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© Calculus, The Basics
@ Sequences and Limits
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Functions and Limits

The functions f (or ) discussed here are not required to be linear anymore.

Definition (Limit of a Function)

A function f:V — R™ V CR", has a limit f*(a) at the point ac V if
given any € € R, ¢ > 0, there exists 0 € R, & > 0 such that for all x €V,
0<|[x—all <9, we have ||f(x)—Ff*(a)|| < e. Thisis denoted by
limx_af(x)=Ff*(a).

Definition (Continuity)

A function f:V — R™, V CR", is continuous at a iff f*(a) = f(a); that
is, given any € > 0, there exists & > 0 such that for all x €V,
0<|[x—a|l <&, we have ||f(x)—f(a)| <e.
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Sequences and Convergence (1/2)

o A sequence of vectors {xK)}, can be think of as the R(f) for some
f:N—R”?
o A sequence is increasing iff x!) < x(2) < ... and nondecreasing iff
x1) < x) <.
o Nondecreasing and nonincreasing sequences are called monotone
sequences

Definition (Limit of a Sequence)

A sequence {x'¥)} has a limit x* if given any € € R, £ >0, there exists

K €N, such that for all Kk > K, we have Hx“‘) —X*H < €. This is denoted

by limg_y00 x k) = x*.

@ A sequence having a limit is called a convergent sequence

o Given a sequence {x'¥)}, convergent to a, we can see that a function
f:V —R™is continuous at a iff lim,_,o F(x(k)) = f(a) [Proof:
Using definitions and the fact that lim_,o f(x¥)) = f(lim_, o x )]
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Sequences and Convergence (2/2)

o Given a sequence {x¥)}, and an increasing sequence of nature
numbers {my}x, we call {x(™)}, the subsequence of {xk)},

o A subsequence is obtained by neglecting some elements of a given
sequence

e If a sequence converges to x*, then all its subsequences converge to
x* too [Proof]
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Extreme Value Theorem

Let f : O — R be a continuous function over a compact set O C R". There
exist xg,x1 € Q such that f(xg) < f(x) < f(x1),Vx € Q; that is,
f(xo) =minycq (f(x)) and f(x1) = maxxeq f(x).

e We say f is bounded on Q iff there exists /, h € R such that
I<f(x)<hVxeQ

o The above theorem says that f is bounded on Q if Q is compact
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Min, Max, Inf, and Sup

@ Given a subset 8 (e.g., [0,1) or {2,4,6,---}) of R (or any other ordered
set where elements can be compared with each other), we have:

Definition (Supremum)

An point p € R is called the supremum, denoted by sup;cg s, iff a)
s < p,Vs €S8; b) for any ¢ >0, there exist s € 8 such that s > p—e.

@ pis called the maximum iff p € 8

Definition (Infimum)

An point p € R is called the infimum, denoted by infscg s, iff a)
s> p,Vs €8; b) for any € >0, there exist s € 8 such that s < p+e¢.

@ pis called the minimum iff p € 8
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Convergence of Functions (1/2)

o Given a set of data {x()})V_, suppose we use an ML algorithm to

train a model, say £V

o Usually, we want to know how the ML algorithm works when N — oo
o We can think of {f(N)}N as a sequence, and then investigate the
properties of its limit £*

Definition (Pointwise Convergence)

A sequence of functions {f(N)}N, where FM) .V S R™ and vV CR",
converges pointwise to a function f*:V — R™ iff for any x € V, we have
limy—oo FV) (x) = £ (x).

@ Unfortunately, pointwise convergence is not strong enough to

guarantee “reasonable” relations between fV) and £

e E.g., for all x €[0,1], a sequence of continuous function V) (x) = xV

0, 0<x«1

1. x=1 which is obviously

converges pointwise to f*(x) = {

not continuous
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Convergence of Functions (2/2)

Definition (Uniform Convergence)

A sequence of functions {f(N)}N, where F(V) .V S R™M and V C R,
converges uniformly to a function f*:V — R™ iff given any ¢ > 0, there

< ¢ for all

exists K € N such that for all N > K, we have Hf(N) —f*
xeV.

o Intuitively, F') can be fitted into any given “e-tube” around f*as
long as N is large enough

If a sequence of continuous functions {f ")}y converges uniformly to f*,
then f* will be continuous.

