Linear Algebra and Geometry

Shan-Hung Wu

shwu@cs.nthu.edu.tw

Department of Computer Science,
National Tsing Hua University, Taiwan

NetDB-ML, Spring 2013

Shan-Hung Wu (CS, NTHU) Linear Algebra and Geometry NetDB-ML, Spring 2013



© Linear Algebra
@ Vector Spaces, Linear Transformations, and Matrices
@ Matrices
@ Eigenvalues and Eigenvectors
Inner Products and Norms
Positive Definite Matrices and Quadratic Forms**
Matrix Norms
@ Matrix Exponential and Logarithm**
© Geometry
o Affine Spaces
@ Line Segments and Curves
@ Hyperplanes
@ Convex Sets
@ Neighborhoods
© Point Set Topology**
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@ Manifolds
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@ The conditional A= B reads either “if A than B,” “Aonly if B,” “Ais
sufficient for B,” or "B is necessary for A"
@ The biconditional A< B reads “A if and only if (or iff) B”

{x:xeR,x>5}or{x € R:x > b5} reads “the set of all x such that x is
real and x is greater than 5"

@ We denote a function as f:V —W. The V and W are called domain
and codomain (or target) of f respectively

o Titles marked with ** can be skipped for the first time reading

e Statements marked with [Proof] mean you are encouraged to prove it
yourself

e Statements marked with [Homework] are your assignments
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© Linear Algebra
@ Vector Spaces, Linear Transformations, and Matrices
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Vector Spaces

Definition (Vector Space)

The set V ={[vi, va,---,vn] | : vi € R} CR” is called a vector space over
R2 iff there are maps:

1) Vector addition V xV — V, denoted by v+ w for all v,w €V,

2) Scalar multiplication R x 'V — V, denoted by a- v or av for all a€ R and
vev;

with the following properties:

a) Forall v,w eV, v+ w =w+ v (commutativity);

b) For all u,v,w €V, u+ (v+w) = (u+ w) + v (associativity);

c) There exists 0 € V such that 0+ v =v for all v € V;

d) For each v €V, there exists (—v) € V with v+ (—v) =0;

e) ForallaeR and v,w €7V, a(v+w) = aw + av (distributivity);

f) For all a,beR and v €V, (a+b)v = av + bv (distributivity);

g) Foralla,beRand veV, a-(b-v)=(a-b)- v (associativity);

h) ForallveV, 1-v=v.

While any field is applicable, we focus on the real numbers here.

o We call the n-tuple v a vector and the scalar v; the ith component
of v
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Bases and Coordinates (1/2)

Definition (Linear Independence)

A set of vectors {v1,vo, -, v,} in a vector space V is called linear
independent iff ajvi+avo+---+a,vp,=0=a;=ar=---=a, =0.

@ In other words, there is no vector in this set that can be the linear
combination of others

Definition (Span)

A set of all linear combinations of vi,vs,---, v, is called the span of
. n
Vi,V2, -+, Vp, e, span(vi,va, -+, vy) ={) [ qajvi:ai,as, -, a, € R}
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Bases and Coordinates (2/2)

Definition (Basis)

A set of vectors {vi,vo, -+, v,} in a vector space V forms a basis iff: a)
vi,Vs, -+, Vv, are linear independent; b) span(vy, va, -, v,) =V.

@ All bases of a space V must have the same number of vectors [Proof],
and this number is called the dimension of V, denoted as dim(V)

@ Any v €V can be expressed as v =) " _, a;v;, and the coefficients a;,
i=1,2,---,n, are called the coordinates of v with respect to the
basis {vi,v2,---,vp}

o The coordinates of a vector change with the basis

o The natural basis for R" is
e; =1[1,0,--- ,O]T,eQ:[O,l,--- 0T, e, =1[0,0,--- T

e The coordinates of a vector with respect to this basis are identical to
the components
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Definition (Subspace)

A subset U of a vector space V is called a subspace if U is closed under
the vector addition and scalar multiplication.

o Thatis, if v,we U, then v+w & U and av e U for all a
e Every subspace must contain 0
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Definition (Subspace)

A subset U of a vector space V is called a subspace if U is closed under
the vector addition and scalar multiplication.

o Thatis, if v,we U, then v+w & U and av e U for all a

e Every subspace must contain 0, as Vv € U, —v exists and
v+(—v)=0eclU
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Definition (Sum Space)

Let W and U be two subspaces of V, the set {w+u:w e W, uec U} is
called the sum space of W and U, denoted by W+ U.

e W+1U is a subspace of V [Proof]
o dim(W+U) = dim(W) +dim(U) — dim(WNU)

o Let {vy, -+, vy} be a basis for WNU, then we can find {w1, -, wp}

and {uq, - ,u,} such that {wy, -, wp,,vi, -+, vk} and
{uy,---  u,, vy, -+, vy} are the bases for W and U respectively

o We can see that {wy, -+ ,wp,uy, -+, Uy, vy, -, Vi) is a basis for
W+U [Proof]

o Therefore, dim(W+U)=m+n+k=(m+k)+(n+k)—k =
dim('W) + dim(U) —dim(WNU)
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Linear Transformation

Definition (Linear Transformation)

A function £:V — W , where V and ‘W are vector spaces, is called a linear
transformation iff:

1) L(av) = aLl(v) for every v €V and a € R;

2) L(v+w)=L(v)+L(w) for every v,w € V.

Definition (Range)

| A

The range (or image) of a linear transformation £:V — W is
{L(v):v €V}, denoted as R(L) (or im(L)).

| A

Definition (Nullspace)

The nullspace (or kernel) of a linear transformation £:V — W is
{veV:L(v) =0}, denoted as N(L) (or ker(L)).

@ R(L) and N(L) are subspaces of W and 'V respectively [Proof]
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Dimension Theorem

Theorem

Let £L:V — W be a linear transformation, we have
dim(V) = dim(R(L)) + dim(N(£)).

Let {v;}; and {w;}; be the bases for N(£) and R(L) respectively?. There
exists {uj}j € V such that £(uj) = wj. We claim that the set {v;}; U{u;};
forms a basis of V.

We first prove that span(v;, u;) =V. Given any v € V, there exist scalars
{yj}j such that L(v) = ijjo. We have

0 =L(v)—zjijj- =L(v)—zjij(uJ-] :L(V—ij_,-u_,-). So
V—ijjllj € N(L), implying that there exists {«;}; such that

v—2 iyjuj =3 ;o;v;. Therefore, v=3 ;ovi+3 ;yu;.

