Calculus

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Spring 2013

Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem

Matrix Calculus

- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**

3 Calculus of Variations**

Functionals

Calculus, The Basics

Sequences and Limits

- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem

2 Matrix Calculus

- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**

3 Calculus of Variations**

• Functionals

Caution!

The functions f (or f) discussed here are not required to be linear anymore.

Definition (Limit of a Function)

A function $f: \mathcal{V} \to \mathbb{R}^m$, $\mathcal{V} \subseteq \mathbb{R}^n$, has a *limit* $f^*(a)$ at the point $a \in \mathcal{V}$ if given any $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$, there exists $\delta \in \mathbb{R}$, $\delta > 0$ such that for all $x \in \mathcal{V}$, $0 < ||x - a|| < \delta$, we have $||f(x) - f^*(a)|| < \varepsilon$. This is denoted by $\lim_{x \to a} f(x) = f^*(a)$.

Definition (Continuity)

A function $f: \mathcal{V} \to \mathbb{R}^m$, $\mathcal{V} \subseteq \mathbb{R}^n$, is *continuous* at a iff $f^*(a) = f(a)$; that is, given any $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in \mathcal{V}$, $0 < ||x-a|| < \delta$, we have $||f(x) - f(a)|| < \varepsilon$.

Sequences and Convergence (1/2)

- A sequence of vectors $\{x^{(k)}\}_k$ can be think of as the $\mathcal{R}(f)$ for some $f: \mathbb{N} \to \mathbb{R}^n$
 - A sequence is *increasing* iff $x^{(1)} < x^{(2)} < \cdots$, and *nondecreasing* iff $x^{(1)} \leq x^{(2)} \leq \cdots$
 - Nondecreasing and nonincreasing sequences are called *monotone* sequences

Definition (Limit of a Sequence)

A sequence $\{\mathbf{x}^{(k)}\}_k$ has a *limit* \mathbf{x}^* if given any $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$, there exists $K \in \mathbb{N}$, such that for all k > K, we have $\|\mathbf{x}^{(k)} - \mathbf{x}^*\| < \varepsilon$. This is denoted by $\lim_{k \to \infty} \mathbf{x}^{(k)} = \mathbf{x}^*$.

- A sequence having a limit is called a *convergent* sequence
- Given a sequence $\{x^{(k)}\}_k$ convergent to a, we can see that a function $f: \mathcal{V} \to \mathbb{R}^m$ is continuous at a iff $\lim_{k\to\infty} f(x^{(k)}) = f(a)$ [Proof: Using definitions and the fact that $\lim_{k\to\infty} f(x^{(k)}) = f(\lim_{k\to\infty} x^{(k)})$]

- Given a sequence $\{x^{(k)}\}_k$ and an increasing sequence of nature numbers $\{m_k\}_k$, we call $\{x^{(m_k)}\}_k$ the *subsequence* of $\{x^{(k)}\}_k$
 - A subsequence is obtained by neglecting some elements of a given sequence
- If a sequence converges to x*, then all its subsequences converge to x* too [Proof]

Theorem

Let $f: \Omega \to \mathbb{R}$ be a continuous function over a compact set $\Omega \subseteq \mathbb{R}^n$. There exist $\mathbf{x}_0, \mathbf{x}_1 \in \Omega$ such that $f(\mathbf{x}_0) \leq f(\mathbf{x}) \leq f(\mathbf{x}_1), \forall \mathbf{x} \in \Omega$; that is, $f(\mathbf{x}_0) = \min_{\mathbf{x} \in \Omega} (f(\mathbf{x}))$ and $f(\mathbf{x}_1) = \max_{\mathbf{x} \in \Omega} f(\mathbf{x})$.

- We say f is **bounded** on Ω iff there exists $l, h \in \mathbb{R}$ such that $l \leq f(\mathbf{x}) \leq h, \forall \mathbf{x} \in \Omega$
 - The above theorem says that f is bounded on Ω if Ω is compact

Min, Max, Inf, and Sup

• Given a subset S (e.g., [0,1) or $\{2,4,6,\cdots\}$) of \mathbb{R} (or any other ordered set where elements can be compared with each other), we have:

Definition (Supremum)

An point $p \in \mathbb{R}$ is called the *supremum*, denoted by $\sup_{s \in S} s$, iff a) $s \leq p, \forall s \in S$; b) for any $\varepsilon > 0$, there exist $s \in S$ such that $s > p - \varepsilon$.

• p is called the maximum iff $p \in S$

Definition (Infimum)

An point $p \in \mathbb{R}$ is called the *infimum*, denoted by $\inf_{s \in S} s$, iff a) $s \ge p, \forall s \in S$; b) for any $\varepsilon > 0$, there exist $s \in S$ such that s .

• p is called the minimum iff $p \in S$

Convergence of Functions (1/2)

- Given a set of data $\{x^{(t)}\}_{t=1}^N$, suppose we use an ML algorithm to train a model, say $f^{(N)}$
 - ullet Usually, we want to know how the ML algorithm works when $N \to \infty$
 - We can think of $\{f^{(N)}\}_N$ as a sequence, and then investigate the properties of its limit f^*

Definition (Pointwise Convergence)

A sequence of functions $\{f^{(N)}\}_N$, where $f^{(N)}: \mathcal{V} \to \mathbb{R}^m$ and $\mathcal{V} \subseteq \mathbb{R}^n$, converges pointwise to a function $f^*: \mathcal{V} \to \mathbb{R}^m$ iff for any $x \in \mathcal{V}$, we have $\lim_{N\to\infty} f^{(N)}(x) = f^*(x)$.

