Calculus

Shan-Hung Wu
shwu@cs.nthu.edu.tw
Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Spring 2013

Outline

(1) Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem
(2) Matrix Calculus
- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**
(3) Calculus of Variations**
- Functionals

Outline

(1) Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem
(2) Matrix Calculus
- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**
(3) Calculus of Variations**
- Functionals

Functions and Limits

Caution!

The functions f (or \boldsymbol{f}) discussed here are not required to be linear anymore.

Definition (Limit of a Function)

A function $\boldsymbol{f}: \mathcal{V} \rightarrow \mathbb{R}^{m}, \mathcal{V} \subseteq \mathbb{R}^{n}$, has a limit $\boldsymbol{f}^{*}(\boldsymbol{a})$ at the point $\boldsymbol{a} \in \mathcal{V}$ if given any $\varepsilon \in \mathbb{R}, \varepsilon>0$, there exists $\delta \in \mathbb{R}, \delta>0$ such that for all $x \in \mathcal{V}$, $0<\|\boldsymbol{x}-\boldsymbol{a}\|<\delta$, we have $\left\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}^{*}(\boldsymbol{a})\right\|<\varepsilon$. This is denoted by $\lim _{x \rightarrow a} f(x)=f^{*}(a)$.

Definition (Continuity)

A function $\boldsymbol{f}: \mathcal{V} \rightarrow \mathbb{R}^{m}, \mathcal{V} \subseteq \mathbb{R}^{n}$, is continuous at \boldsymbol{a} iff $\boldsymbol{f}^{*}(\boldsymbol{a})=\boldsymbol{f}(\boldsymbol{a})$; that is, given any $\varepsilon>0$, there exists $\delta>0$ such that for all $x \in \mathcal{V}$,
$0<\|\boldsymbol{x}-\boldsymbol{a}\|<\delta$, we have $\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{a})\|<\varepsilon$.

Sequences and Convergence (1/2)

- A sequence of vectors $\left\{\boldsymbol{x}^{(k)}\right\}_{k}$ can be think of as the $\mathcal{R}(\boldsymbol{f})$ for some $f: \mathbb{N} \rightarrow \mathbb{R}^{n}$
- A sequence is increasing iff $\boldsymbol{x}^{(1)}<\boldsymbol{x}^{(2)}<\cdots$, and nondecreasing iff $\boldsymbol{x}^{(1)} \leqslant \boldsymbol{x}^{(2)} \leqslant \cdots$
- Nondecreasing and nonincreasing sequences are called monotone sequences

Definition (Limit of a Sequence)

A sequence $\left\{\boldsymbol{x}^{(k)}\right\}_{k}$ has a limit \boldsymbol{x}^{*} if given any $\varepsilon \in \mathbb{R}, \varepsilon>0$, there exists $K \in \mathbb{N}$, such that for all $k>K$, we have $\left\|\boldsymbol{x}^{(k)}-\boldsymbol{x}^{*}\right\|<\varepsilon$. This is denoted by $\lim _{k \rightarrow \infty} \boldsymbol{x}^{(k)}=\boldsymbol{x}^{*}$.

- A sequence having a limit is called a convergent sequence
- Given a sequence $\left\{\boldsymbol{x}^{(k)}\right\}_{k}$ convergent to \boldsymbol{a}, we can see that a function $\boldsymbol{f}: \mathcal{V} \rightarrow \mathbb{R}^{m}$ is continuous at \boldsymbol{a} iff $\lim _{k \rightarrow \infty} \boldsymbol{f}\left(\boldsymbol{x}^{(k)}\right)=\boldsymbol{f}(\boldsymbol{a})$ [Proof: Using definitions and the fact that $\left.\lim _{k \rightarrow \infty} \boldsymbol{f}\left(\boldsymbol{x}^{(k)}\right)=\boldsymbol{f}\left(\lim _{k \rightarrow \infty} \boldsymbol{x}^{(k)}\right)\right]$

Sequences and Convergence (2/2)

- Given a sequence $\left\{\boldsymbol{x}^{(k)}\right\}_{k}$ and an increasing sequence of nature numbers $\left\{m_{k}\right\}_{k}$, we call $\left\{\boldsymbol{x}^{\left(m_{k}\right)}\right\}_{k}$ the subsequence of $\left\{\boldsymbol{x}^{(k)}\right\}_{k}$
- A subsequence is obtained by neglecting some elements of a given sequence
- If a sequence converges to x^{*}, then all its subsequences converge to x^{*} too [Proof]

Extreme Value Theorem

Theorem

Let $f: \Omega \rightarrow \mathbb{R}$ be a continuous function over a compact set $\Omega \subseteq \mathbb{R}^{n}$. There exist $x_{0}, x_{1} \in \Omega$ such that $f\left(x_{0}\right) \leqslant f(x) \leqslant f\left(x_{1}\right), \forall x \in \Omega$; that is, $f\left(x_{0}\right)=\min _{x \in \Omega}(f(x))$ and $f\left(x_{1}\right)=\max _{\boldsymbol{x} \in \Omega} f(x)$.