Next, we prove that v;, u; are linear independent. If

2 ioivi+ iyju; =0, we have

0=2L(0)=L(X;oqvi+ ) jyju) =L(3; ovi) +L(3yjui) =3 ;yjwj,
implying that y; =0 for all j. Substitute y; back to the equation

> iovi+ Y ;yjuj =0 we have 3 ojv; =0, meaning o; =0 forall i. [

?Apparently, v; and w; are distinct.
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Matrix Representation (1/2)

@ Given two bases {vi,vo, -+, v} in R" and {w1,ws, -, wp}in R™,
L:R"™ — R™ can be represented by a matrix A, A€ R™*", such that
forevery veVand weW, L(v) = w, we have Ax =y, where
x=[x1,x2,--- ., xp) " and y =[y1,y2,---,yml | are coordinates of v and
w respectively

o By definition,

L(v) =Lxqvi+-+xva) =xaL(ve) 4+ +x,L(vp)
:Xl(allwl+"'+amlwm)+'"+Xn(alnwl+"'+amnwm)u

L(V) =w=y1wi+- - +YymWn
o Comparing the coefficients of w; we have

a1 - din X1 1

ami e Amn Xn Ym
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Matrix Representation (2/2)

o Rewrite A as [a1,---,a,] where a; denote columns, we have
Yy =xia1+:---+Xpapn
e y is a linear combination of the columns of A
e Why a function £ satisfying £(av) =aLl(v) and
Lv+w)=L(v)+L(w) for every v,w €V,a € R is called “linear?”
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Matrix Representation (2/2)

o Rewrite A as [a1,---,a,] where a; denote columns, we have
y=xia1+---+xpan
e y is a linear combination of the columns of A
e Why a function £ satisfying £(av) =aLl(v) and
Lv+w)=L(v)+L(w) for every v,w €V,a € R is called “linear?”
o We can see from the matrix representation that each y;, 1 <j < m, is

mapped from a “linear function” f; over xy, -, x,, i.e.,
6(X1,~~~ an) = aj1X1+"'+aann =Y
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Outline
© Linear Algebra

@ Matrices
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Rank of a Matrix

Definition (Rank)

Given an m x n matrix A and let a; be the ith column of A. The number
of linear independent columns of A is called the rank of A, denoted as
rank(A).

@ rank(A) =dim(span(ay,---,a,)) = dim(R(A))
o rank(A) = rank(A") [Proof: Using the Dimension Theorem]
e rank(A+ B) < rank(A) + rank(B) [Proof: R(A+B) CR(A)+R(B),
and dim(R(A)+R(B)) < dim(R(A) + dim(R(B))]
e rank(AB) < min{rank(A), rank(B)} [Proof: R(AB) C R(A)]
o rank(AT A) = rank(A)
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Column and Row Operations

@ The rank of A is invariant under the column (resp. row) operations
[Proof]:

o Multiplying columns (resp. rows) of A by nonzero scalars

e Interchanging the columns (resp. rows)

e Adding to a given column (resp. row) a linear combination of other
columns (resp. rows)

o Denote A~B and A~ B respectively if we can obtain B by
performing the column and row operations over A

o If AXB or AL B, then rank(A) = rank(B)

a b
o Eg. [abcTlabc| 0 0 and has rank 1
0 0

O O N
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Trace

Definition (Trace)

Given an n X n square matrix A, the trace of A is defined as
tr(A)=) [

o tr(A+B) =tr(A)+tr(B), and tr(A) =tr(A") [Proof]
e tr(AB) = tr(BA) [Proof]
o A and B need not be square
o In particular, tr(x " x) = tr(xx
e Cyclic property: tr(ABC) =tr(CAB) = tr(BCA) [Proof]

o Generally, tr(CBA) # tr(ABC), unless both A, B, and C are
symmetric (i.e., equal to their transpose):
tr(ABC)=tr(ATBTCT)=tr((CBA)")=tr(CBA)

)

Shan-Hung Wu (CS, NTHU) Linear Algebra and Geometry NetDB-ML, Spring 2013



Determinant (1/2)

Definition (Determinant)

Given an n X n square matrix A, where A= [a;,---, a,], there exists a
unique function det : R"™*" — R, satisfying the properties:

a) det(ay, - a_q, 0y +pa; a1, 2,) =

adet(ay,--- ,ak_l,a,((l),akﬂ,--- ,an)+

Bdet(ay,--- ,ak_l,a,((2),ak+1,-~- ,an), Vo, B ER;

b) det(ay,---,a;,---,aj,---,a,) =0 if a; = a; for some i and J;

c) det(e1, -~ ,ep) =1.
We call det(A) the determinant of A.

o Let I, =[ey, --,e,] be an identity matrix, we have det(l,) =1

@ det(A) changes its sign if we interchanges the columns of A [Proof]
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Determinant (2/2)

@ The unique function det : R"*" — R can be written as

n

det(A) =) (—1)*""ay det(Ay),
k=1

where Aj; is the (n—1) x (n—1) matrix obtained by deleting the ith
row and jth column [Proof]

@ The determinant of A can be also regarded as the sign volume of
the image of the unit cube

Given any c € R and A, B € R™*", we have a) det(cA) = c"det(A); b)
det(AT) = det(A); ¢) det(AB) = det(A)det(B).

e Can be proved by either tedious calculation or the signed volume
interpretation

Shan-Hung Wu (CS, NTHU)
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Linear Equations (1/2)

e Given x e R", y e R™, and A€ R™*" Ax =y represents a system of
linear equations as follows:

aixy+---+apxp=y1

am X1+ +a8mnXn = Ym

Let [A,yl =la1,---,an,yl be the augmented matrix, the system of linear
equations Ax =y has a solution iff rank(A) = rank([A, y]).
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Linear Equations (2/2)

Proof.

=: y is a linear combination of the columns of A, so

rank([A,y]) = dim(span(ay,--- ,an,y)) =dim(span(ay,---,a,)) = rank(A).
<: Let rank(A) = rank([A,y]) =r and ay,---, a, be the linear
independent columns of both A and [A, y]. Since y is not one of
ap,---,a,, it is their linear combination; that is, there exists x1,---, x; such
that y =xja1 +---+x,a,. So x =[x1,---,x/] | is the solution. O]

| A\

Definition (Linear Variety)

The set {x € R": Ax = y} is called the linear variety for A € R™*" and
yeR™.

o If xp is a solution, then for all x € N(A), xo+ x is also a solution
@ Is linear variety a subspace of R"?
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Linear Equations (2/2)

Proof.

