(cA) = c^n det(A)$; b) $det(A^{\top}) = det(A)$; c) det(AB) = det(A)det(B).

• Can be proved by either tedious calculation or the signed volume interpretation

Shan-Hung Wu (CS, NTHU)

• Given $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, and $A \in \mathbb{R}^{m \times n}$, Ax = y represents a system of linear equations as follows:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = y_1 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = y_m \end{cases}$$

Theorem

Let $[\mathbf{A}, \mathbf{y}] = [\mathbf{a}_1, \dots, \mathbf{a}_n, \mathbf{y}]$ be the **augmented matrix**, the system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{y}$ has a solution iff rank $(\mathbf{A}) = \operatorname{rank}([\mathbf{A}, \mathbf{y}])$.

Linear Equations (2/2)

Proof.

⇒: **y** is a linear combination of the columns of **A**, so $rank([\mathbf{A}, \mathbf{y}]) = dim(span(\mathbf{a}_1, \dots, \mathbf{a}_n, \mathbf{y})) = dim(span(\mathbf{a}_1, \dots, \mathbf{a}_n)) = rank(\mathbf{A}).$ $\Leftarrow:$ Let $rank(\mathbf{A}) = rank([\mathbf{A}, \mathbf{y}]) = r$ and $\mathbf{a}_1, \dots, \mathbf{a}_r$ be the linear independent columns of both **A** and $[\mathbf{A}, \mathbf{y}]$. Since **y** is not one of $\mathbf{a}_1, \dots, \mathbf{a}_r$, it is their linear combination; that is, there exists x_1, \dots, x_r such that $\mathbf{y} = x_1 \mathbf{a}_1 + \dots + x_r \mathbf{a}_r$. So $\mathbf{x} = [x_1, \dots, x_r]^\top$ is the solution.

Definition (Linear Variety)

The set $\{x \in \mathbb{R}^n : Ax = y\}$ is called the *linear variety* for $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^m$.

• If x_0 is a solution, then for all $x \in \mathcal{N}(A)$, $x_0 + x$ is also a solution

• Is linear variety a subspace of \mathbb{R}^n ?

Linear Equations (2/2)

Proof.

⇒: **y** is a linear combination of the columns of **A**, so $rank([\mathbf{A}, \mathbf{y}]) = dim(span(\mathbf{a}_1, \dots, \mathbf{a}_n, \mathbf{y})) = dim(span(\mathbf{a}_1, \dots, \mathbf{a}_n)) = rank(\mathbf{A}).$ $\Leftarrow:$ Let $rank(\mathbf{A}) = rank([\mathbf{A}, \mathbf{y}]) = r$ and $\mathbf{a}_1, \dots, \mathbf{a}_r$ be the linear independent columns of both **A** and $[\mathbf{A}, \mathbf{y}]$. Since **y** is not one of $\mathbf{a}_1, \dots, \mathbf{a}_r$, it is their linear combination; that is, there exists x_1, \dots, x_r such that $\mathbf{y} = x_1 \mathbf{a}_1 + \dots + x_r \mathbf{a}_r$. So $\mathbf{x} = [x_1, \dots, x_r]^\top$ is the solution.

Definition (Linear Variety)

The set $\{x \in \mathbb{R}^n : Ax = y\}$ is called the *linear variety* for $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^m$.

- If x_0 is a solution, then for all $x \in \mathcal{N}(A)$, $x_0 + x$ is also a solution
- Is linear variety a subspace of \mathbb{R}^n ? No, as **0** is not included
- However, we still say that the linear variety has dimension r if dim(N(A)) = r

Shan-Hung Wu (CS, NTHU)

Theorem (Cramer's Rule)

Given a square, invertible matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, the solution to a system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{y}$ can be obtained by $x_i = \det(\mathbf{A}_i)/\det(\mathbf{A})$ for $i = 1, \dots, n$, where \mathbf{A}_i is the matrix formed by replacing the *i*th column of \mathbf{A} by the column vector \mathbf{y} .

• The proof is easy [Proof]

90

Invertibility

Definition (Nonsingular Matrix)

A square matrix $A \in \mathbb{R}^{n \times n}$ is **nonsingular** (or **invertible**) if there exists another matrix $B \in \mathbb{R}^{n \times n}$ such that $AB = BA = I_n$. We call B the **inverse** of A and denote it as A^{-1} .

•
$$(\mathbf{A}^{\top})^{-1} = (\mathbf{A}^{-1})^{\top}$$
 and $det(\mathbf{A}^{-1}) = det(\mathbf{A})^{-1}$ [Proof]

Theorem

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$, the following conditions are equivalent:

a) **A** is invertible;

b) There exists a unique solution \mathbf{x} satisfying $\mathbf{A}\mathbf{x} = \mathbf{y}$, $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$;

c) $\mathcal{N}(\mathbf{A}) = \mathbf{0}$ (trivial kernel);

- d) The columns are linearly independent (i.e., $rank(\mathbf{A}) = n$);
- e) $det(\mathbf{A}) \neq 0;$
- f) \mathbf{A}^{\top} is invertible;
- g) The rows of **A** are linearly independent;
- h) All of the eigenvalues of **A** are nonzero (explained later).

Outline

1 Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices

• Eigenvalues and Eigenvectors

- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**
- Geometr 🛛
 - Affine Spaces
 - Line Segments and Curves
 - Hyperplanes
 - Convex Sets
 - Neighborhoods
- 3 Point Set Topology**
 - Topological Spaces
 - Manifolds

Shan-Hung Wu (CS, NTHU)

- Recall that given the bases of domain and range, a linear transformation can be represented by a matrix
 - What's the relation between matrices obtained from different bases?

Definition (Change of Basis Matrix)

Consider two bases $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and $\{\mathbf{v}'_1, \dots, \mathbf{v}'_n\}$ for \mathbb{R}^n and a vector $\mathbf{v} \in \mathbb{R}^n$. There are two sets of coordinates \mathbf{x}_i and \mathbf{x}'_i , $1 \leq i \leq n$, such that $[\mathbf{v}_1, \dots, \mathbf{v}_n][x_1, \dots, x_n]^\top = \mathbf{v} = [\mathbf{v}'_1, \dots, \mathbf{v}'_n][x'_1, \dots, x'_n]^\top$. We call $[\mathbf{v}'_1, \dots, \mathbf{v}'_n]^{-1}[\mathbf{v}_1, \dots, \mathbf{v}_n]$ the *change of basis matrix* (or *transition matrix*) from $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ to $\{\mathbf{v}'_1, \dots, \mathbf{v}'_n\}$.

Similar Matrices

Definition (Similar Matrices)

Two square matrices $A, B \in \mathbb{R}^{n \times n}$ are **similar** if there exists nonsingular matrices $C \in \mathbb{R}^{n \times n}$ such that $A = C^{-1}BC$.

- If A and B are similar, then tr(A) = tr(B) and det(A) = det(B)[Proof]
- Let $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and $\{\mathbf{v}'_1, \dots, \mathbf{v}'_n\}$ be two bases of domain, $\{\mathbf{w}_1, \dots, \mathbf{w}_m\}$ and $\{\mathbf{w}'_1, \dots, \mathbf{w}'_m\}$ be two bases of range, and S and T be the change of basis matrices from $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ to $\{\mathbf{v}'_1, \dots, \mathbf{v}'_n\}$ to $\{\mathbf{v}'_1, \dots, \mathbf{v}'_m\}$ to $\{\mathbf{w}'_1, \dots, \mathbf{w}'_m\}$ respectively. We have the following relations:

$$\begin{array}{cccc} \mathbb{R}^n & \underline{A} & \mathbb{R}^m \\ \underline{S} \downarrow & & \downarrow T \\ \mathbb{R}^n & \underline{B} & \mathbb{R}^m \end{array}$$

• Similar matrices correspond to the same linear transform with respect to different bases

Shan-Hung Wu (CS, NTHU)

- Why do we need eigenvalues and eigenvectors?
 - Given a linear transformation, we want to find a basis (if existing) such that the corresponding matrix representation D is diagonal
 - So, given coordinates $x \in \mathbb{R}^n$ with respect to this basis, the effect of the transformation is just a scaling to each coordinate, as $Dx = [d_{11}x_1, \cdots, d_{nn}x_n]^\top$
 - An example application to compression: We can drop small d_{ii}s without changing the original transformation too much

Definition (Eigenvalues and Eigenvectors)

Given $A \in \mathbb{R}^{n \times n}$, a nonzero vector x satisfying $Ax = \lambda x$, where λ is a scalar (possibly complex), is called the *eigenvector* of A, and λ is called the *eigenvalue*.