@ Can be proved by either the “g/3 trick” or the “e-tube” intuition
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© Calculus, The Basics

@ Derivative and Integral of Real-Valued Functions
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Derivative (1/2)

Definition (Derivative)

A function f:[s,t] = R, s, t € R, is differentiable at a € (s, t) iff

lims_so w (or equivalently, Iimx_,a%) exists. The limit is

called the derivative of f at a, and is denoted by 7/(a), f(1)(a), or Z—i(a).

@ “d” means the infinitesimal difference, and f’(a) is the slope of a
tangent line to f at f(a)

o If a function f is differentiable at a, then it is continuous at a
(converse is not true, as evidenced by f(x) =|x| and a =0)

o f is said to be differentiable iff it is differentiable at any point of its
domain

e f is said to be continuously differentiable iff f is differentiable and
f’ is continuous
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Derivative (2/2)

e If f is differentiable, we can think of ' as a function too (although
may not be continuous/differentiable)

o E.g. given f(x) =e*, we have .
. (x+8) _ ox . X _
f'(x) =lims_o &5 =lims_o %. Let t =e®—1, then
/ I e*t — aX|; 1 — X 1 _
F1(x) =lime—o m(i+t) € lim, 0 n(1re)i/t € In(lime_0 (1+£)1/t)

x_ 1 _ _x
€ e =€

e f € C" denotes that f is n-times continuously differentiable
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Rolle’s and Mean Value Theorem

Theorem (Rolle’s Theorem)

Given a function f :[s,t] = R, wheres,t € R, f € CL, and f(s) = f(t).
There exists some u € (s, t) such that f'(u) =0.

@ Starting from f(s), f must change its direction at some point when it
is getting to f(t)
@ We can “rotate” the above theorem to get a new one:

Theorem (Mean Value Theorem)

Given a function f :[s,t] = R, where s,t € R and f € C1. There exists
some u € (s,t) such that f'(u) = %
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Partial Derivative for Multivariate Functions

Definition (Partial Derivative)

The partial derivative of a function f:V — R, V CR", in the direction

along the ith component at point a is defined as
limg o T2t @n) T an) denoted by 2F (a).

@ We can only look at one component a time

o Given f(x1,x) = (x1+x2)2, we have 25 (xq,x) =

Oxy
(a+0+x2)2—(x1+x2)? 5(2x14+2x2)
d o

=lims_o

o Simply treat x» as constant here

|im5_>0 :2X1+2X2

Shan-Hung Wu (CS, NTHU) Calculus NetDB-ML, Spring 2013



Integral

@ Given a function f:V - R, VCR”, theset {[x",f(x)]T :x € V}is
called the graph of f
@ Now consider a function f: [s,t] = R, s,t € R, how do you
approximate the area between the curve y = f(x) and the x-axis in the
graph of 7
@ Partition [s, t] evenly into n segments of width % and let h; (or [;),
1 <7< n, be the highest (or lowest) value of f in each segment
@ We can approximate the area by H(n) =} [, hi(=2) (or
L(n) =371 (%))

@ The larger the value of n, the more precise the approximation

Definition (Integral)

A function f:[s,t] > R, s,t € R, is integrable iff both lim,_,., H(n) and
lim, .o L(n) exist and are equal to each other. The limit is called the
integral of f, denoted by f; f(x)dx.
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Fundamental Theorem of Calculus

Theorem (Fundamental Theorem of Calculus)

Given a function f : [s,t] = R, s,t E R. We have:
a) The function F:[s, t] —>R F(x f f(z)dz, is differentiable and

_f f(z)dz=f(x);
b) If there exists a differentiable function G : [s',t'] = R, [ t] C s’ t'],
such that ‘Z]—g(x) = f(x) for every x € [s, t], then fsf =G(t)— G(s).

v

@ F is called the indefinite integral (or antiderivative) of f and is a
function of “accumulated area” from s

e F can be "reversed” by differentiation and f is the “rate of
accumulation”