=: y is a linear combination of the columns of A, so

rank([A,y]) = dim(span(ay,--- ,an,y)) =dim(span(ay,---,a,)) = rank(A).
<: Let rank(A) = rank([A,y]) =r and ay,---, a, be the linear
independent columns of both A and [A, y]. Since y is not one of
ap,---,a,, it is their linear combination; that is, there exists x1,---, x; such
that y =xja1 +---+x,a,. So x =[x1,---,x/] | is the solution. O]

| A

Definition (Linear Variety)

The set {x € R": Ax = y} is called the linear variety for A € R™*" and
yeR™.

o If xp is a solution, then for all x € N(A), xo+ x is also a solution

@ Is linear variety a subspace of R"? No, as 0 is not included

@ However, we still say that the linear variety has dimension r if
dim(N(A)) =r
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Cramer’'s Rule

Theorem (Cramer’s Rule)

Given a square, invertible matrix A € R™*", the solution to a system of
linear equations Ax =y can be obtained by x; = det(A;)/det(A) for
i=1,---,n, where A; is the matrix formed by replacing the ith column of
A by the column vector y.

@ The proof is easy [Proof]
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Invertibility

Definition (Nonsingular Matrix)

A square matrix A € R"*" is nonsingular (or invertible) if there exists
another matrix B € R"*" such that AB = BA=1,. We call B the inverse
of A and denote it as A~ L.

o (AT) 1=(A™1)T and det(A™1) = det(A)~! [Proof]

Given A € R"™*", the following conditions are equivalent:

a) A is invertible;

b) There exists a unique solution x satisfying Ax =y, x,y € R";
¢) N(A) =0 (trivial kernel);

d) The columns are linearly independent (i.e., rank(A) = n);

e) det(A) #0;

f) AT is invertible;

g) The rows of A are linearly independent;

h) All of the eigenvalues of A are nonzero (explained later).
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Outline
© Linear Algebra

@ Eigenvalues and Eigenvectors
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Change of Basis

@ Recall that given the bases of domain and range, a linear
transformation can be represented by a matrix

o What's the relation between matrices obtained from different bases?

Definition (Change of Basis Matrix)

Consider two bases {vy1, -+, vy} and {v{,---,v}} for R” and a vector

v € R™. There are two sets of coordinates x; and x;/, 1 </ < n, such that
vi, -, vallxa, - xal T =v=1v], - v, -, x]T. We call

[vy, - V'] vy, -, v,] the change of basis matrix (or transition

matrix) from {vy,---,vp} to{v{,---, v}
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Similar Matrices

Definition (Similar Matrices)

Two square matrices A, B € R"™" are similar if there exists nonsingular
matrices C € R"*" such that A= C'BC.

o If A and B are similar, then tr(A) = tr(B) and det(A) = det(B)

[Proof]

o Let £L:R" — R™ be a linear transformation, {v1,---,v,} and
{v{,---,v]} be two bases of domain, {w1,---,wn}and {wy, -, w/}
be two bases of range, and S and T be the change of basis matrices
from {vy,--- ,vp} to{vy,---, v} and {wy, -, wp}to {w], -+, w)}

respectively. We have the following relations:
R"” A R™
S| 1T
—
R"” B R™

@ Similar matrices correspond to the same linear transform with respect
to different bases
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Eigen Decomposition

@ Why do we need eigenvalues and eigenvectors?

o Given a linear transformation, we want to find a basis (if existing) such
that the corresponding matrix representation D is diagonal

e So, given coordinates x € R" with respect to this basis, the effect of
the transformation is just a scaling to each coordinate, as
Dx = [dy1x1, - ,d,-,,,X,-JT

o An example application to compression: We can drop small djs
without changing the original transformation too much
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Eigenvalues and Eigenvectors (1/3)

Definition (Eigenvalues and Eigenvectors)

Given A € R™ " a nonzero vector x satisfying Ax = Ax, where A is a
scalar (possibly complex), is called the eigenvector of A, and A is called
the eigenvalue.

@ x is an eigenvector iff the matrix Al — A is singular, as
Ax =Ax = Ax—Ax =0= (A — A)x =0 and Al — A has nontrivial
kernel (note x is nonzero by definition)

o We have 0 = det(A\l —A) =N"+a, A" 14+ a;A+ag; that is, the
characteristic polynomial of A equals 0

@ The eigenvalues are the roots (possibly with multiplicity) of the above
equation

@ For each eigenvalue A;, we can obtain its corresponding eigenvectors
by solving (A;l—A)x =0
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Multiplicities

@ The eigenvector (i.e., solution to (A;/ —A)x =0) of an eigenvalue A;
is not unique

o If Ax =A;x, so does A(cx) =A;(cx) forany ce R
o N(A;lI — A), called the eigenspace of A;, has dimension at least 1
e Algebraic multiplicity of an eigenvalue A; is the multiplicity of the
corresponding root of the characteristic polynomial

o Geometric multiplicity of A; is the dimension of N(A;I — A), the
number of linear independent eigenvectors we solve from

AI—A)x=0
o Geometric multiplicity must be less than or equal to the algebraic
multiplicity
o We may not be able to find n linear independent eigenvectors for a
matrix
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Eigenvalues and Eigenvectors (2/3)

If A€ R"™ " has n linear independent eigenvectors {uy,--- ,up}, then
{uy, -+, un} form a basis of R”.