- x is an eigenvector iff the matrix $\lambda I A$ is singular, as $Ax = \lambda x \Rightarrow \lambda x - Ax = 0 \Rightarrow (\lambda I - A)x = 0$ and $\lambda I - A$ has nontrivial kernel (note x is nonzero by definition)
- We have 0 = det(λI − A) = λⁿ + a_{n-1}λⁿ⁻¹ + ··· + a₁λ + a₀; that is, the characteristic polynomial of A equals 0
- The eigenvalues are the roots (possibly with multiplicity) of the above equation
- For each eigenvalue λ_i , we can obtain its corresponding eigenvectors by solving $(\lambda_i I A)x = 0$

Multiplicities

- The eigenvector (i.e., solution to $(\lambda_i I A)x = 0$) of an eigenvalue λ_i is not unique
 - If $Ax = \lambda_i x$, so does $A(cx) = \lambda_i(cx)$ for any $c \in \mathbb{R}$
 - $\mathcal{N}(\lambda_i I A)$, called the *eigenspace* of λ_i , has dimension at least 1
- Algebraic multiplicity of an eigenvalue λ_i is the multiplicity of the corresponding root of the characteristic polynomial
- Geometric multiplicity of λ_i is the dimension of $\mathcal{N}(\lambda_i I A)$, the number of linear independent eigenvectors we solve from $(\lambda_i I A)x = 0$
 - Geometric multiplicity must be less than or equal to the algebraic multiplicity
 - We may not be able to find *n* linear independent eigenvectors for a matrix

Eigenvalues and Eigenvectors (2/3)

Theorem

If $\mathbf{A} \in \mathbb{R}^{n \times n}$ has n linear independent eigenvectors $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$, then $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ form a basis of \mathbb{R}^n .

- Given coordinates $\mathbf{x} \in \mathbb{R}^n$ with respect to this basis, the effect of the transformation is just a scaling to each coordinate, as $\mathbf{A}(x_1\mathbf{u}_1+\cdots+x_n\mathbf{u}_n) = x_1\mathbf{A}(\mathbf{u}_1)+\cdots+x_n\mathbf{A}(\mathbf{u}_n) = x_1\lambda_1\mathbf{u}_1+\cdots+x_n\lambda_n\mathbf{u}_n$
- Under this basis, the transformation can be represented by a diagonal matrix D, where $d_{ii} = \lambda_i$ (counting the multiplicity)
- We say A is *diagonalizable* if there exists a basis such that $A = T^{-1}DT = UDU^{-1}$, where $U = [u_1, \dots, u_n]$ and $T = U^{-1}[e_1, \dots, e_n]$
- T is the change of basis matrix from the natural basis to $\{u_1, \cdots, u_n\}$:

$$\boldsymbol{T} = [\boldsymbol{u}_1, \cdots, \boldsymbol{u}_n]^{-1} \downarrow \qquad \stackrel{\boldsymbol{A}}{\longrightarrow} \qquad \stackrel{\boldsymbol{\mathbb{R}}^n}{\longrightarrow} \qquad \stackrel{\boldsymbol{T}}{\longrightarrow} \qquad \stackrel$$

Eigenvalues and Eigenvectors (3/3)

•
$$tr(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$$
 and $det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$ [Proof]

• If two matrices $A, B \in \mathbb{R}^{n \times n}$ are similar, then their characteristic polynomials (and eigenvalues) are equal, as $det(\lambda I - A) = det(\lambda I - T^{-1}BT) = det(\lambda T^{-1}T - T^{-1}BT) = det(T^{-1})det(\lambda I - B)det(T) = det(\lambda I - B)$

Theorem

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible iff all eigenvalues of \mathbf{A} are nonzero.

• The above theorem dose *not* imply any consequence between the diagonalizability and invertibility of a matrix

• E.g.,
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 is diagonalizable but not invertible, yet $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ is invertible but not diagonalizable

Outline

1 Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors

Inner Products and Norms

- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**
- Geometr
 - Affine Spaces
 - Line Segments and Curves
 - Hyperplanes
 - Convex Sets
 - Neighborhoods
- 3 Point Set Topology**
 - Topological Spaces
 - Manifolds

Shan-Hung Wu (CS, NTHU)

Inner Products

Definition (Inner Product)

A function $\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{C}$ is called the *inner product* if it satisfies: a) $\langle x, x \rangle \ge 0, \forall x \in \mathcal{V}$ and the equality holds iff x = 0 (positivity); b) $\langle x, y \rangle = \overline{\langle y, x \rangle}, \forall x, y \in \mathcal{V}$ (conjugate symmetry); c) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle, \forall x, y, z \in \mathcal{V}$ (additivity); d) $\langle rx, y \rangle = r \langle x, y \rangle, \forall x, y \in \mathcal{V}, r \in \mathbb{C}$ (homogeneity).

- Note we have $\langle {m x}, r {m y}
 angle = \overline{r} \langle {m x}, {m y}
 angle$ based on properties b) and d)
- A common example is the *Euclidean inner product*: $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^\top \mathbf{y}$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- Two vectors x and y are said to be *orthogonal* if $\langle x, y \rangle = 0$
- The *Euclidean norm* of x is defined as $||x|| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^{n} x_i^2}$
- A vector space with an inner product/norm defined is called the *inner* product/normed space respectively

Shan-Hung Wu (CS, NTHU)
Cauchy-Schwarz Inequality

Theorem (Cauchy-Schwarz Inequality)

For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we have $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}||$ and the equality holds iff $\mathbf{x} = \alpha \mathbf{y}$ for some $\alpha \in \mathbb{R}$.

Proof.

The proof is obvious when $\mathbf{x} = 0$ or $\mathbf{y} = 0$. Otherwise, consider the case where \mathbf{x} and \mathbf{y} are unit vectors; that is, $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$. Then $0 \leq \|\mathbf{x} - \mathbf{y}\|^2 = \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle = \|\mathbf{x}\|^2 - 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2 = 2 - 2\langle \mathbf{x}, \mathbf{y} \rangle$, implying $\langle \mathbf{x}, \mathbf{y} \rangle \leq 1$. The equality holds iff $\mathbf{x} = \mathbf{y}$. Similarly, by $0 \leq \|\mathbf{x} + \mathbf{y}\|^2$ we have $\langle \mathbf{x}, \mathbf{y} \rangle \geq -1$ and the equality holds iff $\mathbf{x} = -\mathbf{y}$. For any nonzero vectors \mathbf{x} and \mathbf{y} , we have $-1 \leq \langle \mathbf{x}/\|\mathbf{x}\|, \mathbf{y}/\|\mathbf{y}\| \rangle \leq 1 \Rightarrow |\langle \mathbf{x}, \mathbf{y} \rangle| \leq \|\mathbf{x}\| \|\mathbf{y}\|$ and the equality holds iff $\mathbf{x}/\|\mathbf{x}\| = \pm \mathbf{y}/\|\mathbf{y}\|$; that is, $\mathbf{x} = \alpha \mathbf{y}$ for some $\alpha \in \mathbb{R}$.