- We say f is bounded on Ω iff there exists $l, h \in \mathbb{R}$ such that $l \leqslant f(x) \leqslant h, \forall x \in \Omega$
- The above theorem says that f is bounded on Ω if Ω is compact

Min, Max, Inf, and Sup

- Given a subset \mathcal{S} (e.g., $[0,1$) or $\{2,4,6, \cdots\}$) of \mathbb{R} (or any other ordered set where elements can be compared with each other), we have:

Definition (Supremum)

An point $p \in \mathbb{R}$ is called the supremum, denoted by $\sup _{s \in S} s$, iff a) $s \leqslant p, \forall s \in \mathcal{S} ; \mathrm{b}$) for any $\varepsilon>0$, there exist $s \in \mathcal{S}$ such that $s>p-\varepsilon$.

- p is called the maximum iff $p \in \mathcal{S}$

Definition (Infimum)

An point $p \in \mathbb{R}$ is called the infimum, denoted by $\inf _{s \in S} s$, iff a) $s \geqslant p, \forall s \in \mathcal{S} ; \mathrm{b}$) for any $\varepsilon>0$, there exist $s \in \mathcal{S}$ such that $s<p+\varepsilon$.

- p is called the minimum iff $p \in \mathcal{S}$

Convergence of Functions (1/2)

- Given a set of data $\left\{\boldsymbol{x}^{(t)}\right\}_{t=1}^{N}$, suppose we use an ML algorithm to train a model, say $\boldsymbol{f}^{(N)}$
- Usually, we want to know how the ML algorithm works when $N \rightarrow \infty$
- We can think of $\left\{\boldsymbol{f}^{(N)}\right\}_{N}$ as a sequence, and then investigate the properties of its limit \boldsymbol{f}^{*}

Definition (Pointwise Convergence)

A sequence of functions $\left\{\boldsymbol{f}^{(N)}\right\}_{N}$, where $\boldsymbol{f}^{(N)}: \mathcal{V} \rightarrow \mathbb{R}^{m}$ and $\mathcal{V} \subseteq \mathbb{R}^{n}$, converges pointwise to a function $\boldsymbol{f}^{*}: \mathcal{V} \rightarrow \mathbb{R}^{m}$ iff for any $\boldsymbol{x} \in \mathcal{V}$, we have $\lim _{N \rightarrow \infty} \boldsymbol{f}^{(N)}(\boldsymbol{x})=\boldsymbol{f}^{*}(\boldsymbol{x})$.

- Unfortunately, pointwise convergence is not strong enough to guarantee "reasonable" relations between $\boldsymbol{f}^{(N)}$ and \boldsymbol{f}^{*}
- E.g., for all $x \in[0,1]$, a sequence of continuous function $f^{(N)}(x)=x^{N}$ converges pointwise to $f^{*}(x)=\left\{\begin{array}{cc}0, & 0 \leqslant x<1 \\ 1, & x=1\end{array}\right.$, which is obviously not continuous

Convergence of Functions (2/2)

Definition (Uniform Convergence)

A sequence of functions $\left\{\boldsymbol{f}^{(N)}\right\}_{N}$, where $\boldsymbol{f}^{(N)}: \mathcal{V} \rightarrow \mathbb{R}^{m}$ and $\mathcal{V} \subseteq \mathbb{R}^{n}$, converges uniformly to a function $\boldsymbol{f}^{*}: \mathcal{V} \rightarrow \mathbb{R}^{m}$ iff given any $\varepsilon>0$, there exists $K \in \mathbb{N}$ such that for all $N \geqslant K$, we have $\left\|\boldsymbol{f}^{(N)}-\boldsymbol{f}^{*}\right\|<\varepsilon$ for all $x \in \mathcal{V}$.

- Intuitively, $\boldsymbol{f}^{(N)}$ can be fitted into any given " ε-tube" around \boldsymbol{f}^{*} as long as N is large enough

Theorem

If a sequence of continuous functions $\left\{\boldsymbol{f}^{(N)}\right\}_{N}$ converges uniformly to \boldsymbol{f}^{*}, then \boldsymbol{f}^{*} will be continuous.

- Can be proved by either the " $\varepsilon / 3$ trick" or the " ε-tube" intuition

Outline

(1) Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem
(2) Matrix Calculus
- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**
(3) Calculus of Variations**
- Functionals

Derivative (1/2)

Definition (Derivative)

A function $f:[s, t] \rightarrow \mathbb{R}, s, t \in \mathbb{R}$, is differentiable at $a \in(s, t)$ iff $\lim _{\delta \rightarrow 0} \frac{f(a+\delta)-f(a)}{\delta}$ (or equivalently, $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$) exists. The limit is called the derivative of f at a, and is denoted by $f^{\prime}(a), f^{(1)}(a)$, or $\frac{d f}{d x}(a)$.