@ Given coordinates x € R" with respect to this basis, the effect of the
transformation is just a scaling to each coordinate, as
A(xqur+- -+ xpup) =x1A(ur)+- -+ x,A(up) = x1 A U1+ -+ xpApup

@ Under this basis, the transformation can be represented by a diagonal
matrix D, where djj = A; (counting the multiplicity)

e We say A is diagonalizable if there exists a basis such that
A=T 'DT =UDU !, where U=[uy,--,u, and
T=U ‘e, e,

@ T is the change of basis matrix from the natural basis to {uy, -+, up}:
n n
o 1
T:[ullhl'yun]_ \J/ \LT:[ult."yun]_

R” D R"
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Eigenvalues and Eigenvectors (3/3)

o tr(A)=>_7_1\; and det(A) =[[7_; A [Proof]
o If two matrices A, B € R"*" are similar, then their characteristic

polynomials (and eigenvalues) are equal, as
det(M —A) =det(M — T 'BT)=det AT 'T—T'BT) =
det(T1)det(AM — B)det(T) = det(A — B)

A square matrix A € R"™*" s invertible iff all eigenvalues of A are nonzero. \

@ The above theorem dose not imply any consequence between the
diagonalizability and invertibility of a matrix

0. , . . . 1 0].
0 0l diagonalizable but not invertible, yet [ 11 ] is
invertible but not diagonalizable

o Eg, [ L
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Outline
© Linear Algebra

@ Inner Products and Norms
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Inner Products

Definition (Inner Product)

A function (-,-) : VxV — C is called the inner product if it satisfies:
a) (x,x) > 0,Vx €V and the equality holds iff x =0 (positivity);

b) (x,y) = (y,x),Vx,y € V (conjugate symmetry);

c) (x+y,z)=(x,z)+(y,z),Vx,y,z €V (additivity);

d) (rx,y)=r(x,y),Vx,y € V,r € C (homogeneity).

o Note we have (x,ry) =7(x,y) based on properties b) and d)

@ A common example is the Euclidean inner product:
(x,y)=35" xyi=x"yforany x,y € R"

e Two vectors x and y are said to be orthogonal if (x,y) =0

o The Euclidean norm of x is defined as || x| = \/(x,x) = /> {1 x?

@ A vector space with an inner product/norm defined is called the inner
product/normed space respectively
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Cauchy-Schwarz Inequality

Theorem (Cauchy-Schwarz Inequality)

For any x,y € R", we have |(x,y)| < ||x|||ly|| and the equality holds iff
x = oy for some x € R.

Proof.
The proof is obvious when x =0 or y =0. Otherwise, consider the case
where x and y are unit vectors; that is, ||x|| = |ly|| = 1. Then

0< Ix—ylP = (x—y,x—y) = Ix|2—2(x,y) + |y [P =2—2(x,y),
implying (x,y) <1. The equality holds iff x = y. Similarly, by

0 < |lx+yl||* we have (x,y) > —1 and the equality holds iff x = —y. For
any nonzero vectors x and y, we have

—1< e/ xlL v/ Iyl < 1= 1,31 < Ixlly | and the equality holds iff
x/||x|]| ==xy/|lyl; thatis, x = ay for some « € R. O

v

e Since —1 < (x,y) /x|l |lyll <1, we can define the included angle ©
of x and y by cos® = (x,y) /x| ||yl
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Definition (Vector Norm)

A function ||-||: 'V — R is called the vector norm if it satisfies:
a) ||x]| = 0,¥x €V and the equality holds iff x =0 (positivity);
b) ||rx|| =Irl||x]|,¥x € V,r € R (homogeneity);

o) Ix+yl <lx|+|lyll.Vx,y €V (triangle inequality).

@ The Euclidean norm is a vector norm [Proof]

@ We can define the p-norm directly without going through the inner
. yee|P 1/p <
product first: ”X”p:{ (ZI|XI| ) I<p<o
max{|x;[}; p =00

o Euclidean norm is also known as the 2-norm
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Symmetric and Hermitian Matrices (1/2)

o A matrix A e R"™" is symmetric if AT = A; and antisymmetric if
AT =—A

e A matrix A € C"™"is Hermitian if A= A* (conjugate transpose);
and antihermitian if A* = —A

All eigenvalues of a real symmetric matrix are real. \

Let Ax =Ax, where x # 0. We have (Ax,x) = (Ax,x) =A(x,x). On the
other hand, (Ax,x) =xT AT x = (x,ATx) =X (x,x). This implies

A{x,x) =A(x,x) = (A—A) (x,x) =0. Since (x,x) >0 for any x #0,
A—A must be 0; that is, A is real. O
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Symmetric and Hermitian Matrices (2/2)

Theorem

Any real symmetric matrix A € R"" has n eigenvectors that are mutually
orthogonal.

Here we only prove a special case where the n eigenvalues are distinct.
Suppose Ax; = A1x1 and Axy; = Ayxp, where Ay £ Ay, Then
(Ax1,x2) = (A1 x1,Xx2) = A1 (X1, X2). However,

<X1,ATX2> = (x1, Ax2) = (x1,A2x2) = Az (x1,x2). Therefore we have

)\1 <X1,X2>=)\2 <X1,X2>. Since 7\175)\2, <X1,X2>=0. ]
@ Real symmetric matrices are always diagonalizable
e A=UDU", where U=1[uy, - ,u,) and u; are the eigenvectors of A
@ Since the columns of U are orthogonal with each other, U'Uis
diagonal

e By picking the eigenvectors of unit norm, we have U U = I, and
therefore U1 =UT
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Orthogonal and Unitary Matrices

o A matrix U having inverse as U is called the orthogonal matrix
o If UeC""and U*U =1, then U is called the unitary matrix

e Unitary (and orthogonal) matrices are always invertible and
diagonalizable [Proof]

e Given any orthogonal (or unitary) matrix U, we have

1Ux[l, = VxTUT Ux = ||x],

o As a linear transformation, U preserves distance so the “shape” of a set
of vectors in the domain can be preserved in the range
o Examples?
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Orthogonal and Unitary Matrices

o A matrix U having inverse as U is called the orthogonal matrix
o If UeC""and U*U =1, then U is called the unitary matrix

e Unitary (and orthogonal) matrices are always invertible and
diagonalizable [Proof]

e Given any orthogonal (or unitary) matrix U, we have
|Uxll = VxTUT Ux = x],

o As a linear transformation, U preserves distance so the “shape” of a set
of vectors in the domain can be preserved in the range

o Examples? Rotation, reflection etc.

o On the other hand, the Euclidean norm is unitarily invariant
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Orthogonal Projection (1/3)

Definition (Orthogonal Complement)

Given a subspace V of R". The orthogonal complement of V is defined
by V1t ={x € R": (v,x) =0,Vv € V}.

| A

Definition (Orthogonal Projector)

A matrix P € R"*" is called a orthogonal projector onto V if Px €V and
x —Px € V* for all x € R".

4
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Orthogonal Projection (2/3)

Theorem
Given a matrix A, we have R(A)L =N(AT) and N(A)L =R(AT).

Proof.