• Since $-1 \leq \langle x, y \rangle / ||x|| ||y|| \leq 1$, we can define the *included angle* θ of x and y by $\cos \theta = \langle x, y \rangle / ||x|| ||y||$

Shan-Hung Wu (CS, NTHU)

Definition (Vector Norm)

A function $\|\cdot\| : \mathcal{V} \to \mathbb{R}$ is called the *vector norm* if it satisfies: a) $\|x\| \ge 0, \forall x \in \mathcal{V}$ and the equality holds iff x = 0 (positivity); b) $\|rx\| = |r| \|x\|, \forall x \in \mathcal{V}, r \in \mathbb{R}$ (homogeneity); c) $\|x + y\| \le \|x\| + \|y\|, \forall x, y \in \mathcal{V}$ (triangle inequality).

- The Euclidean norm is a vector norm [Proof]
- We can define the *p*-norm directly without going through the inner product first: $\|\mathbf{x}\|_p = \begin{cases} (\sum_i |x_i|^p)^{1/p} & 1 \leq p < \infty \\ \max\{|x_i|\}_i & p = \infty \end{cases}$
 - Euclidean norm is also known as the 2-norm

90

Symmetric and Hermitian Matrices (1/2)

- A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A^{\top} = A$; and antisymmetric if $A^{\top} = -A$
- A matrix A ∈ C^{n×n} is Hermitian if A = A* (conjugate transpose); and antihermitian if A* = -A

Theorem

All eigenvalues of a real symmetric matrix are real.

Proof.

Let
$$Ax = \lambda x$$
, where $x \neq 0$. We have $\langle Ax, x \rangle = \langle \lambda x, x \rangle = \lambda \langle x, x \rangle$. On the other hand, $\langle Ax, x \rangle = x^T A^T x = \langle x, A^T x \rangle = \overline{\lambda} \langle x, x \rangle$. This implies $\lambda \langle x, x \rangle = \overline{\lambda} \langle x, x \rangle \Rightarrow (\lambda - \overline{\lambda}) \langle x, x \rangle = 0$. Since $\langle x, x \rangle > 0$ for any $x \neq 0$, $\lambda - \overline{\lambda}$ must be 0; that is, λ is real.

Symmetric and Hermitian Matrices (2/2)

Theorem

Any real symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has n eigenvectors that are mutually orthogonal.

Proof.

Here we only prove a special case where the *n* eigenvalues are distinct. Suppose $Ax_1 = \lambda_1 x_1$ and $Ax_2 = \lambda_2 x_2$, where $\lambda_1 \neq \lambda_2$. Then $\langle Ax_1, x_2 \rangle = \langle \lambda_1 x_1, x_2 \rangle = \lambda_1 \langle x_1, x_2 \rangle$. However, $\langle x_1, A^T x_2 \rangle = \langle x_1, Ax_2 \rangle = \langle x_1, \lambda_2 x_2 \rangle = \lambda_2 \langle x_1, x_2 \rangle$. Therefore we have $\lambda_1 \langle x_1, x_2 \rangle = \lambda_2 \langle x_1, x_2 \rangle$. Since $\lambda_1 \neq \lambda_2$, $\langle x_1, x_2 \rangle = 0$.

- Real symmetric matrices are always diagonalizable
- $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{\top}$, where $\boldsymbol{U} = [\boldsymbol{u}_1, \cdots, \boldsymbol{u}_n]$ and \boldsymbol{u}_i are the eigenvectors of \boldsymbol{A}
- Since the columns of \boldsymbol{U} are orthogonal with each other, $\boldsymbol{U}^{\top}\boldsymbol{U}$ is diagonal
- By picking the eigenvectors of unit norm, we have $U^{\top}U = I$, and therefore $U^{-1} = U^{T}$

Shan-Hung Wu (CS, NTHU)

- A matrix \boldsymbol{U} having inverse as $\boldsymbol{U}^{ op}$ is called the orthogonal matrix
- If $U \in \mathbb{C}^{n \times n}$ and $U^*U = I$, then U is called the *unitary matrix*
- Unitary (and orthogonal) matrices are always invertible and diagonalizable [Proof]
- Given any orthogonal (or unitary) matrix U, we have $\|Ux\|_2 = \sqrt{x^\top U^\top Ux} = \|x\|_2$
 - As a linear transformation, ${m U}$ preserves distance so the "shape" of a set of vectors in the domain can be preserved in the range
 - Examples?

- A matrix \boldsymbol{U} having inverse as $\boldsymbol{U}^{ op}$ is called the orthogonal matrix
- If $U \in \mathbb{C}^{n \times n}$ and $U^*U = I$, then U is called the *unitary matrix*
- Unitary (and orthogonal) matrices are always invertible and diagonalizable [Proof]
- Given any orthogonal (or unitary) matrix U, we have $\|Ux\|_2 = \sqrt{x^\top U^\top Ux} = \|x\|_2$
 - As a linear transformation, **U** preserves distance so the "shape" of a set of vectors in the domain can be preserved in the range
 - Examples? Rotation, reflection etc.
 - On the other hand, the Euclidean norm is *unitarily invariant*

Definition (Orthogonal Complement)

Given a subspace \mathcal{V} of \mathbb{R}^n . The *orthogonal complement* of \mathcal{V} is defined by $\mathcal{V}^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n : \langle \mathbf{v}, \mathbf{x} \rangle = 0, \forall \mathbf{v} \in \mathcal{V} \}.$

Definition (Orthogonal Projector)

A matrix $P \in \mathbb{R}^{n \times n}$ is called a *orthogonal projector* onto \mathcal{V} if $Px \in \mathcal{V}$ and $x - Px \in \mathcal{V}^{\perp}$ for all $x \in \mathbb{R}^{n}$.

Theorem

Given a matrix
$$\mathbf{A}$$
, we have $\Re(\mathbf{A})^{\perp} = \Re(\mathbf{A}^{\top})$ and $\Re(\mathbf{A})^{\perp} = \Re(\mathbf{A}^{\top})$.

Proof.

 $\begin{array}{l} \subseteq: \text{ Suppose that } x \in \mathcal{R}(A)^{\perp}, \text{ we have } (Ay)^{\top}x = y^{\top}(A^{\top}x) = 0 \text{ for all} \\ y \in \mathbb{R}^n, \text{ implying that } A^{\top}x = 0 \text{ and } x \in \mathcal{N}(A^{\top}). \text{ So } \mathcal{R}(A)^{\perp} \subseteq \mathcal{N}(A^{\top}). \\ \supseteq: \text{ If now } x \in \mathcal{N}(A^{\top}), \text{ then } y^{\top}(A^{\top}x) = (Ay)^{\top}x = 0 \text{ for all } y \in \mathbb{R}^n, \\ \text{ implying } x \in \mathcal{R}(A)^{\perp} \text{ and } \mathcal{R}(A)^{\perp} \supseteq \mathcal{N}(A^{\top}). \end{array}$

• The proof of $\mathcal{N}(\mathbf{A})^{\perp} = \mathcal{R}(\mathbf{A}^{\top})$ follows from the above and the fact that $(\mathcal{V}^{\perp})^{\perp} = \mathcal{V}$ [Proof].

Theorem

A matrix **P** is an orthogonal projector (on to $\Re(\mathbf{P})$) iff $\mathbf{P}^2 = \mathbf{P} = \mathbf{P}^{\top}$.

Proof.

⇒: Since $x - Px \in \mathcal{R}(P)^{\perp}$ for all $x \in \mathbb{R}^n$, we have $\mathcal{R}(I - P) \subseteq \mathcal{R}(P)^{\perp}$. But from the previous theorem $\mathcal{R}(P)^{\perp} = \mathcal{N}(P^{\top})$. This implies that $\mathcal{R}(I - P) \subseteq \mathcal{N}(P^{\top})$ and therefore $P^{\top}(I - P)y = 0$ for all $y \in \mathbb{R}^n$. We have $P^{\top}(I - P) = O \Rightarrow P^{\top} = P^{\top}P$. It is easy to verify that $P = P^{\top} = P^2$. \Leftarrow : For any $x \in \mathbb{R}^n$ we have $(Py)^{\top}(I - P)x = y^{\top}P^{\top}(I - P)x = y^{\top}Ox = 0$ for all $y \in \mathbb{R}^n$. Thus, $(I - P)x \in \mathcal{R}(P)^{\perp}$ and P is an orthogonal projector.