- " d " means the infinitesimal difference, and $f^{\prime}(a)$ is the slope of a tangent line to f at $f(a)$
- If a function f is differentiable at a, then it is continuous at a (converse is not true, as evidenced by $f(x)=|x|$ and $a=0$)
- f is said to be differentiable iff it is differentiable at any point of its domain
- f is said to be continuously differentiable iff f is differentiable and f^{\prime} is continuous

Derivative (2/2)

- If f is differentiable, we can think of f^{\prime} as a function too (although may not be continuous/differentiable)
- E.g., given $f(x)=e^{x}$, we have

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{\delta \rightarrow 0} \frac{e^{(x+\delta)}-e^{x}}{\delta}=\lim _{\delta \rightarrow 0} \frac{e^{x}\left(e^{\delta}-1\right)}{\delta} . \text { Let } t=e^{\delta}-1, \text { then } \\
& f^{\prime}(x)=\lim _{t \rightarrow 0} \frac{e^{\times}}{\ln (1+t)}=e^{x} \lim _{t \rightarrow 0} \frac{1}{\ln (1+t)^{1 / t}}=e^{x} \frac{1}{\ln \left(\lim _{t \rightarrow 0}(1+t)^{1 / t}\right)}= \\
& e^{x} \frac{1}{\ln e}=e^{x}
\end{aligned}
$$

- $f \in \mathcal{C}^{n}$ denotes that f is n-times continuously differentiable

Rolle's and Mean Value Theorem

Theorem (Rolle's Theorem)

Given a function $f:[s, t] \rightarrow \mathbb{R}$, where $s, t \in \mathbb{R}, f \in \mathcal{C}^{1}$, and $f(s)=f(t)$. There exists some $u \in(s, t)$ such that $f^{\prime}(u)=0$.

- Starting from $f(s), f$ must change its direction at some point when it is getting to $f(t)$
- We can "rotate" the above theorem to get a new one:

Theorem (Mean Value Theorem)

Given a function $f:[s, t] \rightarrow \mathbb{R}$, where $s, t \in \mathbb{R}$ and $f \in \mathcal{C}^{1}$. There exists some $u \in(s, t)$ such that $f^{\prime}(u)=\frac{f(t)-f(s)}{t-s}$.

Partial Derivative for Multivariate Functions

Definition (Partial Derivative)

The partial derivative of a function $f: \mathcal{V} \rightarrow \mathbb{R}, \mathcal{V} \subseteq \mathbb{R}^{n}$, in the direction along the ith component at point \boldsymbol{a} is defined as $\lim _{\delta \rightarrow 0} \frac{f\left(a_{1}, \cdots, a_{i}+\delta, \cdots, a_{n}\right)-f\left(a_{1}, \cdots, a_{n}\right)}{\delta}$, denoted by $\frac{\partial f}{\partial x_{i}}(a)$.

- We can only look at one component a time
- Given $f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right)^{2}$, we have $\frac{\partial f}{\partial x_{1}}\left(x_{1}, x_{2}\right)=$ $\lim _{\delta \rightarrow 0} \frac{\left(x_{1}+\delta+x_{2}\right)^{2}-\left(x_{1}+x_{2}\right)^{2}}{\delta}=\lim _{\delta \rightarrow 0} \frac{\delta\left(2 x_{1}+2 x_{2}\right)}{\delta}=2 x_{1}+2 x_{2}$
- Simply treat x_{2} as constant here

Integral

- Given a function $f: \mathcal{V} \rightarrow \mathbb{R}, \mathcal{V} \subseteq \mathbb{R}^{n}$, the set $\left\{\left[\boldsymbol{x}^{\top}, f(\boldsymbol{x})\right]^{\top}: \boldsymbol{x} \in \mathcal{V}\right\}$ is called the graph of f
- Now consider a function $f:[s, t] \rightarrow \mathbb{R}, s, t \in \mathbb{R}$, how do you approximate the area between the curve $y=f(x)$ and the x-axis in the graph of f ?
(1) Partition $[s, t]$ evenly into n segments of width $\frac{t-s}{n}$, and let $h_{i}\left(\right.$ or $\left.l_{i}\right)$, $1 \leqslant i \leqslant n$, be the highest (or lowest) value of f in each segment
(2) We can approximate the area by $H(n)=\sum_{i=1}^{n} h_{i}\left(\frac{t-s}{n}\right)$ (or $\left.L(n)=\sum_{i=1}^{n} l_{i}\left(\frac{t-s}{n}\right)\right)$
- The larger the value of n, the more precise the approximation

Definition (Integral)

A function $f:[s, t] \rightarrow \mathbb{R}, s, t \in \mathbb{R}$, is integrable iff both $\lim _{n \rightarrow \infty} H(n)$ and $\lim _{n \rightarrow \infty} L(n)$ exist and are equal to each other. The limit is called the integral of f, denoted by $\int_{s}^{t} f(x) d x$.