C: Suppose that x € R(A)L, we have (Ay)Tx =y (AT x) =0 for all
y € R", implying that ATx =0 and x e N(AT). So R(A)L CN(AT).
O: If now x eN(AT), then y T (AT x) = (Ay)"x =0 for all y € R",
implying x € R(A)+ and R(A)L DN(AT).

Thus R(A)L =N(AT). O

| A

o The proof of N(A)L =R(AT) follows from the above and the fact
that (V+)+ =V [Proof].
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Orthogonal Projection (3/3)

A matrix P is an orthogonal projector (on to R(P)) iff P> =P =P,

Proof.

=: Since x — Px € R(P)* for all x € R", we have R(/ —P) C R(P)*.
But from the previous theorem R(P)~ =N(P ). This implies that
R(I—P) CN(P") and therefore PT(I—P)y =0 for all y € R”. We have
PT(1—P)=0=P" =PTP. Itis easy to verify that P=P " = P?.

<: For any x € R" we have

(Py)T(I—P)x=y " PT(I—P)x=y " Ox =0 for all y € R". Thus,

(I —P)x € R(P)* and P is an orthogonal projector. O

v
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Normal Equations (1/2)

@ Linear varity includes all solutions of Ax = b, where A € R™*" and
bcRM

o What if Ax = b has no solution (that is, b is not a linear combination
of the columns of A, or b ¢ R(A))?
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Normal Equations (1/2)

@ Linear varity includes all solutions of Ax = b, where A € R™*" and

bcRM
o What if Ax = b has no solution (that is, b is not a linear combination
of the columns of A, or b ¢ R(A))?

@ We can instead find x in R(A) which is closest to b

Theorem
Given A€ R™*" and b € R™, finding x € R" minimizing |Ax — b|| is
equivalent to solving AT Ax = A" b.

| \

Proof.

We can see that ||Ax — b|| is minimized when the Ax — b is normal to
R(A). Thatis, (Ax—b,w) =0,Yw € R(A) & (Ax—b,Ay) =0,Vy €

R" < (Ay)' (Ax—b)=0,VyeR" < yTATAx—yTATb=0,Vy € R"&
y (ATAx—A"b)=0Vy e R" = ATAx—ATb=0= AT Ax =

ATb. m)
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Normal Equations (2/2)

o ATAx=A"b s called the normal equation (as Ax — b is normal to
R(A)) and must have at least one solution
o ATbeR(AT)
o Since R(ATA)CR(A") and rank(AT A) = rank(AT), we have
RATA) =R(AT)
o Thatis, ATbe R(ATA)
@ AT Ax = AT b has exactly one solution iff AT A is invertible

o ATAis symmetric, therefore diagonalizable
o AT A is invertible iff all its eigenvalues are nonzero
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© Linear Algebra

@ Positive Definite Matrices and Quadratic Forms**
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Before We Start...

This subsection requires the knowledge of matrix calculus.
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Positive Definite Matrices (1/2)

Definition (Definite Matrices)

A matrix A € R"*" is called positive definite (resp., positive
semidefinite/negative definitive/negative semidefinite) iff for any x € R”,
x #0, we have x " Ax >0 (resp., > 0/<0/<0)

@ There is no loss of generality if we assume A is symmetric
o As x| Ax :xT(%A—i— %AT)X and the matrix %A—i—%AT is always
symmetric [Proof]

A symmetric matrix A € R"*" s positive definite (or semidefinite) iff all
eigenvalues of A are positive (or nonnegative).

46 / 90
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Positive Definite Matrices (2/2)

Let T be an orthogonal matrix whose column are eigenvectors of A. For
any matrix, let y = T 1x = T Tx. We have
xTAx=y ' TTATy = > 7 1 Aiy?, and the proof follows. Ol

@ What does positive definite mean anyway?

o Before we start, define the graph of a function :V — R, VCR”, to
be the set {[x ", f(x)]T : x € V}
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Principle Minors (1/2)

@ A minor of A€ R" " is the determinant of a matrix obtained by
deleting some row and column of A

@ The principle minors of A are det(A) and n—1 minors obtained by
successively deleting some row and column of A

e The leading principle minors of A are det(A) and n—1 minors
obtained by successively deleting the last row and column of A
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Principle Minors (2/2)

@ There is a simple way to check if a matrix is positive definite:

Theorem

A symmetric matrix A € R"*" |s positive definite iff its leading principle
minors are positive.

Proof.

Since A is symmetric, it is diagonalizable. We have

det(A) = det(T *DT) = det(T) 'det(D)det(T) = det(D) = [["_; \i
and any minor of A equals to the multiplication of remaining eigenvalues.
Therefore, A is positive definite < A; >0 for all 1 <7< n < the leading
principle minors of A are positive. Ol

| A

<

@ Direction < is not true in the semidefinite cases: A is positive
semidefinite iff all principle minors (not only the leading principle
minors) are nonnegative
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Quadratic Forms (1/2)

o A function f:R” — R is quadratic iff it can be written as:
f(x)=1xTAx— b" x + ¢ (the scalar coefficients do not matter)
e Ais symmetric, and f is said to be a quadratic formif b=0 and c=0
@ Our best intuition of a definite matrix is the shape of its corresponding
quadratic form in a graph:

Figure : Quodratic form for a) positive definite; b) negative definite; c) positive
definite but singular; d) indefinite matrix.
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Quadratic Forms (2/2)

o Why f(x) = %XTAX—bTX—i-C is a paraboloid when A is positive
definite?
@ Since A is symmetric, we have
f'(x)=ixT(A+AT)—b" =xTA-b"
o This implies that the solution to Ax —b =0, say x*, is a stationary
point of f

@ We can rewrite

f(x)= %(x*+(x—x*))TA(x*+(x—x*))—bT(x*—i—(x—x*))—f—c:

o= f(x*)+ L (x—x*) TA(x — x*) [Proof]
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Outline
© Linear Algebra

@ Matrix Norms
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Matrix Norms

@ The set of matrices R™*” can be viewed as a vector space R™"

@ How to define a norm in this space?

Definition (Matrix Norm)

A function ||-|| : R™*" — R is called the matrix norm if it satisfies:
a) ||A]| = 0,YA € R™*" and the equality holds iff A= O (positivity);
b) ||rA| =Irl||All,YA € R™*" r € R (homogeneity);

c) |A+B| < ||Al|+|B]],VA, B € R™*" (triangle inequality).