° f; f(x)dx is called the definite integral formally and represents an
area

o Definite integral can be computed by using indefinite integrals (which
are usually easier to get)
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© Calculus, The Basics

@ Derivative of Vector-Valued Functions
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Isn’t It Straightforward?

o Recall that the derivative of a real-valued function f at a is defined as
F103) =i f(x)—f(a)
(a) =limy_,, T x—a
e This is not applicable to x € R” and f(x) € R™, as we cannot divide

vectors

@ We need a more general definition where the vectors can be fitted in

with
o Note that f'(a) = Iimxﬁaw iff
7I|mx_>a%_f’( ) = lim,_,, FX)= f() f(a)( —a)

o Since the limit equals 0, the sign of numerator ‘and denominator at the
right hand side does not matter; that is, the above equation is

equivalent to
0= limx—)a |f(X)_f(3|1(1:|(3)(X_3)| _ |imX_>a If (x)—(f (|3X)£>;|—3)+f(a))|

o Now we can replace |-| with a vector norm |||

@ But what does it mean?
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Isn’t It Straightforward?

@ Recall that the derivative of a real-valued function f at a is defined as

F/(a) = lim,_,, 0=FL2)

e This is not applicable to x € R” and f(x) € R™, as we cannot divide
vectors

@ We need a more general definition where the vectors can be fitted in
with

o Note that f’(a) = Ilmxﬁaw iff
(

£=118) _ f1(5) — fim, _,, (CI=F(2)—F(a) (x—a)

=lim, 2=
° Slnce the limit equals 0, the sign of numerator ‘and denominator at the
right hand side does not matter; that is, the above equation is
equivalent to
If (x)—f(a)—f'(a) (x—a)|

[x—al
o Now we can replace || with a vector norm |||

If (x)—(f"(a) (x—a)+F(a))]

[x—al

=limy, =limy,

@ But what does it mean? In the graph of f, f'(a)(x—a)+f(a) is a
tangent line to f at f(a)
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Derivative of Vector-Valued Functions

@ The notion of a tangent line can be generalized into an affine
function A:R" — R™, A(x) = L(x)+c, where L:R" - R™ is a
linear transformation and ¢ € R™

o An affine function is a “point” in an affine space

Theorem (Derivative)

A function f:V —R™, V CR", js differentiable at a €V iff there exists a

linear transformation £(a) : R" — R™ such that

limg_.q ”f(a+6)_(ﬁga”)(SHf(a))” =0 (or equiva/ent/y,

limy—sa ”f(x)fw(‘fx) (XaHa J+f@all =0). £(a) is called the derivative of f at

a, denoted by f'(a).

@ Since f'(a) is linear, it can be represented by a matrix J,

o How does J, look like?
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Jacobian Matrices (1/2)

@ Any function f:V —R™, VCR"” and f(v) = w can be rewritten as:

fl(Vly"'vVn) =w

fm(Vly"‘:Vn) = Wm

o If f is linear, each real-valued f;, 1 <7< m, can be represented by a
row vector j; € R” such that j. v = w; (Remember the system of
linear equations?)

T
J1
o Let J,=| : be the matrix representation of f’(a)

T
Im
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Jacobian Matrices (2/2)

o Let 5 =de;, where 1< j<nand 0 €R

@ Looking at the definition lims_.g Hf(a+8)*uﬁg"”)(st(a))” =0

f(a+5e;)—(8j; ej+f;(a)
d

) =0 for each i and

row-by-row, we have limgs_.g

J
o This implies that limg_,o 72 =f(8) _ ;T
o The right hand side denotes the element of J, at the ith row and the
jth column
o The left hand side is the partial derivative g:"_ (@) by definition
J
0f 9f
6711(3) an,(a)
° J,= : : is called the Jacobian matrix (or

Ofm 0fm
a—xl(a) a—xn(a)

derivative matrix) of f at a
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Gradient (1/2)

Definition

If a function f:V — R, VCR”, is differentiable, then the gradient of f is
T
defined by V£ (x) = [aa—)fl(x),--- ,g—xfn(x)} —f'(x)7,