Fundamental Theorem of Calculus

Theorem (Fundamental Theorem of Calculus)

Given a function $f:[s, t] \rightarrow \mathbb{R}, s, t \in \mathbb{R}$. We have:
a) The function $F:[s, t] \rightarrow \mathbb{R}, F(x)=\int_{s}^{x} f(z) d z$, is differentiable and $\frac{d F}{d x}(x)=\frac{d}{d x} \int_{s}^{x} f(z) d z=f(x)$;
b) If there exists a differentiable function $G:\left[s^{\prime}, t^{\prime}\right] \rightarrow \mathbb{R},[s, t] \subseteq\left[s^{\prime}, t^{\prime}\right]$, such that $\frac{d G}{d x}(x)=f(x)$ for every $x \in[s, t]$, then $\int_{s}^{t} f(x) d x=G(t)-G(s)$.

- F is called the indefinite integral (or antiderivative) of f and is a function of "accumulated area" from s
- F can be "reversed" by differentiation and f is the "rate of accumulation"
- $\int_{s}^{t} f(x) d x$ is called the definite integral formally and represents an area
- Definite integral can be computed by using indefinite integrals (which are usually easier to get)

Outline

(1) Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem
(2) Matrix Calculus
- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**
(3) Calculus of Variations**
- Functionals

Isn't It Straightforward?

- Recall that the derivative of a real-valued function f at a is defined as $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
- This is not applicable to $\boldsymbol{x} \in \mathbb{R}^{n}$ and $\boldsymbol{f}(\boldsymbol{x}) \in \mathbb{R}^{m}$, as we cannot divide vectors
- We need a more general definition where the vectors can be fitted in with
- Note that $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ iff

$$
0=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}-f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)-f^{\prime}(a)(x-a)}{x-a}
$$

- Since the limit equals 0 , the sign of numerator and denominator at the right hand side does not matter; that is, the above equation is equivalent to
$0=\lim _{x \rightarrow a} \frac{\left|f(x)-f(a)-f^{\prime}(a)(x-a)\right|}{|x-a|}=\lim _{x \rightarrow a} \frac{\left|f(x)-\left(f^{\prime}(a)(x-a)+f(a)\right)\right|}{|x-a|}$
- Now we can replace $|\cdot|$ with a vector norm $\|\cdot\|$
- But what does it mean?

Isn't It Straightforward?

- Recall that the derivative of a real-valued function f at a is defined as $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
- This is not applicable to $\boldsymbol{x} \in \mathbb{R}^{n}$ and $\boldsymbol{f}(\boldsymbol{x}) \in \mathbb{R}^{m}$, as we cannot divide vectors
- We need a more general definition where the vectors can be fitted in with
- Note that $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ iff

$$
0=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}-f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)-f^{\prime}(a)(x-a)}{x-a}
$$

- Since the limit equals 0 , the sign of numerator and denominator at the right hand side does not matter; that is, the above equation is equivalent to

$$
0=\lim _{x \rightarrow a} \frac{\left|f(x)-f(a)-f^{\prime}(a)(x-a)\right|}{|x-a|}=\lim _{x \rightarrow a} \frac{\left|f(x)-\left(f^{\prime}(a)(x-a)+f(a)\right)\right|}{|x-a|}
$$

- Now we can replace $|\cdot|$ with a vector norm $|\cdot| \|$
- But what does it mean? In the graph of $f, f^{\prime}(a)(x-a)+f(a)$ is a tangent line to f at $f(a)$

Derivative of Vector-Valued Functions

- The notion of a tangent line can be generalized into an affine function $\mathcal{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathcal{A}(\boldsymbol{x})=\mathcal{L}(\boldsymbol{x})+\boldsymbol{c}$, where $\mathcal{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation and $c \in \mathbb{R}^{m}$
- An affine function is a "point" in an affine space

Theorem (Derivative)

A function $\boldsymbol{f}: \mathcal{V} \rightarrow \mathbb{R}^{m}, \mathcal{V} \subseteq \mathbb{R}^{n}$, is differentiable at $\boldsymbol{a} \in \mathcal{V}$ iff there exists a linear transformation $\mathcal{L}(\mathbf{a}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that
$\lim _{\mathcal{S} \rightarrow \mathbf{0}} \frac{\|f(\mathbf{a}+\mathcal{\delta})-(\mathcal{L}(\mathbf{a})(\boldsymbol{\delta})+f(\mathbf{a}))\|}{\|\mathcal{S}\|}=0$ (or equivalently,
$\left.\lim _{\boldsymbol{x} \rightarrow \mathbf{a}} \frac{\|\boldsymbol{f}(\boldsymbol{x})-(\mathcal{L}(\mathbf{a})(\boldsymbol{x}-\mathbf{a})+\boldsymbol{f}(\mathbf{a}))\|}{\|\boldsymbol{x}-\mathbf{a}\|}=0\right) . \mathcal{L}(\mathbf{a})$ is called the derivative of \boldsymbol{f} at a, denoted by $f^{\prime}(\mathbf{a})$.

- Since $\boldsymbol{f}^{\prime}(\boldsymbol{a})$ is linear, it can be represented by a matrix $\boldsymbol{J}_{\boldsymbol{a}}$
- How does J_{a} look like?