For our purpose, we consider only the sub-multiplicative norm that
satisfies an additional property for square matrices:

d) | AB| < ||All|B||,VA, B € R"<.
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Frobenius Norms

@ A common matrix norm isl}cge Frobenius norm:
lAle = (27 ) 2)

o Equivalent to the Euclidean norm in R™”
o Is a sub-multiplicative norm [Proof]

@ The Frobenius norm is unitarily invariant

e Given an unitary (or orthogonal) matrix U,
[UA[lg=[[Uaslly+---+[|Uall, = [|asfl, +-- +lasll, = |All ¢

o If AcR"™ " is symmetric, then

1Al =[|UT DU = IDllg =/ X717
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Low Rank Approximation

Theorem

Given a symmetric matrix A € R"*" and k < rank(A), the solution to the
problem
argp min [|A— M|
subject to rank(M) = k

is M= UDUT, where the columns of U are the eigenvectors of A and D
is a diagonal matrix containing only the k largest eigenvalues of A (with
others being 0).

Proof.

We only give an intuitive proof here. Since A is symmetric, we have
A=UDUT, where UT U = I. Recall that the Frobenius norm is unitarily
invariant, we have an equivalent objective: argp, min ||D— UTMU”F.
Since D is diagonal, UT MU should be diagonal too to minimize the
objective, implying that M = UDUT for some e diagonal matrix D. Let )\
and d; be the ith diagonal element of D and D respectively, we have

UDfUMUTHF = /X7, (\i—d;)2. Since rank(M) = k, only k of the

d;s can be nonzero. Therefore, M is the best approximation when these
nonzero djs are the k largest eigenvalues of A. O
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Induced Norms (1/2)

@ We can define another type of matrix norms based on vector norms

o Let ||[[( and [|-||(,) be two vector norms, we define the induced
norm for R™*™ as: || Al| = max |y =1 | AX[ (), VA € RT>7

o We say that a matrix norm ||-|| is induced by (or compatible with)
the vector norms |||,y and [|-[|, if for all A€ R™*",
AX[[ () < IAI1x]l (o)

e The induced norm is a sub-multiplicative norm [Homework]
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Induced Norms (2/2)

Given A € R™*", the matrix norm ||A|| induced by the Euclidean norm
equals /Amax, where Anax is the largest eigenvalue of the matrix ATA.

| A

Proof.

Since ATAc R"™" is symmetric, from our previous discussions we know
that AT A is diagonalizable. Let A; >--- > A, be its eigenvalues and
Xx1,--+,Xp be the orthonormal set of eigenvectors corresponding to these
eigenvalues®. Consider an arbitrary x, |x|[(;) =1, we have

X =c1X1+ -+ cpx, and (x,x) = C12 +---4+c2 =1. Furthermore,
HAx||%2] = <x,ATAx> = (c1X1+ -+ CnXpn, CAAIX1 + -+ CaApXp) =
Acf+- -+ Anch SAi(ef 44 c3) = A1, implying that [|Ax|| ) < VA1
Note the maximum of ||Ax||,) is attainable when x = x1. Therefore,

HAH:\/}TIZ v Amax- O

4Actually, ATAis positive semidefinite, as
xT AT Ax = (Ax,Ax) > 0,Yx €R". So Ay > --- > A, > 0.

\
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Rayleigh’s Quotient

@ Applying the similar argument above, we have:

Theorem (Rayleigh’'s Quotient)

Given a symmetric matrix P € R"*", then Vx € R",

xT Px

Nt &
min & T T

< Amax,

where Amin and Amax are the smallest and largest eigenvalues of P
respectively.

x| Px
xTx

° =A; when x is the corresponding eigenvector of A;

Shan-Hung Wu (CS, NTHU) Linear Algebra and Geometry NetDB-ML, Spring 2013



© Linear Algebra

@ Matrix Exponential and Logarithm**
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Matrix Exponential
This subsection requires the knowledge of Taylor’s theorem. \

: : K
e Given a scalar x, by Taylor's theorem we have eX =3 2 (%

@ Similarly, given a square matrix AcR™A, we can define the matrix
exponential as eA =3 3 (4 C—l+A+A or A L
0=1, (eA)T =eA" [Proof]
@ Unlike the scalar version, eA*B £ e®eB unless AB = BA
o If Aand B commute, we can write (A+B)* =3 ¥ (¥) A'B*~/, so
A+B)k kK A Bki . .
( Jlra) =2 - 0%(2 N implying
i k—i r s
=Y oY ik ‘/f B) =20 Lo oy =efle®
e fA=UDU 'is diagonalizable, we have eA=UePU™ 1, where el is
a diagonal matrix whose the ith diagonal element equals to e’ [Proof]
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Matrix Logarithm

o The exponential e® of an anitsymmetric (resp. antihermitian) matrix
A is orthogonal (resp. unitary)

o (eA)TeA=eA eA=eAeA=e0 =]
o We call B the matrix logarithm of A iff A= eB, denoted by InA
@ Not every matrix has a logarithm

@ Nevertheless, if a matrix A is diagonalizable, we can easily find its
logarithm

o Let A=UDU ! we have nA=U(InD)U ™}, where InD is a
diagonal matrix whose the ith diagonal element equals to InA; [Proof]
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Outline

© Geometry
o Affine Spaces
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Affine Spaces (1/2)

@ Recall that the linear variety is defined as {x € R": Ax = y} for some
AcR™ " and y € R™

o If we can find a solution xgq, then for any v € N(A), x = v+ xq is also
a solution
o A linear variety is a "translated nullspace"

@ Geometry discusses the properties of “shapes” in a vector space

o Since these shapes may not pass through the origin, they lie in the
“translated subspaces”
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Affine Spaces (2/2)

Definition (Affine Space)

Given a vector space V, a set of points A is called the affine space iff
there exists a map A xV — A, denoted by a+v forallac A and veV,
with the following properties:

a)Forallac A, a+0=ga;

b) Forallac Aand v,w eV, (a+v)+w=a+(v+w);

c) For any a, b € A there exists a unique v € V such that a=b+v.

@ Property c) can be written as a—b=v
@ Intuitively, an affine space is a “translated vector space” where the
origin is undefined
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Outline

© Geometry

@ Line Segments and Curves
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Definition (Line Segment)

Given two points x and y in an affine space, the set
{x+8(y—x):5€10,1]} is called the line segment between x and y.