Shan-Hung Wu (CS, NTHU)

Linear Algebra and Geometry

NetDB-ML, Spring 2013

Normal Equations (1/2)

- Linear varity includes all solutions of Ax = b, where $A \in \mathbb{R}^{m imes n}$ and $b \in \mathbb{R}^m$
 - What if Ax = b has no solution (that is, b is not a linear combination of the columns of A, or $b \notin \mathcal{R}(A)$)?

Normal Equations (1/2)

- Linear varity includes all solutions of Ax = b, where $A \in \mathbb{R}^{m imes n}$ and $b \in \mathbb{R}^m$
 - What if Ax = b has no solution (that is, b is not a linear combination of the columns of A, or $b \notin \mathcal{R}(A)$)?
- We can instead find $m{x}$ in $\mathcal{R}(m{A})$ which is closest to $m{b}$

Theorem

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, finding $\mathbf{x} \in \mathbb{R}^n$ minimizing $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$ is equivalent to solving $\mathbf{A}^\top \mathbf{A}\mathbf{x} = \mathbf{A}^\top \mathbf{b}$.

Proof.

We can see that ||Ax - b|| is minimized when the Ax - b is normal to $\Re(A)$. That is, $\langle Ax - b, w \rangle = 0$, $\forall w \in \Re(A) \Leftrightarrow \langle Ax - b, Ay \rangle = 0$, $\forall y \in \mathbb{R}^n \Leftrightarrow (Ay)^\top (Ax - b) = 0$, $\forall y \in \mathbb{R}^n \Leftrightarrow y^\top A^\top Ax - y^\top A^\top b = 0$, $\forall y \in \mathbb{R}^n \Leftrightarrow y^\top (A^\top Ax - A^\top b) = 0$, $\forall y \in \mathbb{R}^n \Leftrightarrow A^\top Ax - A^\top b = 0 \Leftrightarrow A^\top Ax = A^\top b$.

Shan-Hung Wu (CS, NTHU)

- $\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{A}^{\top}\mathbf{b}$ is called the *normal equation* (as $\mathbf{A}\mathbf{x} \mathbf{b}$ is normal to $\mathcal{R}(\mathbf{A})$) and must have at least one solution
 - $\mathbf{A}^{\top} \mathbf{b} \in \mathcal{R}(\mathbf{A}^{\top})$ • Since $\mathcal{R}(\mathbf{A}^{\top}\mathbf{A}) \subseteq \mathcal{R}(\mathbf{A}^{\top})$ and $rank(\mathbf{A}^{\top}\mathbf{A}) = rank(\mathbf{A}^{\top})$, we have $\mathcal{R}(\mathbf{A}^{\top}\mathbf{A}) = \mathcal{R}(\mathbf{A}^{\top})$ • That is, $\mathbf{A}^{\top} \mathbf{b} \in \mathcal{R}(\mathbf{A}^{\top}\mathbf{A})$
- A^TAx = A^Tb has exactly one solution iff A^TA is invertible
 A^TA is symmetric, therefore diagonalizable
 - $\mathbf{A}^{\top}\mathbf{A}$ is invertible iff all its eigenvalues are nonzero

Outline

1 Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms

• Positive Definite Matrices and Quadratic Forms**

- Matrix Norms
- Matrix Exponential and Logarithm**
- Geometry
 - Affine Spaces
 - Line Segments and Curves
 - Hyperplanes
 - Convex Sets
 - Neighborhoods
- 3 Point Set Topology**
 - Topological Spaces
 - Manifolds

Shan-Hung Wu (CS, NTHU)

Caution!

This subsection requires the knowledge of matrix calculus.

Shan-Hung Wu (CS, NTHU)

Linear Algebra and Geometry

NetDB-ML, Spring 2013 45 / 90

Definition (Definite Matrices)

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is called **positive definite** (resp., positive semidefinite/negative definitive/negative semidefinite) iff for any $\mathbf{x} \in \mathbb{R}^{n}$, $\mathbf{x} \neq \mathbf{0}$, we have $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} > 0$ (resp., $\geq 0/< 0/\leqslant 0$)

- There is no loss of generality if we assume **A** is symmetric
 - As $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \mathbf{x}^{\top} (\frac{1}{2}\mathbf{A} + \frac{1}{2}\mathbf{A}^{\top})\mathbf{x}$ and the matrix $\frac{1}{2}\mathbf{A} + \frac{1}{2}\mathbf{A}^{\top}$ is always symmetric [Proof]

Theorem

A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive definite (or semidefinite) iff all eigenvalues of \mathbf{A} are positive (or nonnegative).

Proof.

Let T be an orthogonal matrix whose column are eigenvectors of A. For any matrix, let $y = T^{-1}x = T^{\top}x$. We have $x^{\top}Ax = y^{\top}T^{\top}ATy = \sum_{i=1}^{n} \lambda_i y_i^2$, and the proof follows.

- What does positive definite mean anyway?
- Before we start, define the graph of a function f: V → R, V ⊆ Rⁿ, to be the set {[x^T, f(x)]^T : x ∈ V}

- A *minor* of $A \in \mathbb{R}^{n \times n}$ is the determinant of a matrix obtained by deleting some row and column of A
- The *principle minors* of *A* are *det*(*A*) and *n*-1 minors obtained by successively deleting some row and column of *A*
- The *leading principle minors* of **A** are *det*(**A**) and *n*-1 minors obtained by successively deleting the last row and column of **A**

Principle Minors (2/2)

• There is a simple way to check if a matrix is positive definite:

Theorem

A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive definite iff its leading principle minors are positive.

Proof.

Since **A** is symmetric, it is diagonalizable. We have $det(\mathbf{A}) = det(\mathbf{T}^{-1}\mathbf{D}\mathbf{T}) = det(\mathbf{T})^{-1}det(\mathbf{D})det(\mathbf{T}) = det(\mathbf{D}) = \prod_{i=1}^{n} \lambda_i$ and any minor of **A** equals to the multiplication of remaining eigenvalues. Therefore, **A** is positive definite $\Leftrightarrow \lambda_i > 0$ for all $1 \le i \le n \Leftrightarrow$ the leading principle minors of **A** are positive.

 Direction \(\lefta\) is *not* true in the semidefinite cases: A is positive semidefinite iff all principle minors (not only the leading principle minors) are nonnegative

Shan-Hung Wu (CS, NTHU)

Quadratic Forms (1/2)

- A function $f : \mathbb{R}^n \to \mathbb{R}$ is *quadratic* iff it can be written as: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^\top \mathbf{A}\mathbf{x} - \mathbf{b}^\top \mathbf{x} + c$ (the scalar coefficients do not matter)
 - **A** is symmetric, and f is said to be a **quadratic form** if **b** = **0** and c = 0
- Our best intuition of a definite matrix is the shape of its corresponding quadratic form in a graph:

Figure : Quodratic form for a) positive definite; b) negative definite; c) positive definite but singular; d) indefinite matrix.

Shan-Hung Wu (CS, NTHU)

- Why $f(x) = \frac{1}{2}x^{\top}Ax b^{\top}x + c$ is a paraboloid when A is positive definite?
- Since \boldsymbol{A} is symmetric, we have $f'(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\top} (\boldsymbol{A} + \boldsymbol{A}^{\top}) - \boldsymbol{b}^{\top} = \boldsymbol{x}^{\top} \boldsymbol{A} - \boldsymbol{b}^{\top}$
 - This implies that the solution to Ax b = 0, say x^* , is a stationary point of f
- We can rewrite $f(x) = \frac{1}{2}(x^* + (x - x^*))^\top A(x^* + (x - x^*)) - b^\top (x^* + (x - x^*)) + c = \cdots = f(x^*) + \frac{1}{2}(x - x^*)^\top A(x - x^*)$ [Proof]

Outline

1 Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms
- Matrix Exponential and Logarithm**
- Geometry Geometry
 - Affine Spaces
 - Line Segments and Curves
 - Hyperplanes
 - Convex Sets
 - Neighborhoods
- 3 Point Set Topology**
 - Topological Spaces
 - Manifolds

Shan-Hung Wu (CS, NTHU)

- The set of matrices $\mathbb{R}^{m imes n}$ can be viewed as a vector space \mathbb{R}^{mn}
- How to define a norm in this space?