- Unfortunately, pointwise convergence is not strong enough to guarantee "reasonable" relations between f^(N) and f^{*}
 - E.g., for all $x \in [0, 1]$, a sequence of continuous function $f^{(N)}(x) = x^N$ converges pointwise to $f^*(x) = \begin{cases} 0, & 0 \leq x < 1 \\ 1, & x = 1 \end{cases}$, which is obviously

not continuous

Shan-Hung Wu (CS, NTHU)

Convergence of Functions (2/2)

Definition (Uniform Convergence)

A sequence of functions $\{f^{(N)}\}_N$, where $f^{(N)}: \mathcal{V} \to \mathbb{R}^m$ and $\mathcal{V} \subseteq \mathbb{R}^n$, converges uniformly to a function $f^*: \mathcal{V} \to \mathbb{R}^m$ iff given any $\varepsilon > 0$, there exists $K \in \mathbb{N}$ such that for all $N \ge K$, we have $\left\| f^{(N)} - f^* \right\| < \varepsilon$ for all $x \in \mathcal{V}$.

• Intuitively, $f^{(N)}$ can be fitted into any given " ε -tube" around f^* as long as N is large enough

Theorem

If a sequence of continuous functions $\{f^{(N)}\}_N$ converges uniformly to f^* , then f^* will be continuous.

• Can be proved by either the " $\varepsilon/3$ trick" or the " ε -tube" intuition

Calculus, The Basics

Sequences and Limits

Derivative and Integral of Real-Valued Functions

- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem

2 Matrix Calculus

- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**

3 Calculus of Variations**

• Functionals

Derivative (1/2)

Definition (Derivative)

A function $f:[s,t] \to \mathbb{R}$, $s,t \in \mathbb{R}$, is **differentiable** at $a \in (s,t)$ iff $\lim_{\delta \to 0} \frac{f(a+\delta)-f(a)}{\delta}$ (or equivalently, $\lim_{x \to a} \frac{f(x)-f(a)}{x-a}$) exists. The limit is called the **derivative** of f at a, and is denoted by f'(a), $f^{(1)}(a)$, or $\frac{df}{dx}(a)$.

- "d" means the infinitesimal difference, and f'(a) is the slope of a tangent line to f at f(a)
- If a function f is differentiable at a, then it is continuous at a (converse is not true, as evidenced by f(x) = |x| and a = 0)
- *f* is said to be differentiable iff it is differentiable at any point of its domain
- *f* is said to be *continuously differentiable* iff *f* is differentiable and *f'* is continuous

• If f is differentiable, we can think of f' as a function too (although may not be continuous/differentiable)

• E.g., given
$$f(x) = e^x$$
, we have
 $f'(x) = \lim_{\delta \to 0} \frac{e^{(x+\delta)} - e^x}{\delta} = \lim_{\delta \to 0} \frac{e^x(e^{\delta} - 1)}{\delta}$. Let $t = e^{\delta} - 1$, then
 $f'(x) = \lim_{t \to 0} \frac{e^x t}{\ln(1+t)} = e^x \lim_{t \to 0} \frac{1}{\ln(1+t)^{1/t}} = e^x \frac{1}{\ln(\lim_{t \to 0} (1+t)^{1/t})} = e^x \frac{1}{\ln(1+t)^{1/t}} = e^x$

• $f \in \mathbb{C}^n$ denotes that f is *n*-times continuously differentiable

Theorem (Rolle's Theorem)

Given a function $f : [s, t] \to \mathbb{R}$, where $s, t \in \mathbb{R}$, $f \in \mathbb{C}^1$, and f(s) = f(t). There exists some $u \in (s, t)$ such that f'(u) = 0.

- Starting from f(s), f must change its direction at some point when it is getting to f(t)
- We can "rotate" the above theorem to get a new one:

Theorem (Mean Value Theorem)

Given a function $f : [s, t] \to \mathbb{R}$, where $s, t \in \mathbb{R}$ and $f \in \mathbb{C}^1$. There exists some $u \in (s, t)$ such that $f'(u) = \frac{f(t) - f(s)}{t - s}$.

Definition (Partial Derivative)

The *partial derivative* of a function $f: \mathcal{V} \to \mathbb{R}$, $\mathcal{V} \subseteq \mathbb{R}^n$, in the direction along the *i*th component at point **a** is defined as $\lim_{\delta \to 0} \frac{f(a_1, \dots, a_i + \delta, \dots, a_n) - f(a_1, \dots, a_n)}{\delta}$, denoted by $\frac{\partial f}{\partial x_i}(\mathbf{a})$.