@ A line segment is a “shape” in the affine space where x and y lie
@ Note there is no reason why x and y cannot be vectors

o If points are vectors, they can be summed directly to get a new point
(vector)

o A line segment between two vectors x,y € R" can be defined
alternatively as the convex combination of x and y, i.e.,
{(1—8)x+doy eR":5€[0,1]}

@ We focus on the vector points from now on
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Curves

Definition (Curve)

Let J be an interval of real numbers. A curve is a continuous function
v:J— R". We also say that the curvey is parametrized by the continous
function.

o E.g., let J=0,27], we can define a circle (a closed curve) y in R?
parametrized by y(t) = [cos(t),sin(t)]T,Vt €J

@ A curve is called the plane curve when n =2 and space curve when
n=3
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Outline

© Geometry

@ Hyperplanes
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Hyperplanes (1/2)

Definition (Hyperplane)

Given y € R and a € R" where a#0, theset H={xeR":a ' x =y} is
called the hyperplane of R”".

@ A hyperplane is an affine space translated from the subspace
{xeR":a'x =0} of R"

@ Since the dimension of the subspace is always n—1, we say that the
hyperplane always has dimension n—1
@ A hyperplane H divides R" into the positive half-space
H, ={xeR":a1x; +---+apx, > 0} and negative half-space
H_={xeR":a1xg 4+ +apx, <0}

e Both H and H_ are subspaces of R" [Proof]
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Hyperplanes (2/2)

@ For any x1,x2 € H, the vector a is orthogonal to x; —x» and is called

the normal of H

o As (a,x;—x5) =a'x;—a xa=y—y=0

o If a linear variety {x € R": Ax = y} has dimension less than n (i.e.,
A # O), then it is the intersection of a finite number of hyperplanes
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© Geometry

@ Convex Sets
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Convex Sets (1/2)

@ So far we have seen many sets, e.g., vector spaces, subspaces, affine
spaces, shapes (line segments and sets consisting of a single point),
etc.

Definition (Convex Set)

A set © of points is convex iff for any u, w € ©, we have
(1-%)u+dve®,Voe(0,1).

e Why “convex?”
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Convex Sets (1/2)

@ So far we have seen many sets, e.g., vector spaces, subspaces, affine
spaces, shapes (line segments and sets consisting of a single point),
etc.

Definition (Convex Set)

A set © of points is convex iff for any u, w € ©, we have
(1-%)u+dve®,Voe(0,1).

@ Why “convex?”’Any line segment cannot have portions that fall outside
of the convex set
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Convex Sets (2/2)

o Examples: R”, a half-space, a hyperplane, a linear variety, a line or line
segment, a set of a single point, etc.

o Convex subsets of R” have the following properties [Homework]:

o Given a convex set © and 3 € R, the set fO={x:x=Pv,v€B}is
convex

o Given a convex sets ©; and ©,, the set
0:+06, :{X IX=Vi+Vy vy €01,V E @2} is convex

o The intersection of convex sets is convex

@ A point x € O is called an extreme point of © iff there are no two
distinct points u, v € © such that x = (1—8)u+6v for some 6 € (0,1)

o E.g., vertices (i.e., corners) of a polyhedron or endpoints of a line
segment
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© Geometry

@ Neighborhoods
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Neighborhoods (1/2)

Definition (Neighborhood)

A neighborhood of a point x € R" is the set {y € R": ||y — x|| < €}, where
€ is some positive real number.

@ A point x in a set S is said to be an interior point of S iff S contains
some neighborhood of x
@ A point x is said to be a boundary point of S iff every neighborhood
of x contains a point in S and a point not in S
e x may or may not be an element of S
@ The set of all boundary points of S is called the boundary of S
e An open set S contains a neighborhood of each of its points (i.e.,
contains only interior points)
o Given a,b € R, the sets (a,b) and {[a, b] | : a2 +5b? < 1} are open
@ A set S is said to be closed if its complement R"\S is open (or
intuitively, if it contains the boundary)
o [a,b] is closed
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Neighborhoods (1/2)

Definition (Neighborhood)

A neighborhood of a point x € R" is the set {y € R": ||y — x|| < €}, where
€ is some positive real number.

@ A point x in a set S is said to be an interior point of S iff S contains
some neighborhood of x
@ A point x is said to be a boundary point of S iff every neighborhood
of x contains a point in S and a point not in S
e x may or may not be an element of S
@ The set of all boundary points of S is called the boundary of S
e An open set S contains a neighborhood of each of its points (i.e.,
contains only interior points)
o Given a,b € R, the sets (a,b) and {[a, b] | : a2 +5b? < 1} are open
@ A set S is said to be closed if its complement R"\S is open (or
intuitively, if it contains the boundary)
o [a,b] is closed
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Neighborhoods (2/2)

@ A set S that can be contained in a ball of finite radius is said to be

bounded

e That is, for any point x € S, there exists some positive real number
r € R such that ||x|| < r

@ A set S is compact iff it is both closed and bounded

o Given a,beR. Is (a, b) compact?
e How about [a, b]?
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© Point Set Topology**
@ Topological Spaces
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Point Set Topology

@ Line segments, curves, surfaces, hyperplanes are basically sets of points

@ Point set topology treat these sets as “spaces” and discusses their
properties

This section requires the knowledge of function continuity and limit.
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Geometry vs. Topology

@ Imagine that a shape is made by rubber
o It can be "deformed” (e.g., either rotated, sheared, flipped, scaled etc.
by linear by transformations; or bended, stretched, twisted etc. by
nonlinear functions)
o But not teared, or cut and then glued
e Geometry discusses the properties (e.g., volume, curvature, distance,
angle, etc.) of shapes that are changed as they are deformed
@ Topology discusses the shapes’ nature which is unaffected by
deformation
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Topological Properties

o Examples of the topological properties?