Jacobian Matrices (1/2)

- Any function $\boldsymbol{f}: \mathcal{V} \rightarrow \mathbb{R}^{m}, \mathcal{V} \subseteq \mathbb{R}^{n}$ and $\boldsymbol{f}(\boldsymbol{v})=\boldsymbol{w}$ can be rewritten as:

$$
\left(\begin{array}{c}
f_{1}\left(v_{1}, \cdots, v_{n}\right)=w_{1} \\
\vdots \\
f_{m}\left(v_{1}, \cdots, v_{n}\right)=w_{m}
\end{array}\right)
$$

- If \boldsymbol{f} is linear, each real-valued $f_{i}, 1 \leqslant i \leqslant m$, can be represented by a row vector $\boldsymbol{j}_{i} \in \mathbb{R}^{n}$ such that $\boldsymbol{j}_{i}^{\top} \boldsymbol{v}=w_{i}$ (Remember the system of linear equations?)
- Let $\boldsymbol{J}_{\boldsymbol{a}}=\left[\begin{array}{c}\boldsymbol{j}_{1}^{\top} \\ \vdots \\ \boldsymbol{j}_{m}^{\top}\end{array}\right]$ be the matrix representation of $\boldsymbol{f}^{\prime}(\boldsymbol{a})$

Jacobian Matrices (2/2)

- Let $\delta=\delta \boldsymbol{e}_{j}$, where $1 \leqslant j \leqslant n$ and $\delta \in \mathbb{R}$
- Looking at the definition $\lim _{\mathcal{\delta} \rightarrow \mathbf{0}} \frac{\|f(\mathbf{a}+\boldsymbol{\delta})-(\mathcal{L}(\mathbf{a})(\mathcal{\delta})+\boldsymbol{f}(\mathbf{a}))\|}{\|\boldsymbol{\delta}\|}=0$
row-by-row, we have $\lim _{\delta \rightarrow 0} \frac{f_{i}\left(\boldsymbol{a}+\delta \boldsymbol{e}_{\boldsymbol{j}}\right)-\left(\delta \boldsymbol{j}_{i}^{\top} \boldsymbol{e}_{\boldsymbol{j}}+f_{i}(\boldsymbol{a})\right)}{\delta}=0$ for each i and j
- This implies that $\lim _{\delta \rightarrow 0} \frac{f_{i}\left(\boldsymbol{a}+\delta \boldsymbol{e}_{j}\right)-f_{i}(\boldsymbol{a})}{\delta}=\boldsymbol{j}_{i}^{\top} \boldsymbol{e}_{j}$
- The right hand side denotes the element of J_{a} at the i th row and the j th column
- The left hand side is the partial derivative $\frac{\partial f_{i}}{\partial x_{j}}(\boldsymbol{a})$ by definition
- $\boldsymbol{J}_{\boldsymbol{a}}=\left[\begin{array}{ccc}\frac{\partial f_{1}}{\partial x_{1}}(\boldsymbol{a}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\boldsymbol{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\boldsymbol{a}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\boldsymbol{a})\end{array}\right]$ is called the Jacobian matrix (or derivative matrix) of f at a

Gradient (1/2)

Definition

If a function $f: \mathcal{V} \rightarrow \mathbb{R}, \mathcal{V} \subseteq \mathbb{R}^{n}$, is differentiable, then the gradient of f is defined by $\nabla f(x)=\left[\frac{\partial f}{\partial x_{1}}(x), \cdots, \frac{\partial f}{\partial x_{n}}(x)\right]^{\top}=f^{\prime}(x)^{\top}$.

- The Jacobian matrix of \boldsymbol{f} at \boldsymbol{a} can be rewritten as $\boldsymbol{J}_{\boldsymbol{a}}=\left[\begin{array}{c}\nabla f_{1}(\boldsymbol{a})^{\top} \\ \vdots \\ \nabla f_{m}(\boldsymbol{a})^{\top}\end{array}\right]$
- From the previous page, we can see that in the graph of f_{i}, $\left\{\boldsymbol{x}: \nabla f_{i}(\boldsymbol{a})^{\top}(\boldsymbol{x}-\boldsymbol{a})+f_{i}(\boldsymbol{a})\right\}$ is a tangent hyperplane to f_{i} at $f_{i}(\boldsymbol{a})$
- The norm of $\nabla f_{i}(\mathbf{a})$ is the "slope" of the tangent hyperplane
- $\nabla f_{i}(\boldsymbol{a})$ also acts as the direction that for a given small displacement from \boldsymbol{a}, f_{i} increase more in the direction of $\nabla f_{i}(\boldsymbol{a})$ than in any other direction [Proof]

Gradient (2/2)

- The gradient $\nabla f(\boldsymbol{x})$ is a function from \mathbb{R}^{n} to \mathbb{R}^{n} and can be pictured as a vector field
- Each vector in the field is the direction of maximum rate of increase of f
- E.g., consider $f\left(x_{1}, x_{2}\right)=-\left(\cos ^{2} x_{1}+\cos ^{2} x_{2}\right)^{2}$:

Hessian Matrices (1/2)

Definition (Hessian Matrix)

Given a differentiable function $f: \mathcal{V} \rightarrow \mathbb{R}, \mathcal{V} \subseteq \mathbb{R}^{n}$. If $\nabla f(\boldsymbol{x})$ is differentiable, we have the derivative of $\nabla f(\boldsymbol{x})$ as:

$$
\boldsymbol{H}(\boldsymbol{x})=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}}(\boldsymbol{x}) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(\boldsymbol{x}) \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(\boldsymbol{x}) & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(\boldsymbol{x})
\end{array}\right]
$$

which is called the Hessian matrix of f at \boldsymbol{x}.