• We can only look at one component a time

• Given
$$f(x_1, x_2) = (x_1 + x_2)^2$$
, we have $\frac{\partial f}{\partial x_1}(x_1, x_2) = \lim_{\delta \to 0} \frac{(x_1 + \delta + x_2)^2 - (x_1 + x_2)^2}{\delta} = \lim_{\delta \to 0} \frac{\delta(2x_1 + 2x_2)}{\delta} = 2x_1 + 2x_2$

• Simply treat x_2 as constant here

Integral

- Given a function $f: \mathcal{V} \to \mathbb{R}$, $\mathcal{V} \subseteq \mathbb{R}^n$, the set $\{[\mathbf{x}^\top, f(\mathbf{x})]^\top : \mathbf{x} \in \mathcal{V}\}$ is called the *graph* of f
- Now consider a function f: [s, t] → ℝ, s, t ∈ ℝ, how do you approximate the area between the curve y = f(x) and the x-axis in the graph of f?
 - Partition [s, t] evenly into n segments of width t→s/n, and let h_i (or l_i), 1 ≤ i ≤ n, be the highest (or lowest) value of f in each segment
 We can approximate the area by H(n) = ∑_{i=1}ⁿ h_i(t→s/n) (or L(n) = ∑_{i=1}ⁿ l_i(t→s/n))
- The larger the value of n, the more precise the approximation

Definition (Integral)

A function $f : [s, t] \to \mathbb{R}$, $s, t \in \mathbb{R}$, is *integrable* iff both $\lim_{n\to\infty} H(n)$ and $\lim_{n\to\infty} L(n)$ exist and are equal to each other. The limit is called the *integral* of f, denoted by $\int_s^t f(x) dx$.

Fundamental Theorem of Calculus

Theorem (Fundamental Theorem of Calculus)

Given a function $f:[s,t] \to \mathbb{R}$, $s, t \in \mathbb{R}$. We have: a) The function $F:[s,t] \to \mathbb{R}$, $F(x) = \int_s^x f(z)dz$, is differentiable and $\frac{dF}{dx}(x) = \frac{d}{dx}\int_s^x f(z)dz = f(x)$; b) If there exists a differentiable function $G:[s',t'] \to \mathbb{R}$, $[s,t] \subseteq [s',t']$, such that $\frac{dG}{dx}(x) = f(x)$ for every $x \in [s,t]$, then $\int_s^t f(x)dx = G(t) - G(s)$.

- *F* is called the *indefinite integral* (or *antiderivative*) of *f* and is a function of "accumulated area" from *s*
 - *F* can be "reversed" by differentiation and *f* is the "rate of accumulation"
- $\int_{s}^{t} f(x) dx$ is called the *definite integral* formally and represents an area
 - Definite integral can be computed by using indefinite integrals (which are usually easier to get)

1 Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions

• Derivative of Vector-Valued Functions

- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem

2 Matrix Calculus

- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**

3 Calculus of Variations**

• Functionals

lsn't It Straightforward?

- Recall that the derivative of a real-valued function f at a is defined as $f'(a) = \lim_{x \to a} \frac{f(x) f(a)}{x a}$
 - This is not applicable to $x \in \mathbb{R}^n$ and $f(x) \in \mathbb{R}^m$, as we cannot divide vectors
- We need a more general definition where the vectors can be fitted in with
 - Note that $f'(a) = \lim_{x \to a} \frac{f(x) f(a)}{x a}$ iff $0 = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} - f'(a) = \lim_{x \to a} \frac{f(x) - f(a) - f'(a)(x - a)}{x - a}$
 - Since the limit equals 0, the sign of numerator and denominator at the right hand side does not matter; that is, the above equation is equivalent to

$$0 = \lim_{x \to a} \frac{|f(x) - f(a) - f'(a)(x-a)|}{|x-a|} = \lim_{x \to a} \frac{|f(x) - (f'(a)(x-a) + f(a))|}{|x-a|}$$

- Now we can replace $\left|\cdot\right|$ with a vector norm $\left\|\cdot\right\|$
- But what does it mean?

lsn't It Straightforward?

- Recall that the derivative of a real-valued function f at a is defined as $f'(a) = \lim_{x \to a} \frac{f(x) f(a)}{x a}$
 - This is not applicable to $x \in \mathbb{R}^n$ and $f(x) \in \mathbb{R}^m$, as we cannot divide vectors
- We need a more general definition where the vectors can be fitted in with
 - Note that $f'(a) = \lim_{x \to a} \frac{f(x) f(a)}{x a}$ iff $0 = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} - f'(a) = \lim_{x \to a} \frac{f(x) - f(a) - f'(a)(x - a)}{x - a}$
 - Since the limit equals 0, the sign of numerator and denominator at the right hand side does not matter; that is, the above equation is equivalent to

$$0 = \lim_{x \to a} \frac{|f(x) - f(a) - f'(a)(x - a)|}{|x - a|} = \lim_{x \to a} \frac{|f(x) - (f'(a)(x - a) + f(a))|}{|x - a|}$$

- Now we can replace $|\cdot|$ with a vector norm $\|\cdot\|$
- But what does it mean? In the graph of f, f'(a)(x-a) + f(a) is a tangent line to f at f(a)

Derivative of Vector-Valued Functions

- The notion of a tangent line can be generalized into an *affine* function $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$, $\mathcal{A}(\mathbf{x}) = \mathcal{L}(\mathbf{x}) + \mathbf{c}$, where $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation and $\mathbf{c} \in \mathbb{R}^m$
 - An affine function is a "point" in an affine space

Theorem (Derivative)

A function $\mathbf{f}: \mathcal{V} \to \mathbb{R}^m$, $\mathcal{V} \subseteq \mathbb{R}^n$, is differentiable at $\mathbf{a} \in \mathcal{V}$ iff there exists a linear transformation $\mathcal{L}(\mathbf{a}): \mathbb{R}^n \to \mathbb{R}^m$ such that $\lim_{\delta \to 0} \frac{\|f(\mathbf{a}+\delta)-(\mathcal{L}(\mathbf{a})(\delta)+f(\mathbf{a}))\|}{\|\delta\|} = 0$ (or equivalently, $\lim_{\mathbf{x} \to \mathbf{a}} \frac{\|f(\mathbf{x})-(\mathcal{L}(\mathbf{a})(\mathbf{x}-\mathbf{a})+f(\mathbf{a}))\|}{\|\mathbf{x}-\mathbf{a}\|} = 0$). $\mathcal{L}(\mathbf{a})$ is called the derivative of \mathbf{f} at \mathbf{a} , denoted by $\mathbf{f}'(\mathbf{a})$.