Vfi(a)'
@ The Jacobian matrix of f at a can be rewritten as J, = :
Vin(a)"
@ From the previous page, we can see that in the graph of £,
(x:Vfi(a)T (x—a)+fi(a)}is a tangent hyperplane to f; at f:(a)
e The norm of Vf;(a) is the “slope” of the tangent hyperplane
e Vf(a) also acts as the direction that for a given small displacement

from a, f; increase more in the direction of Vf;(a) than in any other
direction [Proof]
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@ The gradient Vf(x) is a function from R"” to R” and can be pictured
as a vector field

o Each vector in the field is the direction of maximum rate of increase of

f
o E.g., consider f(xy,x2) = —(cos?x; +cos? x;)?:
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Hessian Matrices (1/2)

Definition (Hessian Matrix)

Given a differentiable function f:V — R, VCR". If Vf(x) is
differentiable, we have the derivative of Vf(x) as:

o%f o2%f
a_xlz(x) X0 X1 (X)
H(x) = :
2f 2f
a)?laxn(x) gxz(x)

which is called the Hessian matrix of f at x.

agiaij(x) means taking the partial derivative of f in the direction x;
first, and then x;
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Hessian Matrices (2/2)

Theorem (Clairaut’s/Schwarz’s Theorem)

If a function f : R" — R is twice continuously differentiable at x, then its
Hessian matrix at x is symmetric.

o If the second partial derivatives of f is not continuous, then there is no
such a guarantee

@ Here is an example:

X1X2(X27x2) T T
Flxx)={ gy el #00,0
0, [x1,%]"T =[0,0]".

The Hessian matrix of f at the point [0,0] T is not symmetric
[Homework]
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© Calculus, The Basics

@ Differentiation Rules
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Differentiation Rules

Theorem (Chain Rule)
Let f: (s, t) =D and g:D — R be differentiable functions, where D C R"
is an open set and s,t € R. The composite function gof :(s,t) >R is

f' (x)
differentiable and (gof)’(x) =g'(f(x))f'(x) =Vg(f(x)) "

e g’ and f’ are derivatives but with respect to different variables

Theorem (Product Rule)

Let f :R" — R™ and g :R" — R™ be differentiable functions. Then the
function h:R" — R, h(x) = f(x) " g(x), is differentiable and
h'(x)=F(x)"g'(x)+gx)Tf(x)T.
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© Calculus, The Basics

@ Level Sets and Gradients
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Level Sets

Definition (Level Set)

The level set of a function f:R” — R at level ¢ € R is the set of points
S={x:f(x)=c}

@ When n=2, S is a plane curve

@ When n=3, S is a surface
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Level Sets and Gradients

Theorem

The vector Vf(a) is orthogonal to the tangent vector to an arbitrary curve
passing through a on a level set at level f(a).

| \

Proof.

Let S be the level set at level f(a) and y: R — R” be a curve lying on S
passing through a; that is, there exists ¢ such that y(c) = a. Suppose
v'(c) =v #0 so v is a tangent vector to y at a. We have

(foy) (c)=F"(y(c))y'(c)=f'(a)v. Since y lies on S, we have
fovy(t)=f(a) for all t € R. The function f oy is a constant, implying
that (foy)'(c)=0. So f'(a)v=Vf(a)Tv=0.
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Outline

© Calculus, The Basics

@ Taylor's Theorem
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Taylor's Theorem (1/2)

Given a function f : [a,b] = R and f € C™. We have
(b) = f(a)+ 52 (b—a) + T2 (b= 4+ + TSR (b= 2} 1+ R,

where R, = F7(c) (b—a)™ for some c € (a, b).

m!

| \

Proof.
Define R(x) =
(1) (2) (m
f(b)—f(x)—~L 1!("](b—x)—fzil(x)(b—xf—m—f(miw(b x)m-1,
We show that R(a) = f(":ﬂ(f) (b—a)™ for some c € (a,b). Note that
Rm( )=
@) (x @) (x () (x
D)+ [fDx )—fl—f)(b—x)]+[f1—f)(b—x)—%(b—x)2]+
m—1) ( . (m) (5 — £(m) (x
..+[ — 2()|)(b— )m 2_’(rm a))(b—x) 1] :_( ( (b x)™