- $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\boldsymbol{x})$ means taking the partial derivative of f in the direction x_{j} first, and then x_{i}

Hessian Matrices (2/2)

Theorem (Clairaut's/Schwarz's Theorem)

If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable at \boldsymbol{x}, then its Hessian matrix at \boldsymbol{x} is symmetric.

- If the second partial derivatives of f is not continuous, then there is no such a guarantee
- Here is an example:

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cl}
\frac{x_{1} x_{2}\left(x_{1}^{2}-x_{2}^{2}\right)}{\left(x_{1}^{2}+x_{2}^{2}\right)}, & {\left[x_{1}, x_{2}\right]^{\top} \neq[0,0]^{\top}} \\
0, & {\left[x_{1}, x_{2}\right]^{\top}=[0,0]^{\top}}
\end{array}\right.
$$

The Hessian matrix of f at the point $[0,0]^{\top}$ is not symmetric [Homework]

Outline

(1) Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem
(2) Matrix Calculus
- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**
(3) Calculus of Variations**
- Functionals

Differentiation Rules

Theorem (Chain Rule)

Let $\boldsymbol{f}:(s, t) \rightarrow \mathcal{D}$ and $g: \mathcal{D} \rightarrow \mathbb{R}$ be differentiable functions, where $\mathcal{D} \subseteq \mathbb{R}^{n}$ is an open set and $s, t \in \mathbb{R}$. The composite function $g \circ f:(s, t) \rightarrow \mathbb{R}$ is differentiable and $(g \circ \boldsymbol{f})^{\prime}(x)=g^{\prime}(\boldsymbol{f}(x)) \boldsymbol{f}^{\prime}(x)=\nabla g(\boldsymbol{f}(x))^{\top}\left[\begin{array}{c}f_{1}^{\prime}(x) \\ \vdots \\ f_{n}^{\prime}(x)\end{array}\right]$.

- g^{\prime} and \boldsymbol{f}^{\prime} are derivatives but with respect to different variables

Theorem (Product Rule)

Let $\boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be differentiable functions. Then the function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}, h(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})^{\top} \boldsymbol{g}(\boldsymbol{x})$, is differentiable and $h^{\prime}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})^{\top} \boldsymbol{g}^{\prime}(\boldsymbol{x})+\boldsymbol{g}(\boldsymbol{x})^{\top} \boldsymbol{f}^{\prime}(\boldsymbol{x})^{\top}$.

Outline

(1) Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem
(2) Matrix Calculus
- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**
(3) Calculus of Variations**
- Functionals

Level Sets

Definition (Level Set)

The level set of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at level $c \in \mathbb{R}$ is the set of points $S=\{x: f(x)=c\}$.

- When $n=2, S$ is a plane curve
- When $n=3, S$ is a surface

Level Sets and Gradients

Theorem

The vector $\nabla f(\mathbf{a})$ is orthogonal to the tangent vector to an arbitrary curve passing through a on a level set at level $f(\mathbf{a})$.

Proof.

Let S be the level set at level $f(a)$ and $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a curve lying on S passing through a; that is, there exists c such that $\gamma(c)=a$. Suppose $\boldsymbol{\gamma}^{\prime}(c)=\boldsymbol{v} \neq \mathbf{0}$ so \boldsymbol{v} is a tangent vector to $\boldsymbol{\gamma}$ at \boldsymbol{a}. We have $(f \circ \gamma)^{\prime}(c)=f^{\prime}(\boldsymbol{\gamma}(c)) \boldsymbol{\gamma}^{\prime}(c)=f^{\prime}(\boldsymbol{a}) \boldsymbol{v}$. Since $\boldsymbol{\gamma}$ lies on S, we have $f \circ \boldsymbol{\gamma}(t)=f(\boldsymbol{a})$ for all $t \in \mathbb{R}$. The function $f \circ \boldsymbol{\gamma}$ is a constant, implying that $(f \circ \gamma)^{\prime}(c)=0$. So $f^{\prime}(\mathbf{a}) \boldsymbol{v}=\nabla f(\mathbf{a})^{\top} \boldsymbol{v}=0$.

Outline

(1) Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem
(2) Matrix Calculus
- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**
(3) Calculus of Variations**
- Functionals

Taylor's Theorem (1/2)

Theorem

Given a function $f:[a, b] \rightarrow \mathbb{R}$ and $f \in \mathcal{C}^{m}$. We have
$f(b)=f(a)+\frac{f^{(1)}(a)}{1!}(b-a)+\frac{f^{(2)}(a)}{2!}(b-a)^{2}+\cdots+\frac{f^{(m-1)}(a)}{(m-1)!}(b-a)^{m-1}+R_{m}$, where $R_{m}=\frac{f^{(m)}(c)}{m!}(b-a)^{m}$ for some $c \in(a, b)$.