- Since f'(a) is linear, it can be represented by a matrix J_a
 - How does **J**_a look like?

Jacobian Matrices (1/2)

• Any function $f: \mathcal{V} \to \mathbb{R}^m$, $\mathcal{V} \subseteq \mathbb{R}^n$ and $f(\mathbf{v}) = \mathbf{w}$ can be rewritten as:

$$\left(\begin{array}{c}f_1(v_1,\cdots,v_n)=w_1\\\vdots\\f_m(v_1,\cdots,v_n)=w_m\end{array}\right)$$

• If f is linear, each real-valued f_i , $1 \le i \le m$, can be represented by a row vector $j_i \in \mathbb{R}^n$ such that $j_i^\top \mathbf{v} = w_i$ (Remember the system of linear equations?)

• Let
$$J_a = \begin{bmatrix} j_1^\top \\ \vdots \\ j_m^\top \end{bmatrix}$$
 be the matrix representation of $f'(a)$

Jacobian Matrices (2/2)

- Let $\boldsymbol{\delta} = \delta \boldsymbol{e}_j$, where $1 \leqslant j \leqslant n$ and $\delta \in \mathbb{R}$
- Looking at the definition $\lim_{\delta \to 0} \frac{\|f(a+\delta) (\mathcal{L}(a)(\delta) + f(a))\|}{\|\delta\|} = 0$ row-by-row, we have $\lim_{\delta \to 0} \frac{f_i(a+\delta e_j) - (\delta j_i^\top e_j + f_i(a))}{\delta} = 0$ for each i and j
 - This implies that $\lim_{\delta \to 0} \frac{f_i(a+\delta e_j)-f_i(a)}{\delta} = j_i^\top e_j$
 - The right hand side denotes the element of J_a at the *i*th row and the *j*th column
 - The left hand side is the partial derivative $\frac{\partial f_i}{\partial x_i}(\boldsymbol{a})$ by definition

•
$$J_{a} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}}(a) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(a) \\ \vdots & \vdots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(a) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(a) \end{bmatrix}$$

derivative matrix) of f at a

is called the *Jacobian matrix* (or

Gradient (1/2)

Definition

If a function $f: \mathcal{V} \to \mathbb{R}, \ \mathcal{V} \subseteq \mathbb{R}^n$, is differentiable, then the *gradient* of f is defined by $\nabla f(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1}(\mathbf{x}), \cdots, \frac{\partial f}{\partial x_n}(\mathbf{x})\right]^\top = f'(\mathbf{x})^\top$.

• The Jacobian matrix of \boldsymbol{f} at \boldsymbol{a} can be rewritten as $\boldsymbol{J}_{\boldsymbol{a}} = \begin{bmatrix} \nabla f_1(\boldsymbol{a})^\top \\ \vdots \\ \nabla f_m(\boldsymbol{a})^\top \end{bmatrix}$

- From the previous page, we can see that in the graph of f_i , $\{x : \nabla f_i(a)^\top (x - a) + f_i(a)\}$ is a tangent hyperplane to f_i at $f_i(a)$
 - The norm of $\nabla f_i(\boldsymbol{a})$ is the "slope" of the tangent hyperplane
 - $\nabla f_i(\mathbf{a})$ also acts as the direction that for a given small displacement from \mathbf{a} , f_i increase more in the direction of $\nabla f_i(\mathbf{a})$ than in any other direction [Proof]

Gradient (2/2)

- The gradient ∇f(x) is a function from ℝⁿ to ℝⁿ and can be pictured as a vector field
 - Each vector in the field is the direction of maximum rate of increase of *f*
 - E.g., consider $f(x_1, x_2) = -(\cos^2 x_1 + \cos^2 x_2)^2$:

Definition (Hessian Matrix)

Given a differentiable function $f: \mathcal{V} \to \mathbb{R}, \ \mathcal{V} \subseteq \mathbb{R}^n$. If $\nabla f(\mathbf{x})$ is differentiable, we have the derivative of $\nabla f(\mathbf{x})$ as:

$$\boldsymbol{H}(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(\boldsymbol{x}) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1}(\boldsymbol{x}) \\ \vdots & \vdots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n}(\boldsymbol{x}) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(\boldsymbol{x}) \end{bmatrix}$$

which is called the *Hessian matrix* of f at x.

• $\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x})$ means taking the partial derivative of f in the direction x_j first, and then x_j

Theorem (Clairaut's/Schwarz's Theorem)

If a function $f : \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable at \mathbf{x} , then its Hessian matrix at \mathbf{x} is symmetric.