Define g(x) = R(x) — (g 2=5)"R(a). It's easy to check that gla)=g(b)=0.
By Rolle’s theorem there exists some ¢ € (a, b) such that 0 =g1)(¢) =

b flm) b !
RW)(c) + 2=l R(a) = —F e (h— )1 4 b= Ra),

implying R(a):%(b—a)m. O
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Taylor’s Theorem (2/2)

@ An well-known application is Taylor series:

° X = 1+x+§+-~ :Z?:O% for all x (expending e* at a=0)
o In(14+x) = Z;'Ozl(—l)"“% for |x| < 1, which implies In(1+ x) ~ x for
x| <1
@ A function f:D — R, where D is an open interval, is said to be
analytic iff for any x,a € D, f can be written as
f(x) =37 ocnlx—a)" for some ¢, €R

. . (n)
o An analytic f is easy to analyze, e.g., ¢, = f "!(a)

o f is analytic iff give any x, the Taylor series at a converges to f(x)
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Order of Convergence

e Consider f(x):V —R™ and g(x):V — R™, where V C R” includes 0
e We denote f(x) =o(g(x)) iff f(x) goes to O faster than g(x) does

lF)
Tgtan =0

x)
e We denote f(x) = O(g(x)) iff £(x) goes to O faster than or equal to
g(x) does

e Specifically, limy_,q

e Specifically, for a sufficiently small 6 € R, there exists ¢ € R such that

if |lx]| <5, then {fiil < c
o Eg., x2=o0(x), x=0(x), [x3,2x3]T =o([x,0] ")

@ Don’t mix this up with the order of growth
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Taylor Theorem for Multivariate Functions (1/2)

@ Recall that a function f:[a,b] = R, f € ™, can be written as

(1) (2) (m—1)
F(b)=f(a)+ 52 (b—a)+ L5 (b—a)? +-- + L2 (b

(m) _ .
a)m1 —i—%(b—a)m, where 6 € (0,1) is a constant

@ By the continuity of (™), we have lim(p—2)—0 fima+68(b—a)) =
flm) (a+5(b—a))—f(m(a
1

fim(a) = lim(p—2)—0 ) = 0; that is,
fim(a+8(b—a))—FfM(a)=0(1)= fFM(a+5(b—a)) =
f(m)(a)+0(1)

@ We can rewrite f as f(b) =f(a)+ f(ll]!(a) (b—a)—f—%(b—a)kﬁ-

+ f(n:ﬂ(a) (b—a)™+o((b—a)™), since o(1) (b;f!’)m —o((b—a)™)
o If f € @™ we can further rewrite f as f(b) = f(a) + f(ll)!(a) (b—a)+
%(b—aﬁ—i—...—i—mw—a)m_kO((b_a)m+1)

m!

%(bfa)mﬂ = 0((b—a)™*1), as f(m*1) is bound on

the compact set [a, b] and therefore can be regarded as a constant

° Rpy1=
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Taylor Theorem for Multivariate Functions (2/2)

Theorem

Given f:V — R, whereV CR” is an open set and f € C2. For any x,acV,
there exists c = a+c(x—a)/||x —a|| for some c € (0, ||x —al||) such that
f(x)= f(a)—l—%Vf(a)T(x—a)—l—Rg, where Ry = %(x—a)TH(c)(x—a].

Proof

Define z: R — R" by z(8) =a+6(x—a)/||x—al and ¢ : R — R by

¢(6) = foz(é) =f(a+6(x—a)/||x—all), we can see that
f(x)=d(||x— a|| ) and by Taylor's theorem

)=
f(x) = $(0) + L% 1x —al| + L5 x—al]’. Note ]
B (8) = 1) (2(5))2(5) = V(2(6)T (=) = (=) (2(9)

T T
and $2)(8) = (E=2;)  H(z(0)2M(®) = (7=%;) H(z(8) (=2)-
Substituting ¢ (0) and @ (c) in f(x) we have the proof. O

v

o We can also write R, = 1 (x—a) " H(a)(x—a) +o(|x—a||*) [Proof]
o Or Ry = X(x—a)TH(a)(x—a)+O(||x—a|®) if f € € [Proof]
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Mean Value Theorem Reuvisited

Theorem (Mean Value Theorem)

Given a function f:V — R™, where V C R" js open and f € C*. For any
VA ()T
b,acV, there exists M = : for some ¢, ... ¢(M eV

Vim(ct™)T
such that f(b)—f(a) = M(b— a).