Definition (Matrix Norm)

A function $\|\cdot\|: \mathbb{R}^{m \times n} \to \mathbb{R}$ is called the *matrix norm* if it satisfies: a) $\|A\| \ge 0, \forall A \in \mathbb{R}^{m \times n}$ and the equality holds iff A = O (positivity); b) $\|rA\| = |r| \|A\|, \forall A \in \mathbb{R}^{m \times n}, r \in \mathbb{R}$ (homogeneity); c) $\|A + B\| \le \|A\| + \|B\|, \forall A, B \in \mathbb{R}^{m \times n}$ (triangle inequality). For our purpose, we consider only the *sub-multiplicative norm* that satisfies an additional property for square matrices: d) $\|AB\| \le \|A\| \|B\|, \forall A, B \in \mathbb{R}^{n \times n}$.

- A common matrix norm is the *Frobenius norm*: $\|\mathbf{A}\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{1/2}$
 - Equivalent to the Euclidean norm in \mathbb{R}^{mn}
 - Is a sub-multiplicative norm [Proof]
- The Frobenius norm is unitarily invariant
 - Given an unitary (or orthogonal) matrix U, $\|UA\|_F = \|Ua_1\|_2 + \dots + \|Ua_1\|_2 = \|a_1\|_2 + \dots + \|a_1\|_2 = \|A\|_F$
- If $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is symmetric, then $\|\boldsymbol{A}\|_F = \|\boldsymbol{U}^\top \boldsymbol{D} \boldsymbol{U}\|_F = \|\boldsymbol{D}\|_F = \sqrt{\sum_{i=1}^n \lambda_i^2}$

Low Rank Approximation

Theorem

Given a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $k < \operatorname{rank}(\mathbf{A})$, the solution to the problem

 $\arg_{\boldsymbol{M}} \min \|\boldsymbol{A} - \boldsymbol{M}\|_{F}$ subject to $\operatorname{rank}(\boldsymbol{M}) = k$

is $\mathbf{M} = U\widetilde{\mathbf{D}}U^{\top}$, where the columns of \mathbf{U} are the eigenvectors of \mathbf{A} and $\widetilde{\mathbf{D}}$ is a diagonal matrix containing only the k largest eigenvalues of \mathbf{A} (with others being 0).

Proof.

We only give an intuitive proof here. Since \boldsymbol{A} is symmetric, we have $\boldsymbol{A} = \boldsymbol{U}\boldsymbol{D}\boldsymbol{U}^{\top}$, where $\boldsymbol{U}^{\top}\boldsymbol{U} = \boldsymbol{I}$. Recall that the Frobenius norm is unitarily invariant, we have an equivalent objective: $\arg_{\boldsymbol{M}}\min\|\boldsymbol{D}-\boldsymbol{U}^{\top}\boldsymbol{M}\boldsymbol{U}\|_{F}$. Since \boldsymbol{D} is diagonal, $\boldsymbol{U}^{\top}\boldsymbol{M}\boldsymbol{U}$ should be diagonal too to minimize the objective, implying that $\boldsymbol{M} = \boldsymbol{U}\widetilde{\boldsymbol{D}}\boldsymbol{U}^{\top}$ for some diagonal matrix $\widetilde{\boldsymbol{D}}$. Let λ_i and \widetilde{d}_i be the *i*th diagonal element of \boldsymbol{D} and $\widetilde{\boldsymbol{D}}$ respectively, we have $\|\boldsymbol{D}-\boldsymbol{U}\boldsymbol{M}\boldsymbol{U}^{\top}\|_{F} = \sqrt{\sum_{i=1}^{n} (\lambda_i - \widetilde{d}_i)^2}$. Since $\operatorname{rank}(\boldsymbol{M}) = k$, only k of the \widetilde{d}_i s can be nonzero. Therefore, \boldsymbol{M} is the best approximation when these nonzero \widetilde{d}_i s are the k largest eigenvalues of \boldsymbol{A} .

Shan-Hung Wu (CS, NTHU)

- We can define another type of matrix norms based on vector norms
- Let $\|\cdot\|_{(m)}$ and $\|\cdot\|_{(n)}$ be two vector norms, we define the *induced norm* for $\mathbb{R}^{m \times n}$ as: $\|\mathbf{A}\| = \max_{\|\mathbf{x}\|_{(n)}=1} \|\mathbf{A}\mathbf{x}\|_{(m)}$, $\forall \mathbf{A} \in \mathbb{R}^{m \times n}$
 - We say that a matrix norm ||·|| is *induced by* (or *compatible with*) the vector norms ||·||_(m) and ||·||_(n) if for all A ∈ ℝ^{m×n}, ||Ax||_(m) ≤ ||A|| ||x||_(n)
 - The induced norm is a sub-multiplicative norm [Homework]

Induced Norms (2/2)

Theorem

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, the matrix norm $\|\mathbf{A}\|$ induced by the Euclidean norm equals $\sqrt{\lambda_{\max}}$, where λ_{\max} is the largest eigenvalue of the matrix $\mathbf{A}^{\top}\mathbf{A}$.

Proof.

Since $\mathbf{A}^{\top}\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, from our previous discussions we know that $\mathbf{A}^{\top}\mathbf{A}$ is diagonalizable. Let $\lambda_1 \ge \cdots \ge \lambda_n$ be its eigenvalues and $\mathbf{x}_1, \cdots, \mathbf{x}_n$ be the orthonormal set of eigenvectors corresponding to these eigenvalues^a. Consider an arbitrary \mathbf{x} , $\|\mathbf{x}\|_{(2)} = 1$, we have $\mathbf{x} = c_1\mathbf{x}_1 + \cdots + c_n\mathbf{x}_n$ and $\langle \mathbf{x}, \mathbf{x} \rangle = c_1^2 + \cdots + c_n^2 = 1$. Furthermore, $\|\mathbf{A}\mathbf{x}\|_{(2)}^2 = \langle \mathbf{x}, \mathbf{A}^{\top}\mathbf{A}\mathbf{x} \rangle = \langle c_1\mathbf{x}_1 + \cdots + c_n\mathbf{x}_n, c_1\lambda_1\mathbf{x}_1 + \cdots + c_n\lambda_n\mathbf{x}_n \rangle = \lambda_1 c_1^2 + \cdots + \lambda_n c_n^2 \leqslant \lambda_1 (c_1^2 + \cdots + c_n^2) = \lambda_1$, implying that $\|\mathbf{A}\mathbf{x}\|_{(2)} \leqslant \sqrt{\lambda_1}$. Note the maximum of $\|\mathbf{A}\mathbf{x}\|_{(2)}$ is attainable when $\mathbf{x} = \mathbf{x}_1$. Therefore, $\|\mathbf{A}\| = \sqrt{\lambda_1} = \sqrt{\lambda_{\max}}$.

^aActually, $\mathbf{A}^{\top}\mathbf{A}$ is positive semidefinite, as $\mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \langle \mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{x} \rangle \ge 0, \forall \mathbf{x} \in \mathbb{R}^{n}.$ So $\lambda_{1} \ge \cdots \ge \lambda_{n} \ge 0.$ • Applying the similar argument above, we have:

Theorem (Rayleigh's Quotient)

Given a symmetric matrix $P \in \mathbb{R}^{n \times n}$, then $\forall x \in \mathbb{R}^{n}$,

$$\lambda_{\min} \leqslant \frac{x^{\top} P x}{x^{\top} x} \leqslant \lambda_{\max},$$

where λ_{min} and λ_{max} are the smallest and largest eigenvalues of P respectively.