- If the second partial derivatives of f is not continuous, then there is no such a guarantee
- Here is an example:

$$f(x_1, x_2) = \begin{cases} \frac{x_1 x_2 (x_1^2 - x_2^2)}{(x_1^2 + x_2^2)}, & [x_1, x_2]^\top \neq [0, 0]^\top \\ 0, & [x_1, x_2]^\top = [0, 0]^\top. \end{cases}$$

The Hessian matrix of f at the point $[0,0]^{\top}$ is not symmetric [Homework]

Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem

2 Matrix Calculus

- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**

3 Calculus of Variations**

• Functionals

Theorem (Chain Rule)

Let $\mathbf{f}: (s,t) \to \mathcal{D}$ and $g: \mathcal{D} \to \mathbb{R}$ be differentiable functions, where $\mathcal{D} \subseteq \mathbb{R}^n$ is an open set and $s, t \in \mathbb{R}$. The composite function $g \circ \mathbf{f}: (s,t) \to \mathbb{R}$ is differentiable and $(g \circ \mathbf{f})'(x) = g'(\mathbf{f}(x))\mathbf{f}'(x) = \nabla g(\mathbf{f}(x))^\top \begin{bmatrix} f_1'(x) \\ \vdots \\ f_n'(x) \end{bmatrix}$.

• g' and f' are derivatives but with respect to different variables

Theorem (Product Rule)

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^n \to \mathbb{R}^m$ be differentiable functions. Then the function $h : \mathbb{R}^n \to \mathbb{R}$, $h(x) = f(x)^\top g(x)$, is differentiable and $h'(x) = f(x)^\top g'(x) + g(x)^\top f'(x)^\top$.

Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem

2 Matrix Calculus

- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**

3 Calculus of Variations**

• Functionals

Definition (Level Set)

The *level set* of a function $f : \mathbb{R}^n \to \mathbb{R}$ at level $c \in \mathbb{R}$ is the set of points $S = \{x : f(x) = c\}$.

- When n = 2, S is a plane curve
- When *n* = 3, *S* is a surface

Theorem

The vector $\nabla f(\mathbf{a})$ is orthogonal to the tangent vector to an arbitrary curve passing through \mathbf{a} on a level set at level $f(\mathbf{a})$.

Proof.

Let S be the level set at level f(a) and $\gamma : \mathbb{R} \to \mathbb{R}^n$ be a curve lying on S passing through a; that is, there exists c such that $\gamma(c) = a$. Suppose $\gamma'(c) = \mathbf{v} \neq \mathbf{0}$ so \mathbf{v} is a tangent vector to γ at a. We have $(f \circ \gamma)'(c) = f'(\gamma(c))\gamma'(c) = f'(a)\mathbf{v}$. Since γ lies on S, we have $f \circ \gamma(t) = f(a)$ for all $t \in \mathbb{R}$. The function $f \circ \gamma$ is a constant, implying that $(f \circ \gamma)'(c) = 0$. So $f'(a)\mathbf{v} = \nabla f(a)^\top \mathbf{v} = 0$.

Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem

Matrix Calculus

- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**

3 Calculus of Variations**

• Functionals

Taylor's Theorem (1/2)

Theorem

Given a function
$$f : [a,b] \to \mathbb{R}$$
 and $f \in \mathbb{C}^m$. We have
 $f(b) = f(a) + \frac{f^{(1)}(a)}{1!}(b-a) + \frac{f^{(2)}(a)}{2!}(b-a)^2 + \dots + \frac{f^{(m-1)}(a)}{(m-1)!}(b-a)^{m-1} + R_m$,
where $R_m = \frac{f^{(m)}(c)}{m!}(b-a)^m$ for some $c \in (a, b)$.

Proof.

Define
$$R(x) = f(b) - f(x) - \frac{f^{(1)}(x)}{1!}(b-x) - \frac{f^{(2)}(x)}{2!}(b-x)^2 - \dots - \frac{f^{(m-1)}(x)}{(m-1)!}(b-x)^{m-1}$$
.
We show that $R(a) = \frac{f^{(m)}(c)}{m!}(b-a)^m$ for some $c \in (a, b)$. Note that
 $R^{(1)}(x) = -f^{(1)}(x) + \left[f^{(1)}(x) - \frac{f^{(2)}(x)}{1!}(b-x)\right] + \left[\frac{f^{(2)}(x)}{1!}(b-x) - \frac{f^{(3)}(x)}{2!}(b-x)^2\right] + \dots + \left[\frac{f^{(m-1)}(x)}{(m-2)!}(b-x)^{m-2} - \frac{f^{(m)}(x)}{(m-1)!}(b-x)^{m-1}\right] = -\frac{f^{(m)}(x)}{(m-1)!}(b-x)^{m-1}$.
Define $g(x) = R(x) - (\frac{b-x}{b-a})^m R(a)$. It's easy to check that $g(a) = g(b) = 0$.
By Rolle's theorem there exists some $c \in (a, b)$ such that $0 = g^{(1)}(c) = R^{(1)}(c) + \frac{m(b-c)^{m-1}}{(b-a)^m} R(a) = -\frac{f^{(m)}(c)}{(m-1)!}(b-c)^{m-1} + \frac{m(b-c)^{m-1}}{(b-a)^m} R(a)$,
implying $R(a) = \frac{f^{(m)}(c)}{m!}(b-a)^m$.