Shan-Hung Wu (CS, NTHU) Linear Algebra and Geometry NetDB-ML, Spring 2013 80 / 90



Topological Properties

@ Examples of the topological properties? Loosely speaking,

Dimension (number of element in a basis)

Compactness

Connectedness

Separation (we will see this later when talking about the Hausdorff
spaces)

@ Properties of a topological space are described using the open sets
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Topological Spaces

Definition (Topological Space)

Given a set of point X. Let T be a set of subsets of X. Then (X,T) is
called a topological space iff

a) Both () and X are in T,

b) Any union of arbitrary (possibly infinitely) many elements of T is an
element of T;

c) Any intersection of finitely many elements of T is an element of 7.
We call T a topology on X, and the sets in T are called the open sets.

v

@ When X =R", our previous definition of an open set (i.e., a set
containing an e-ball around each its point) is just a special case here

o The collection of those open sets is called the standard topology on
Rn

o We can define different topologies on R" such as the cofinite topology:
T={X\A:A= X or Ais finite}
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Neighborhood

Definition (Neighborhood)

A neighborhood (or specifically, open neighborhood) of a point p in a
topological space (X,T) is an open set in T containing p.

@ Our previous definition of a neighborhood (i.e., an e-ball) is a special
case

e An e-ball is itself an open set (with a particular shape)
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Sequences and Limits

Definition (Limit of a Sequence)

In a topological space (X,7), a point p* € X is called the limit of a
sequence of points {p*¥)},cry in X iff for every neighborhood S of p*, there
exists K € N, such that p¥) € S for all k> K.

@ The limit of a sequence may not be unique, as the neighborhoods of
points may not be separable

o Consider two points p and ¢ in the cofinite topological space on R, any
neighborhood of p (e.g., R\{q}) and g (e.g., R\{p}) must overlap

Shan-Hung Wu (CS, NTHU) Linear Algebra and Geometry NetDB-ML, Spring 2013 83 / 90



@ An important topological property is that whether two points are
separable:

Definition (Hausdorff Space)

A topological space (X, T) is Hausdorff iff given any two points p and ¢ in
X, if there exists a neighborhood U of p and V of g respectively such that
unv=9.

o Every sequence {p'¥)}, has a unique limit p* in the Hausdorff space,
and we write limy_ o, p'¥) = p*

@ We can then perform calculus in the Hausdorff spaces
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Function Continuity (1/2)

Definition (Continuity)

A function f: X — Y between two topological spaces (X,Tx) and (Y,Ty)
is continuous iff given any open set U € Ty, the inverse image
f~L(U)={x e X:f(x) € U} is open.

@ How does this related with our previous definition of continuity?

o Recall that a function f is continuous at a iff lim,_,f(x) = f(a); that
is, given any € > 0, there exists & > 0 such that for all x, ||x —a|| <9,
we have ||f(x)—f(a)]| <e
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Function Continuity (2/2)

Let f:R"™ — R™ be a function between two standard topological spaces
(R™,T,) and (R™,T,,). Forany a € R”, limy_,,f(x) = f(a) iff for any
open set U € T, f~1(U) is open.

Proof

If f~1(U) =0 we are done since the empty set is always open.
Otherwise, consider any point @ € f~1(U). Since U is open, there exists
€ > 0 such that the set {y e R™: ||y —f(a)|| < ¢} is contained in U. By
definition of limy_,, f(x) = f(a), there exists & > 0 such that the set
{x €R":||x—a|| < 8} is contained in f~1(U). Since for any point a, its
neighborhood is contained in f~1(U). f~1(U) is an open set.
< Given any € >0, define U={y € R™: ||y —f(a)|| < &}. Since f (V) is
an open set and a € f~1(U), there exists & > 0 such that
{x €R":||x—al| < 8} is contained in f~1(U), implying that if || x —a| < &
then ||f(x)—f(a)| <e. ]

U

"
<

|

o’
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Homeomorphism

Definition (Homeomorphism)

Two topological spaces (X,Tx) and (Y,Ty) are homeomorphic (or
topological isomorphic) if there exists a function f : X — Y such that:
a) f is a bijection (i.e., one-to-one and onto);

b) £ is an open map (i.e., for any open set UC X, {f(x):x€ U} C Yis
open);

c) f is continuous.

@ Intuitively, two homeomorphic spaces are “the same” from the
topological point of view
o All topological properties are preserved

@ Is (—1,1) homeomorphic to R?
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Homeomorphism

Definition (Homeomorphism)

Two topological spaces (X,Tx) and (Y,Ty) are homeomorphic (or
topological isomorphic) if there exists a function f : X — Y such that:
a) f is a bijection (i.e., one-to-one and onto);

b) £ is an open map (i.e., for any open set UC X, {f(x):x€ U} C Yis
open);

c) f is continuous.

@ Intuitively, two homeomorphic spaces are “the same” from the
topological point of view
o All topological properties are preserved
@ Is (—1,1) homeomorphic to R?
o Yes, as we can define f : (—1,1) = R, f(x) =tan(5x)
o Also, {[xi,x2,x3] T € R3:x3 =x; +x} is homeomorphic to R?
o We say the function F:R2 = R3, f(x1, %) = (x1,%, X1 +X2), embeds
R? into R3
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© Point Set Topology**

@ Manifolds
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Manifolds (1/2)

@ Many complex shapes in the real world have a simple shape when we
look at a just tiny portion of them

Definition (Manifold)

A manifold (M,T) of dimension k embedded in R” is a Hausdorff space
such that for any point p € M C R”, there exists a small neighborhood of p
which is homeomorphic to R¥.

@ Curves and surfaces are examples of manifolds of dimension 1 and 2
respectively
@ The mapping between the local neighborhoods and R¥ need not be
linear
o Consider a unit circle M = {[x;, xo] " : x? +x3 = 1} in R?, any point p
lies in at least one of the 4 open sets M, ={lx1,x] " € M:x >0},
Mright :{[lexﬂ—r € M: x1 >0}, Mpotrom, and Mies
o Each of these sets is homeomorphic to R* (e.g., we can define
frop(x1,x2) =tan(5x1))

Shan-Hung Wu (CS, NTHU) Linear Algebra and Geometry NetDB-ML, Spring 2013 89 / 90



Manifolds (2/2)

@ When we say a shape looks like a “donut” in a 3-dimensional space we
are looking at its extrinsic properties from the 3-dimensional space

o Manifold provides an intrinsic pint of view of a shape

o All topological properties of a tiny portion of a manifold is the same
with those of the Euclidean space

@ Generally, a manifold can be constructed by “patching” the overlapping
local neighborhoods (e.g., Miop, Myight, Mbottom, and Mies)

@ The invertible mappings (e.g., ftop. fright: fpottom. and fier:) between
these neighborhoods and R are called charts

@ A specific collection of charts which covers a manifold is called the
atlas

o An atlas is not unique as we can use different combinations of charts to
cover a manifold
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