•
$$\frac{x^\top P x}{x^\top x} = \lambda_i$$
 when x is the corresponding eigenvector of λ_i

Shan-Hung Wu (CS, NTHU)

Outline

1 Linear Algebra

- Vector Spaces, Linear Transformations, and Matrices
- Matrices
- Eigenvalues and Eigenvectors
- Inner Products and Norms
- Positive Definite Matrices and Quadratic Forms**
- Matrix Norms

Matrix Exponential and Logarithm**

🕽 Geometr

- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
- 3 Point Set Topology**
 - Topological Spaces
 - Manifolds

Shan-Hung Wu (CS, NTHU)

Matrix Exponential

Caution!

This subsection requires the knowledge of Taylor's theorem.

- Given a scalar x, by Taylor's theorem we have $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$
- Similarly, given a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, we can define the *matrix* exponential as $e^{\mathbf{A}} = \sum_{k=0}^{\infty} \frac{\mathbf{A}^{k}}{k!} = \mathbf{I} + \mathbf{A} + \frac{\mathbf{A}^{2}}{2!} + \dots \in \mathbb{R}^{n \times n}$

•
$$e^{O} = I$$
, $(e^{A})^{\top} = e^{A^{\top}}$ [Proof]

• Unlike the scalar version, $e^{m{A}+m{B}}
eq e^{m{A}}e^{m{B}}$ unless $m{A}m{B}=m{B}m{A}$

- If **A** and **B** commute, we can write $(\mathbf{A} + \mathbf{B})^k = \sum_{i=0}^k {k \choose i} \mathbf{A}^i \mathbf{B}^{k-i}$, so $\frac{(\mathbf{A} + \mathbf{B})^k}{k!} = \sum_{i=0}^k \frac{\mathbf{A}^i}{i!} \frac{\mathbf{B}^{k-i}}{(k-i)!}, \text{ implying}$ $e^{\mathbf{A} + \mathbf{B}} = \sum_{k=0}^\infty \sum_{i=0}^k \frac{\mathbf{A}^i}{i!} \frac{\mathbf{B}^{k-i}}{(k-i)!} = \sum_{r=0}^\infty \frac{\mathbf{A}^r}{r!} \sum_{s=0}^\infty \frac{\mathbf{B}^s}{s!} = e^{\mathbf{A}} e^{\mathbf{B}}$
- If $A = UDU^{-1}$ is diagonalizable, we have $e^A = Ue^DU^{-1}$, where e^D is a diagonal matrix whose the *i*th diagonal element equals to e^{λ_i} [Proof]

The exponential e^A of an anitsymmetric (resp. antihermitian) matrix
 A is orthogonal (resp. unitary)

•
$$(e^{\mathbf{A}})^{\top}e^{\mathbf{A}} = e^{\mathbf{A}^{\top}}e^{\mathbf{A}} = e^{-\mathbf{A}}e^{\mathbf{A}} = e^{\mathbf{O}} = \mathbf{I}$$

- We call **B** the *matrix logarithm* of **A** iff $A = e^{B}$, denoted by ln **A**
- Not every matrix has a logarithm
- Nevertheless, if a matrix A is diagonalizable, we can easily find its logarithm
 - Let $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^{-1}$, we have $\ln \mathbf{A} = \mathbf{U}(\ln \mathbf{D})\mathbf{U}^{-1}$, where $\ln \mathbf{D}$ is a diagonal matrix whose the *i*th diagonal element equals to $\ln \lambda_i$ [Proof]

Outline

- Linear Algebra
 - Vector Spaces, Linear Transformations, and Matrices
 - Matrices
 - Eigenvalues and Eigenvectors
 - Inner Products and Norms
 - Positive Definite Matrices and Quadratic Forms**
 - Matrix Norms
 - Matrix Exponential and Logarithm**

Geometry

- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
- 3 Point Set Topology**
 - Topological Spaces
 - Manifolds

Shan-Hung Wu (CS, NTHU)

- Recall that the linear variety is defined as $\{x \in \mathbb{R}^n : Ax = y\}$ for some $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^m$
 - If we can find a solution x_0 , then for any $v \in \mathcal{N}(\boldsymbol{A})$, $x = v + x_0$ is also a solution
 - A linear variety is a "translated nullspace"
- Geometry discusses the properties of "shapes" in a vector space
 - Since these shapes may not pass through the origin, they lie in the "translated subspaces"

Definition (Affine Space)

Given a vector space \mathcal{V} , a set of points \mathcal{A} is called the *affine space* iff there exists a map $\mathcal{A} \times \mathcal{V} \to \mathcal{A}$, denoted by $\mathbf{a} + \mathbf{v}$ for all $\mathbf{a} \in \mathcal{A}$ and $\mathbf{v} \in \mathcal{V}$, with the following properties:

a) For all
$$a \in \mathcal{A}$$
, $a + \mathbf{0} = a$;

b) For all
$$a \in A$$
 and $v, w \in V$, $(a + v) + w = a + (v + w)$;

c) For any $a, b \in \mathcal{A}$ there exists a unique $v \in \mathcal{V}$ such that a = b + v.

- Property c) can be written as a b = v
- Intuitively, an affine space is a "translated vector space" where the origin is undefined

Outline

- Linear Algebra
 - Vector Spaces, Linear Transformations, and Matrices
 - Matrices
 - Eigenvalues and Eigenvectors
 - Inner Products and Norms
 - Positive Definite Matrices and Quadratic Forms**
 - Matrix Norms
 - Matrix Exponential and Logarithm**

Geometry

• Affine Spaces

Line Segments and Curves

- Hyperplanes
- Convex Sets
- Neighborhoods

3 Point Set Topology**

- Topological Spaces
- Manifolds

Shan-Hung Wu (CS, NTHU)

Definition (Line Segment)

Given two points x and y in an affine space, the set $\{x + \delta(y - x) : \delta \in [0, 1]\}$ is called the *line segment* between x and y.

- A line segment is a "shape" in the affine space where x and y lie
- Note there is no reason why x and y cannot be vectors
 - If points are vectors, they can be summed directly to get a new point (vector)
 - A line segment between two vectors $x, y \in \mathbb{R}^n$ can be defined alternatively as the *convex combination* of x and y, i.e., $\{(1-\delta)x + \delta y \in \mathbb{R}^n : \delta \in [0,1]\}$
- We focus on the vector points from now on

Definition (Curve)

Let \mathcal{I} be an interval of real numbers. A *curve* is a continuous function $\gamma: \mathcal{I} \to \mathbb{R}^n$. We also say that the curve γ is *parametrized* by the continous function.

- E.g., let $\mathcal{I} = [0, 2\pi]$, we can define a circle (a closed curve) γ in \mathbb{R}^2 parametrized by $\gamma(t) = [\cos(t), \sin(t)]^\top, \forall t \in \mathcal{I}$
- A curve is called the *plane curve* when n = 2 and *space curve* when n = 3
Outline

- Linear Algebra
 - Vector Spaces, Linear Transformations, and Matrices
 - Matrices
 - Eigenvalues and Eigenvectors
 - Inner Products and Norms
 - Positive Definite Matrices and Quadratic Forms**
 - Matrix Norms
 - Matrix Exponential and Logarithm**

Geometry

- Affine Spaces
- Line Segments and Curves

Hyperplanes

- Convex Sets
- Neighborhoods
- 3 Point Set Topology**
 - Topological Spaces
 - Manifolds

Hyperplanes (1/2)

Definition (Hyperplane)

Given $y \in \mathbb{R}$ and $a \in \mathbb{R}^n$ where $a \neq 0$, the set $H = \{x \in \mathbb{R}^n : a^\top x = y\}$ is called the *hyperplane* of \mathbb{R}^n .