Proof.

Define $R(x)=$
$f(b)-f(x)-\frac{f^{(1)}(x)}{1!}(b-x)-\frac{f^{(2)}(x)}{2!}(b-x)^{2}-\cdots-\frac{f^{(m-1)}(x)}{(m-1)!}(b-x)^{m-1}$.
We show that $R(a)=\frac{f^{(m)}(c)}{m!}(b-a)^{m}$ for some $c \in(a, b)$. Note that $R^{(1)}(x)=$
$-f^{(1)}(x)+\left[f^{(1)}(x)-\frac{f^{(2)}(x)}{1!}(b-x)\right]+\left[\frac{f^{(2)}(x)}{1!}(b-x)-\frac{f^{(3)}(x)}{2!}(b-x)^{2}\right]+$ $\cdots+\left[\frac{f^{(m-1)}(x)}{(m-2)!}(b-x)^{m-2}-\frac{f^{(m)}(x)}{(m-1)!}(b-x)^{m-1}\right]=-\frac{f^{(m)}(x)}{(m-1)!}(b-x)^{m-1}$.
Define $g(x)=R(x)-\left(\frac{b-x}{b-a}\right)^{m} R(a)$. It's easy to check that $g(a)=g(b)=0$. By Rolle's theorem there exists some $c \in(a, b)$ such that $0=g^{(1)}(c)=$ $R^{(1)}(c)+\frac{m(b-c)^{m-1}}{(b-a)^{m}} R(a)=-\frac{f^{(m)}(c)}{(m-1)!}(b-c)^{m-1}+\frac{m(b-c)^{m-1}}{(b-a)^{m}} R(a)$, implying $R(a)=\frac{f^{(m)}(c)}{m!}(b-a)^{m}$.

Taylor's Theorem (2/2)

- An well-known application is Taylor series:
- $e^{x}=1+x+\frac{x^{2}}{2!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for all x (expending e^{x} at $a=0$)
- $\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}$ for $|x|<1$, which implies $\ln (1+x) \approx x$ for $|x| \ll 1$
- A function $f: \mathcal{D} \rightarrow \mathbb{R}$, where \mathcal{D} is an open interval, is said to be analytic iff for any $x, a \in D, f$ can be written as $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ for some $c_{n} \in \mathbb{R}$
- An analytic f is easy to analyze, e.g., $c_{n}=\frac{f^{(n)}(a)}{n!}$
- f is analytic iff give any x, the Taylor series at a converges to $f(x)$

Order of Convergence

- Consider $\boldsymbol{f}(\boldsymbol{x}): \mathcal{V} \rightarrow \mathbb{R}^{m}$ and $\boldsymbol{g}(\boldsymbol{x}): \mathcal{V} \rightarrow \mathbb{R}^{m}$, where $\mathcal{V} \subseteq \mathbb{R}^{n}$ includes $\mathbf{0}$
- We denote $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{o}(\boldsymbol{g}(\boldsymbol{x}))$ iff $\boldsymbol{f}(\boldsymbol{x})$ goes to $\mathbf{0}$ faster than $\boldsymbol{g}(\boldsymbol{x})$ does
- Specifically, $\lim _{x \rightarrow 0} \frac{\|\boldsymbol{f}(x)\|}{\|\boldsymbol{g}(x)\|}=0$
- We denote $\boldsymbol{f}(\boldsymbol{x})=O(\boldsymbol{g}(\boldsymbol{x}))$ iff $\boldsymbol{f}(\boldsymbol{x})$ goes to $\mathbf{0}$ faster than or equal to $\boldsymbol{g}(\boldsymbol{x})$ does
- Specifically, for a sufficiently small $\delta \in \mathbb{R}$, there exists $c \in \mathbb{R}$ such that if $\|\boldsymbol{x}\|<\delta$, then $\frac{\|\boldsymbol{f}(x)\|}{\|\boldsymbol{g}(x)\|} \leqslant c$
- E.g., $x^{2}=o(x), x=O(x),\left[x^{3}, 2 x^{2}\right]^{\top}=o\left([x, 0]^{\top}\right)$
- Don't mix this up with the order of growth

Taylor Theorem for Multivariate Functions (1/2)