Shan-Hung Wu (CS, NTHU)

• An well-known application is Taylor series:

•
$$e^x = 1 + x + \frac{x^2}{2!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 for all x (expending e^x at $a = 0$)
• $\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$ for $|x| < 1$, which implies $\ln(1+x) \approx x$ for $|x| \ll 1$

- A function $f: \mathcal{D} \to \mathbb{R}$, where \mathcal{D} is an open interval, is said to be **analytic** iff for any $x, a \in D$, f can be written as $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ for some $c_n \in \mathbb{R}$
 - An analytic f is easy to analyze, e.g., $c_n = \frac{f^{(n)}(a)}{n!}$
 - f is analytic iff give any x, the Taylor series at a converges to f(x)

- Consider $f(x): \mathcal{V} o \mathbb{R}^m$ and $g(x): \mathcal{V} o \mathbb{R}^m$, where $\mathcal{V} \subseteq \mathbb{R}^n$ includes **0**
- We denote f(x) = o(g(x)) iff f(x) goes to **0** faster than g(x) does

• Specifically,
$$\lim_{x\to 0} \frac{\|f(x)\|}{\|g(x)\|} = 0$$

- We denote f(x) = O(g(x)) iff f(x) goes to **0** faster than or equal to g(x) does
 - Specifically, for a sufficiently small $\delta \in \mathbb{R}$, there exists $c \in \mathbb{R}$ such that if $\|\mathbf{x}\| < \delta$, then $\frac{\|\mathbf{f}(\mathbf{x})\|}{\|\mathbf{g}(\mathbf{x})\|} \leq c$
- E.g., $x^2 = o(x)$, x = O(x), $[x^3, 2x^2]^\top = o([x, 0]^\top)$
- Don't mix this up with the order of growth

Taylor Theorem for Multivariate Functions (1/2)

- Recall that a function $f:[a,b] \to \mathbb{R}$, $f \in \mathbb{C}^m$, can be written as $f(b) = f(a) + \frac{f^{(1)}(a)}{1!}(b-a) + \frac{f^{(2)}(a)}{2!}(b-a)^2 + \dots + \frac{f^{(m-1)}(a)}{(m-1)!}(b-a)^{m-1} + \frac{f^{(m)}(a+\delta(b-a))}{m!}(b-a)^m$, where $\delta \in (0,1)$ is a constant • By the continuity of $f^{(m)}$, we have $\lim_{(b-a)\to 0} f^{(m)}(a+\delta(b-a)) = f^{(m)}(a+\delta(b-a)) = f^{(m)}(a+\delta(b-a))$
 - $f^{(m)}(a) \Rightarrow \lim_{(b-a)\to 0} \frac{f^{(m)}(a+\delta(b-a))-f^{(m)}(a)}{1} = 0; \text{ that is,}$ $f^{(m)}(a+\delta(b-a)) f^{(m)}(a) = o(1) \Rightarrow f^{(m)}(a+\delta(b-a)) =$ $f^{(m)}(a) + o(1)$
- We can rewrite f as $f(b) = f(a) + \frac{f^{(1)}(a)}{1!}(b-a) + \frac{f^{(2)}(a)}{2!}(b-a)^2 + \cdots + \frac{f^{(m)}(a)}{m!}(b-a)^m + o((b-a)^m)$, since $o(1)\frac{(b-a)^m}{m!} = o((b-a)^m)$
- If $f \in \mathbb{C}^{m+1}$, we can further rewrite f as $f(b) = f(a) + \frac{f^{(1)}(a)}{1!}(b-a) + \frac{f^{(2)}(a)}{2!}(b-a)^2 + \dots + \frac{f^{(m)}(a)}{m!}(b-a)^m + O((b-a)^{m+1})$
 - $R_{m+1} = \frac{f^{(m+1)}(c)}{(m+1)!}(b-a)^{m+1} = O((b-a)^{m+1})$, as $f^{(m+1)}$ is bound on the compact set [a, b] and therefore can be regarded as a constant

36 / 47

Taylor Theorem for Multivariate Functions (2/2)

Theorem

Given $f: \mathcal{V} \to \mathbb{R}$, where $\mathcal{V} \subseteq \mathbb{R}^n$ is an open set and $f \in \mathbb{C}^2$. For any $\mathbf{x}, \mathbf{a} \in \mathcal{V}$, there exists $\mathbf{c} = \mathbf{a} + c(\mathbf{x} - \mathbf{a}) / \|\mathbf{x} - \mathbf{a}\|$ for some $c \in (0, \|\mathbf{x} - \mathbf{a}\|)$ such that $f(\mathbf{x}) = f(\mathbf{a}) + \frac{1}{1!} \nabla f(\mathbf{a})^\top (\mathbf{x} - \mathbf{a}) + R_2$, where $R_2 = \frac{1}{2!} (\mathbf{x} - \mathbf{a})^\top \mathbf{H}(\mathbf{c}) (\mathbf{x} - \mathbf{a})$.

Proof.

Define
$$z : \mathbb{R} \to \mathbb{R}^n$$
 by $z(\delta) = a + \delta(x-a)/||x-a||$ and $\phi : \mathbb{R} \to \mathbb{R}$ by
 $\phi(\delta) = f \circ z(\delta) = f(a + \delta(x-a)/||x-a||)$, we can see that
 $f(x) = \phi(||x-a||)$ and by Taylor's theorem,
 $f(x) = \phi(0) + \frac{\phi^{(1)}(0)}{1!} ||x-a|| + \frac{\phi^{(2)}(c)}{2!} ||x-a||^2$. Note
 $\phi^{(1)}(\delta) = f^{(1)}(z(\delta))z^{(1)}(\delta) = \nabla f(z(\delta))^\top \left(\frac{x-a}{||x-a||}\right) = \left(\frac{x-a}{||x-a||}\right)^\top \nabla f(z(\delta))$
and $\phi^{(2)}(\delta) = \left(\frac{x-a}{||x-a||}\right)^\top H(z(\delta))z^{(1)}(\delta) = \left(\frac{x-a}{||x-a||}\right)^\top H(z(\delta)) \left(\frac{x-a}{||x-a||}\right)$.
Substituting $\phi^{(1)}(0)$ and $\phi^{(2)}(c)$ in $f(x)$ we have the proof.