- A hyperplane is an affine space translated from the subspace $\{x \in \mathbb{R}^n : a^\top x = 0\}$ of \mathbb{R}^n
 - Since the dimension of the subspace is always n-1, we say that the hyperplane always has dimension n-1
- A hyperplane H divides \mathbb{R}^n into the *positive half-space* $H_+ = \{ x \in \mathbb{R}^n : a_1x_1 + \dots + a_nx_n \ge 0 \}$ and *negative half-space* $H_- = \{ x \in \mathbb{R}^n : a_1x_1 + \dots + a_nx_n \le 0 \}$

• Both H_+ and H_- are subspaces of \mathbb{R}^n [Proof]

 For any x₁, x2 ∈ H, the vector a is orthogonal to x₁ − x₂ and is called the normal of H

• As
$$\langle a, x_1 - x_2 \rangle = a^{\top} x_1 - a^{\top} x_2 = y - y = 0$$

• If a linear variety $\{x \in \mathbb{R}^n : Ax = y\}$ has dimension less than n (i.e., $A \neq O$), then it is the intersection of a finite number of hyperplanes

Outline

- Linear Algebra
 - Vector Spaces, Linear Transformations, and Matrices
 - Matrices
 - Eigenvalues and Eigenvectors
 - Inner Products and Norms
 - Positive Definite Matrices and Quadratic Forms**
 - Matrix Norms
 - Matrix Exponential and Logarithm**

Geometry

- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
- 3 Point Set Topology**
 - Topological Spaces
 - Manifolds

Convex Sets (1/2)

 So far we have seen many sets, e.g., vector spaces, subspaces, affine spaces, shapes (line segments and sets consisting of a single point), etc.

Definition (Convex Set)

A set Θ of points is *convex* iff for any $\boldsymbol{u}, \boldsymbol{w} \in \Theta$, we have $(1-\delta)\boldsymbol{u} + \delta\boldsymbol{v} \in \Theta, \forall \delta \in (0,1).$

Why "convex?"

Convex Sets (1/2)

 So far we have seen many sets, e.g., vector spaces, subspaces, affine spaces, shapes (line segments and sets consisting of a single point), etc.

Definition (Convex Set)

A set Θ of points is *convex* iff for any $\boldsymbol{u}, \boldsymbol{w} \in \Theta$, we have $(1-\delta)\boldsymbol{u} + \delta\boldsymbol{v} \in \Theta, \forall \delta \in (0,1).$

• Why "convex?" Any line segment cannot have portions that fall outside of the convex set

Convex Sets (2/2)

- Examples: Rⁿ, a half-space, a hyperplane, a linear variety, a line or line segment, a set of a single point, etc.
- Convex subsets of \mathbb{R}^n have the following properties [Homework]:
 - Given a convex set Θ and $\beta \in \mathbb{R}$, the set $\beta \Theta = \{ x : x = \beta v, v \in \Theta \}$ is convex
 - Given a convex sets Θ_1 and Θ_2 , the set $\Theta_1 + \Theta_2 = \{ \mathbf{x} : \mathbf{x} = \mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 \in \Theta_1, \mathbf{v}_2 \in \Theta_2 \}$ is convex
 - The intersection of convex sets is convex
- A point x ∈ Θ is called an *extreme point* of Θ iff there are no two distinct points u, v ∈ Θ such that x = (1-δ)u+δv for some δ ∈ (0,1)
 - E.g., vertices (i.e., corners) of a polyhedron or endpoints of a line segment

Outline

- Linear Algebra
 - Vector Spaces, Linear Transformations, and Matrices
 - Matrices
 - Eigenvalues and Eigenvectors
 - Inner Products and Norms
 - Positive Definite Matrices and Quadratic Forms**
 - Matrix Norms
 - Matrix Exponential and Logarithm**

Geometry

- Affine Spaces
- Line Segments and Curves
- Hyperplanes
- Convex Sets
- Neighborhoods
- 3 Point Set Topology**
 - Topological Spaces
 - Manifolds

Neighborhoods (1/2)

Definition (Neighborhood)

A *neighborhood* of a point $x \in \mathbb{R}^n$ is the set $\{y \in \mathbb{R}^n : ||y - x|| < \varepsilon\}$, where ε is some positive real number.

- A point x in a set S is said to be an *interior point* of S iff S contains some neighborhood of x
- A point *x* is said to be a *boundary point* of *S* iff every neighborhood of *x* contains a point in *S* and a point not in *S*
 - x may or may not be an element of S
 - The set of all boundary points of S is called the **boundary** of S
- An *open set* S contains a neighborhood of each of its points (i.e., contains only interior points)

• Given $a, b \in \mathbb{R}$, the sets (a, b) and $\{[a, b]^\top : a^2 + 5b^2 < 1\}$ are open

A set S is said to be *closed* if its complement ℝⁿ\S is open (or intuitively, if it contains the boundary)

• [a, b] is closed

Neighborhoods (1/2)

Definition (Neighborhood)

A *neighborhood* of a point $x \in \mathbb{R}^n$ is the set $\{y \in \mathbb{R}^n : ||y - x|| < \varepsilon\}$, where ε is some positive real number.

- A point x in a set S is said to be an *interior point* of S iff S contains some neighborhood of x
- A point *x* is said to be a *boundary point* of *S* iff every neighborhood of *x* contains a point in *S* and a point not in *S*
 - x may or may not be an element of S
 - The set of all boundary points of S is called the **boundary** of S
- An *open set* S contains a neighborhood of each of its points (i.e., contains only interior points)

• Given $a, b \in \mathbb{R}$, the sets (a, b) and $\{[a, b]^\top : a^2 + 5b^2 < 1\}$ are open

A set S is said to be *closed* if its complement ℝⁿ\S is open (or intuitively, if it contains the boundary)

• [a, b] is closed

- A set S that can be contained in a ball of finite radius is said to be *bounded*
 - That is, for any point $x \in S$, there exists some positive real number $r \in \mathbb{R}$ such that ||x|| < r
- A set S is *compact* iff it is both closed and bounded
 - Given $a, b \in \mathbb{R}$. Is (a, b) compact?
 - How about [a, b]?

Outline

- Linear Algebra
 - Vector Spaces, Linear Transformations, and Matrices
 - Matrices
 - Eigenvalues and Eigenvectors
 - Inner Products and Norms
 - Positive Definite Matrices and Quadratic Forms**
 - Matrix Norms
 - Matrix Exponential and Logarithm**
- Geometr
 - Affine Spaces
 - Line Segments and Curves
 - Hyperplanes
 - Convex Sets
 - Neighborhoods
- 3 Point Set Topology**
 - Topological Spaces
 - Manifolds

- Line segments, curves, surfaces, hyperplanes are basically sets of points
- Point set topology treat these sets as "spaces" and discusses their properties

Caution!

This section requires the knowledge of function continuity and limit.

Geometry vs. Topology

- Imagine that a shape is made by rubber
 - It can be "deformed" (e.g., either rotated, sheared, flipped, scaled etc. by linear by transformations; or bended, stretched, twisted etc. by nonlinear functions)
 - But not teared, or cut and then glued
- *Geometry* discusses the properties (e.g., volume, curvature, distance, angle, etc.) of shapes that are changed as they are deformed
- Topology discusses the shapes' nature which is unaffected by deformation

Shan-Hung Wu (CS, NTHU)

• Examples of the topological properties?

- Examples of the topological properties? Loosely speaking,
 - Dimension (number of element in a basis)
 - Compactness
 - Connectedness
 - Separation (we will see this later when talking about the Hausdorff spaces)
- Properties of a topological space are described using the open sets

Definition (Topological Space)

Given a set of point X. Let T be a set of subsets of X. Then (X,T) is called a **topological space** iff

a) Both \emptyset and X are in \mathfrak{T} ;

b) Any union of arbitrary (possibly infinitely) many elements of ${\mathfrak T}$ is an element of ${\mathfrak T};$

c) Any intersection of finitely many elements of T is an element of T. We call T a *topology* on X, and the sets in T are called the *open sets*.

- When X = Rⁿ, our previous definition of an open set (i.e., a set containing an ε-ball around each its point) is just a special case here
 - The collection of those open sets is called the standard topology on \mathbb{R}^n
 - We can define different topologies on \mathbb{R}^n such as the cofinite topology: $\mathcal{T} = \{X \setminus A : A = X \text{ or } A \text{ is finite}\}$

Definition (Neighborhood)

A **neighborhood** (or specifically, **open neighborhood**) of a point p in a topological space (X, \mathcal{T}) is an open set in \mathcal{T} containing p.