@ Can be easily proved by the Taylor's Theorem [Proof]
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© Matrix Calculus
@ Vector and Matrix Derivatives
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Vector Derivatives

@ Recall that the derivative of a function f:R” — R™ at a point x € R”

of of
aTll(X) 571()()
can be written as a Jacobian matrix : _ :
fm Afm
TXI(X) R (x)
@ Given x ¢ R" and y € R™, define % € R™*" such that (%) = gi{
ij ,

. . . f
o We can express the above Jacobian matrix succinctly as aa(:)

%(Ax):A and %:I
° %ER’”XI for x € R; and %GRIX" fory e R

° %(a—r )= aa (xTa)=a' for any acR"

° aa (xTx)=2xT

o Differentiation rules are applicable

o 2(xTAx)=xT2(Ax)+(Ax)T (22)" =xT(A+AT) for any

AcR™" [Proof]
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Matrix Derivatives

o Given x € R and A € R™*" define

o 24 ¢ R™X" such that (%)ij = a;i”'
o 29X ¢ R™*" such that (%)ij = 2
f iJj
@ x should be related to A (e.g., aj;, tr(A), or det(A), etc.)
A

o 3. is a matrix whose element at the ith row and jth column equals 1,
1y
and others 0

@ Although looked similar to vector derivatives, matrix derivatives have
no obvious geometric implications and are used mainly to simplify the
calculation of partial derivatives

o 2(AB)=A%E 1 4B [Proof]
° %(A‘l) = —A_lg—f(‘A_l [Proof: A"XA =1 and apply the above]
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© Matrix Calculus

@ Derivatives of Traces and Determinants**
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Derivatives of Traces

)

@Oﬁ‘@
—
i
>
LY
||

atr (BA) BT, as
aa,-J tr(AB) = ag,-,j l’:1 Zg:1 a’xsbsyr = b
o Ztr(A) =2t (AI) /
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Derivatives of Determinants (1/2)

Theorem

Given an invertible matrix A € R"*" and x € R, we have
% In(det(A)) = tr(A_l%).

| \

Proof

We only proof the case where A= UDU is symmetric here. We have
2 in(det(A)) = 2 In(det(U)det(D)det(U)1) = L In(det(D)) =
2T A=Y ZhA=3", 7%’ %})‘(" =tr(D""9B). Note U is
orthogonal, and diagonalizable, so there exists an antisymmetric matrix
w=1=1 % In U such that U = e*_ By the chain rule we have

QU — Wx (2 Wx) =UW and au ieWT =2eWr=—yuTw.
Therefore, tr(D~* %‘X’) = tr((UTAU) ai(UTAU))

tr(UTAU) (2L AU+ UT 24y + UT AQY)))=
tr(UTAU)H—UTWAU+UTAUu+UTAUW) =
tr(—UTATTWAU) + tr(UTAfl%U) + tr(W), which can be simplified
to tr(Aflg—f(‘) by the cyclic property of trace. Ol

Q)

y
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Derivatives of Determinants (2/2)

o oxin(det(A))=(A")T

o Let a;; and b;; be the elements of A and A™! respectively, then
(det(A)) = tr(A* 2A) =57 | 50 brsgas = by
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© Calculus of Variations**
@ Functionals
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Functionals

o Consider a function f :R — R, f(x) =ax+b (or f(x|a,b) = ax+b)
e x is an argument and a and b are parameters

o Let S be the set of functions f : V — W, we can define a functional
F:8 — W, F[f], with f as the argument

e E.g., value of a function f:R — R at x: F:8 =R, F[f]=f(x)

e x is a parameter
o We can write F[f] as F[f|x]

e E.g., definite integral of a function f:R—R: /:8 = R,
111 = 2 F(x)dx

e a and b are parameters

e E.g., expectation of ¥ : R — R defined over the values of a random
variable X: E:8 = R, E[f(X)] = [f(x)px(x)dx
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