• We can also write $R_2 = \frac{1}{2!} (x - a)^\top H(a)(x - a) + o(||x - a||^2)$ [Proof] • Or $R_2 = \frac{1}{2!} (x - a)^\top H(a)(x - a) + O(||x - a||^3)$ if $f \in \mathbb{C}^3$ [Proof]

Theorem (Mean Value Theorem)

Given a function $f: \mathcal{V} \to \mathbb{R}^m$, where $\mathcal{V} \subseteq \mathbb{R}^n$ is open and $f \in \mathbb{C}^1$. For any $b, a \in \mathcal{V}$, there exists $M = \begin{bmatrix} \nabla f_1(c^{(1)})^\top \\ \vdots \\ \nabla f_m(c^{(m)})^\top \end{bmatrix}$ for some $c^{(1)}, \cdots, c^{(m)} \in \mathcal{V}$ such that f(b) - f(a) = M(b-a).

• Can be easily proved by the Taylor's Theorem [Proof]

Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem

Matrix Calculus

- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**

3 Calculus of Variations**

• Functionals

Vector Derivatives

- Recall that the derivative of a function $f: \mathbb{R}^n \to \mathbb{R}^m$ at a point $x \in \mathbb{R}^n$ can be written as a Jacobian matrix $\begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}) \\ \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{x}) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{x}) \end{bmatrix}$ • Given $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$, define $\frac{\partial y}{\partial x} \in \mathbb{R}^{m \times n}$ such that $\left(\frac{\partial y}{\partial x}\right)_{i,i} = \frac{\partial y_i}{\partial x_i}$ • We can express the above Jacobian matrix succinctly as $\frac{\partial f(x)}{\partial x}$ • $\frac{\partial}{\partial x}(Ax) = A$ and $\frac{\partial x}{\partial x} = I$ • $\frac{\partial y}{\partial x} \in \mathbb{R}^{m \times 1}$ for $x \in \mathbb{R}$; and $\frac{\partial y}{\partial x} \in \mathbb{R}^{1 \times n}$ for $y \in \mathbb{R}$ • $\frac{\partial}{\partial x}(a^{\top}x) = \frac{\partial}{\partial x}(x^{\top}a) = a^{\top}$ for any $a \in \mathbb{R}^n$ • $\frac{\partial}{\partial x}(\mathbf{x}^{\top}\mathbf{x}) = 2\mathbf{x}^{\top}$ Differentiation rules are applicable
 - $\frac{\partial}{\partial x}(x^{\top}Ax) = x^{\top}\frac{\partial}{\partial x}(Ax) + (Ax)^{\top}(\frac{\partial x}{\partial x})^{\top} = x^{\top}(A + A^{\top})$ for any $A \in \mathbb{R}^{n \times n}$ [Proof]

Matrix Derivatives

• Given $x \in \mathbb{R}$ and $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, define

•
$$\frac{\partial A}{\partial x} \in \mathbb{R}^{m \times n}$$
 such that $\left(\frac{\partial A}{\partial x}\right)_{i,j} = \frac{\partial a_{i,j}}{\partial x}$
• $\frac{\partial x}{\partial A} \in \mathbb{R}^{m \times n}$ such that $\left(\frac{\partial x}{\partial A}\right)_{i,j} = \frac{\partial x}{\partial a_{i,j}}$

- x should be related to A (e.g., $a_{i,j}$, tr(A), or det(A), etc.)
 - $\frac{\partial A}{\partial a_{ij}}$ is a matrix whose element at the *i*th row and *j*th column equals 1, and others 0
- Although looked similar to vector derivatives, matrix derivatives have no obvious geometric implications and are used mainly to simplify the calculation of partial derivatives

•
$$\frac{\partial}{\partial x}(AB) = A \frac{\partial B}{\partial x} + \frac{\partial A}{\partial x}B$$
 [Proof]

•
$$\frac{\partial}{\partial x}(\mathbf{A}^{-1}) = -\mathbf{A}^{-1}\frac{\partial \mathbf{A}}{\partial x}\mathbf{A}^{-1}$$
 [Proof: $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$ and apply the above]

Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem

Matrix Calculus

- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**

3 Calculus of Variations**

• Functionals

•
$$\frac{\partial}{\partial A}tr(AB) = \frac{\partial}{\partial A}tr(BA) = B^{\top}$$
, as
 $\frac{\partial}{\partial a_{ij}}tr(AB) = \frac{\partial}{\partial a_{ij}}\sum_{r=1}^{n}\sum_{s=1}^{n}a_{r,s}b_{s,r} = b_{j,i}$
• $\frac{\partial}{\partial A}tr(A) = \frac{\partial}{\partial A}tr(AI) = I$
• $\frac{\partial}{\partial A}tr(A^{\top}B) = B$ [Proof]
• $\frac{\partial}{\partial A}tr(ABA^{\top}) = A(B+B^{\top})$ [Proof]

Derivatives of Determinants (1/2)

Theorem

Given an invertible matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}$, we have $\frac{\partial}{\partial x} \ln(\det(\mathbf{A})) = tr(\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial x}).$

Proof.