- Our previous definition of a neighborhood (i.e., an ε-ball) is a special case
 - An ε -ball is itself an open set (with a particular shape)

Definition (Limit of a Sequence)

In a topological space (X, \mathcal{T}) , a point $p^* \in X$ is called the *limit* of a sequence of points $\{p^{(k)}\}_{k \in \mathbb{N}}$ in X iff for every neighborhood S of p^* , there exists $K \in \mathbb{N}$, such that $p^{(k)} \in S$ for all k > K.

- The limit of a sequence may not be unique, as the neighborhoods of points may not be separable
 - Consider two points p and q in the cofinite topological space on \mathbb{R} , any neighborhood of p (e.g., $\mathbb{R} \setminus \{q\}$) and q (e.g., $\mathbb{R} \setminus \{p\}$) must overlap

• An important topological property is that whether two points are separable:

Definition (Hausdorff Space)

A topological space (X, \mathcal{T}) is **Hausdorff** iff given any two points p and q in X, if there exists a neighborhood U of p and V of q respectively such that $U \cap V = \emptyset$.

- Every sequence $\{p^{(k)}\}_k$ has a unique limit p^* in the Hausdorff space, and we write $\lim_{k\to\infty} p^{(k)} = p^*$
- We can then perform calculus in the Hausdorff spaces

Definition (Continuity)

A function $f: X \to Y$ between two topological spaces (X, \mathfrak{T}_X) and (Y, \mathfrak{T}_Y) is **continuous** iff given any open set $U \in \mathfrak{T}_Y$, the inverse image $f^{-1}(U) = \{x \in X : f(x) \in U\}$ is open.

- How does this related with our previous definition of continuity?
 - Recall that a function f is continuous at a iff $\lim_{x \to a} f(x) = f(a)$; that is, given any $\varepsilon > 0$, there exists $\delta > 0$ such that for all x, $||x a|| < \delta$, we have $||f(x) f(a)|| < \varepsilon$

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a function between two standard topological spaces $(\mathbb{R}^n, \mathfrak{T}_n)$ and $(\mathbb{R}^m, \mathfrak{T}_m)$. For any $\mathbf{a} \in \mathbb{R}^n$, $\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = f(\mathbf{a})$ iff for any open set $U \in \mathfrak{T}_m$, $f^{-1}(U)$ is open.

Proof.

⇒ If $f^{-1}(U) = \emptyset$ we are done since the empty set is always open. Otherwise, consider any point $\mathbf{a} \in f^{-1}(U)$. Since U is open, there exists $\varepsilon > 0$ such that the set $\{\mathbf{y} \in \mathbb{R}^m : \|\mathbf{y} - f(\mathbf{a})\| < \varepsilon\}$ is contained in U. By definition of $\lim_{\mathbf{x}\to\mathbf{a}} \mathbf{f}(\mathbf{x}) = f(\mathbf{a})$, there exists $\delta > 0$ such that the set $\{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{a}\| < \delta\}$ is contained in $f^{-1}(U)$. Since for any point \mathbf{a} , its neighborhood is contained in $f^{-1}(U)$. $f^{-1}(U)$ is an open set. \Leftrightarrow Given any $\varepsilon > 0$, define $U = \{\mathbf{y} \in \mathbb{R}^m : \|\mathbf{y} - f(\mathbf{a})\| < \varepsilon\}$. Since $f^{-1}(U)$ is an open set and $\mathbf{a} \in f^{-1}(U)$, there exists $\delta > 0$ such that $\{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{a}\| < \delta\}$ is contained in $f^{-1}(U)$, implying that if $\|\mathbf{x} - \mathbf{a}\| < \delta$ then $\|f(\mathbf{x}) - f(\mathbf{a})\| < \varepsilon$.

Homeomorphism

Definition (Homeomorphism)

Two topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are **homeomorphic** (or **topological isomorphic**) if there exists a function $f: X \to Y$ such that: a) f is a bijection (i.e., one-to-one and onto); b) f is an open map (i.e., for any open set $U \subseteq X$, $\{f(x): x \in U\} \subseteq Y$ is open);

c) f is continuous.

- Intuitively, two homeomorphic spaces are "the same" from the topological point of view
 - All topological properties are preserved
- Is (-1,1) homeomorphic to \mathbb{R} ?

Homeomorphism

Definition (Homeomorphism)

Two topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are **homeomorphic** (or **topological isomorphic**) if there exists a function $f: X \to Y$ such that: a) f is a bijection (i.e., one-to-one and onto); b) f is an open map (i.e., for any open set $U \subseteq X$, $\{f(x): x \in U\} \subseteq Y$ is open);

c) f is continuous.

- Intuitively, two homeomorphic spaces are "the same" from the topological point of view
 - All topological properties are preserved
- Is (-1,1) homeomorphic to \mathbb{R} ?

• Yes, as we can define $f: (-1,1) \to \mathbb{R}, f(x) = \tan(\frac{\pi}{2}x)$

• Also, $\{[x_1, x_2, x_3]^{ op} \in \mathbb{R}^3 : x_3 = x_1 + x_2\}$ is homeomorphic to \mathbb{R}^2

• We say the function $f : \mathbb{R}^2 \to \mathbb{R}^3$, $f(x_1, x_2) = (x_1, x_2, x_1 + x_2)$, *embeds* \mathbb{R}^2 into \mathbb{R}^3

Outline

- 1 Linear Algebra
 - Vector Spaces, Linear Transformations, and Matrices
 - Matrices
 - Eigenvalues and Eigenvectors
 - Inner Products and Norms
 - Positive Definite Matrices and Quadratic Forms**
 - Matrix Norms
 - Matrix Exponential and Logarithm**
- Geometr 2
 - Affine Spaces
 - Line Segments and Curves
 - Hyperplanes
 - Convex Sets
 - Neighborhoods

3 Point Set Topology**

- Topological Spaces
- Manifolds

Shan-Hung Wu (CS, NTHU)

Manifolds (1/2)

• Many complex shapes in the real world have a simple shape when we look at a just tiny portion of them

Definition (Manifold)

A manifold (M, \mathcal{T}) of dimension k embedded in \mathbb{R}^n is a Hausdorff space such that for any point $p \in M \subseteq \mathbb{R}^n$, there exists a small neighborhood of p which is homeomorphic to \mathbb{R}^k .

- Curves and surfaces are examples of manifolds of dimension 1 and 2 respectively
- The mapping between the local neighborhoods and \mathbb{R}^k need not be linear
 - Consider a unit circle $M = \{[x_1, x_2]^\top : x_1^2 + x_2^2 = 1\}$ in \mathbb{R}^2 , any point \boldsymbol{p} lies in at least one of the 4 open sets $M_{top} = \{[x_1, x_2]^\top \in M : x_2 > 0\}$, $M_{right} = \{[x_1, x_2]^\top \in M : x_1 > 0\}$, M_{bottom} , and M_{left}
 - Each of these sets is homeomorphic to \mathbb{R}^k (e.g., we can define $f_{top}(x_1, x_2) = \tan(\frac{\pi}{2}x_1)$)

Manifolds (2/2)

- When we say a shape looks like a "donut" in a 3-dimensional space we are looking at its *extrinsic* properties from the 3-dimensional space
- Manifold provides an *intrinsic* pint of view of a shape
 - All topological properties of a tiny portion of a manifold is the same with those of the Euclidean space
- Generally, a manifold can be constructed by "patching" the overlapping local neighborhoods (e.g., M_{top}, M_{right}, M_{bottom}, and M_{left})
- The invertible mappings (e.g., f_{top} , f_{right} , f_{bottom} , and f_{left}) between these neighborhoods and \mathbb{R}^k are called *charts*
- A specific collection of charts which covers a manifold is called the atlas
 - An atlas is not unique as we can use different combinations of charts to cover a manifold