We only proof the case where $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^{\top}$ is symmetric here. We have $\frac{\partial}{\partial x} \ln(\det(\mathbf{A})) = \frac{\partial}{\partial x} \ln(\det(\mathbf{U})\det(\mathbf{D})\det(\mathbf{U})^{-1}) = \frac{\partial}{\partial x} \ln(\det(\mathbf{D})) =$ $\frac{\partial}{\partial x} \ln(\prod_{i=1}^{n} \lambda_i) = \sum_{i=1}^{n} \frac{\partial}{\partial x} \ln \lambda_i = \sum_{i=1}^{n} \frac{1}{\lambda_i} \frac{\partial \lambda_i}{\partial x} = tr(\mathbf{D}^{-1} \frac{\partial \mathbf{D}}{\partial x}).$ Note \mathbf{U} is orthogonal, and diagonalizable, so there exists an antisymmetric matrix $W = \frac{1}{x} \ln U$ such that $U = e^{Wx}$. By the chain rule we have $\frac{\partial U}{\partial x} = e^{Wx} \left(\frac{\partial}{\partial x} Wx \right) = UW$ and $\frac{\partial U^{\top}}{\partial x} = \frac{\partial}{\partial x} e^{W^{\top}x} = \frac{\partial}{\partial x} e^{-Wx} = -U^{\top}W$. Therefore, $tr(\boldsymbol{D}^{-1}\frac{\partial \boldsymbol{D}}{\partial x}) = tr((\boldsymbol{U}^{\top}\boldsymbol{A}\boldsymbol{U})^{-1}\frac{\partial}{\partial x}(\boldsymbol{U}^{\top}\boldsymbol{A}\boldsymbol{U})) =$ $tr((\boldsymbol{U}^{\top}\boldsymbol{A}\boldsymbol{U})^{-1}(\frac{\partial \boldsymbol{U}^{\top}}{\partial \boldsymbol{x}}\boldsymbol{A}\boldsymbol{U}+\boldsymbol{U}^{\top}\frac{\partial \boldsymbol{A}}{\partial \boldsymbol{x}}\boldsymbol{U}+\boldsymbol{U}^{\top}\boldsymbol{A}\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{x}})))=$ $tr((\boldsymbol{U}^{\top}\boldsymbol{A}\boldsymbol{U})^{-1}(-\boldsymbol{U}^{\top}\boldsymbol{W}\boldsymbol{A}\boldsymbol{U}+\boldsymbol{U}^{\top}\frac{\partial\boldsymbol{A}}{\partial\boldsymbol{x}}\boldsymbol{U}+\boldsymbol{U}^{\top}\boldsymbol{A}\boldsymbol{U}\boldsymbol{W})=$ $tr(-\boldsymbol{U}^{\top}\boldsymbol{A}^{-1}\boldsymbol{W}\boldsymbol{A}\boldsymbol{U}) + tr(\boldsymbol{U}^{\top}\boldsymbol{A}^{-1}\frac{\partial \boldsymbol{A}}{\partial \boldsymbol{x}}\boldsymbol{U}) + tr(\boldsymbol{W})$, which can be simplified to $tr(\mathbf{A}^{-1}\frac{\partial \mathbf{A}}{\partial \mathbf{x}})$ by the cyclic property of trace.

Shan-Hung Wu (CS, NTHU)

•
$$\frac{\partial}{\partial \boldsymbol{A}} \ln(\det(\boldsymbol{A})) = (\boldsymbol{A}^{-1})^{\top}$$

• Let $a_{i,j}$ and $b_{i,j}$ be the elements of \boldsymbol{A} and \boldsymbol{A}^{-1} respectively, then $\frac{\partial}{\partial a_{i,j}} \ln(\det(\boldsymbol{A})) = tr(\boldsymbol{A}^{-1} \frac{\partial \boldsymbol{A}}{\partial a_{i,j}}) = \sum_{r=1}^{n} \sum_{s=1}^{n} b_{r,s} \frac{\partial a_{s,r}}{\partial a_{i,j}} = b_{j,i}$

Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem

2 Matrix Calculus

- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**

3 Calculus of Variations**

Functionals

Functionals

- Consider a function $f : \mathbb{R} \to \mathbb{R}$, f(x) = ax + b (or f(x|a, b) = ax + b)
 - x is an *argument* and a and b are parameters
- Let S be the set of functions $f : \mathcal{V} \to \mathcal{W}$, we can define a *functional* $F : S \to \mathcal{W}$, F[f], with f as the argument
- E.g., value of a function $f : \mathbb{R} \to \mathbb{R}$ at $x : F : S \to \mathbb{R}$, F[f] = f(x)
 - x is a parameter
 - We can write F[f] as F[f|x]
- E.g., definite integral of a function $f : \mathbb{R} \to \mathbb{R}$: $I : S \to \mathbb{R}$, $I[f] = \int_a^b f(x) dx$
 - a and b are parameters
- E.g., expectation of $f : \mathbb{R} \to \mathbb{R}$ defined over the values of a random variable $X : E : S \to \mathbb{R}$, $E[f(X)] = \int f(x)p_X(x)dx$