- Recall that a function $f:[a, b] \rightarrow \mathbb{R}, f \in \mathcal{C}^{m}$, can be written as $f(b)=f(a)+\frac{f^{(1)}(a)}{1!}(b-a)+\frac{f^{(2)}(a)}{2!}(b-a)^{2}+\cdots+\frac{f^{(m-1)}(a)}{(m-1)!}(b-$ a) ${ }^{m-1}+\frac{f^{(m)}(a+\delta(b-a))}{m!}(b-a)^{m}$, where $\delta \in(0,1)$ is a constant
- By the continuity of $f^{(m)}$, we have $\lim _{(b-a) \rightarrow 0} f^{(m)}(a+\delta(b-a))=$ $f^{(m)}(a) \Rightarrow \lim _{(b-a) \rightarrow 0} \frac{f^{(m)}(a+\delta(b-a))-f^{(m)}(a)}{1}=0$; that is, $f^{(m)}(a+\delta(b-a))-f^{(m)}(a)=o(1) \Rightarrow f^{(m)}(a+\delta(b-a))=$ $f^{(m)}(a)+o(1)$
- We can rewrite f as $f(b)=f(a)+\frac{f^{(1)}(a)}{1!}(b-a)+\frac{f^{(2)}(a)}{2!}(b-a)^{2}+$ $\cdots+\frac{f^{(m)}(a)}{m!}(b-a)^{m}+o\left((b-a)^{m}\right)$, since $o(1) \frac{(b-a)^{m}}{m!}=o\left((b-a)^{m}\right)$
- If $f \in \mathcal{C}^{m+1}$, we can further rewrite f as $f(b)=f(a)+\frac{f^{(1)}(a)}{1!}(b-a)+$ $\frac{f^{(2)}(a)}{2!}(b-a)^{2}+\cdots+\frac{f^{(m)}(a)}{m!}(b-a)^{m}+O\left((b-a)^{m+1}\right)$
- $R_{m+1}=\frac{f^{(m+1)}(c)}{(m+1)!}(b-a)^{m+1}=O\left((b-a)^{m+1}\right)$, as $f^{(m+1)}$ is bound on the compact set $[a, b]$ and therefore can be regarded as a constant

Taylor Theorem for Multivariate Functions (2/2)

Theorem

Given $f: \mathcal{V} \rightarrow \mathbb{R}$, where $\mathcal{V} \subseteq \mathbb{R}^{n}$ is an open set and $f \in \mathcal{C}^{2}$. For any $\boldsymbol{x}, \boldsymbol{a} \in \mathcal{V}$, there exists $\boldsymbol{c}=\boldsymbol{a}+c(\boldsymbol{x}-\boldsymbol{a}) /\|\boldsymbol{x}-\boldsymbol{a}\|$ for some $c \in(0,\|\boldsymbol{x}-\boldsymbol{a}\|)$ such that $f(\boldsymbol{x})=f(\boldsymbol{a})+\frac{1}{1!} \nabla f(\mathbf{a})^{\top}(\boldsymbol{x}-\mathbf{a})+R_{2}$, where $R_{2}=\frac{1}{2!}(\boldsymbol{x}-\boldsymbol{a})^{\top} \boldsymbol{H}(\boldsymbol{c})(\boldsymbol{x}-\boldsymbol{a})$.

Proof.

Define $z: \mathbb{R} \rightarrow \mathbb{R}^{n}$ by $\boldsymbol{z}(\delta)=\boldsymbol{a}+\delta(\boldsymbol{x}-\boldsymbol{a}) /\|\boldsymbol{x}-\boldsymbol{a}\|$ and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ by $\phi(\delta)=f \circ z(\delta)=f(\boldsymbol{a}+\delta(\boldsymbol{x}-\boldsymbol{a}) /\|\boldsymbol{x}-\boldsymbol{a}\|)$, we can see that $f(x)=\phi(\|x-a\|)$ and by Taylor's theorem, $f(x)=\phi(0)+\frac{\phi^{(1)}(0)}{1!}\|x-a\|+\frac{\phi^{(2)}(c)}{2!}\|x-a\|^{2}$. Note
$\phi^{(1)}(\delta)=f^{(1)}(z(\delta)) z^{(1)}(\delta)=\nabla f(z(\delta))^{\top}\left(\frac{x-a}{\|x-\mathbf{a}\|}\right)=\left(\frac{x-a}{\|x-\mathbf{a}\|}\right)^{\top} \nabla f(z(\delta))$ and $\phi^{(2)}(\delta)=\left(\frac{x-\boldsymbol{a}}{\|x-a\|}\right)^{\top} \boldsymbol{H}(z(\delta)) z^{(1)}(\delta)=\left(\frac{x-\boldsymbol{a}}{\|x-a\|}\right)^{\top} \boldsymbol{H}(z(\delta))\left(\frac{x-a}{\|x-a\|}\right)$. Substituting $\phi^{(1)}(0)$ and $\phi^{(2)}(c)$ in $f(x)$ we have the proof.

- We can also write $R_{2}=\frac{1}{2!}(\boldsymbol{x}-\boldsymbol{a})^{\top} \boldsymbol{H}(\boldsymbol{a})(\boldsymbol{x}-\boldsymbol{a})+o\left(\|\boldsymbol{x}-\boldsymbol{a}\|^{2}\right)$ [Proof]
- Or $R_{2}=\frac{1}{2!}(\boldsymbol{x}-\boldsymbol{a})^{\top} \boldsymbol{H}(\boldsymbol{a})(\boldsymbol{x}-\boldsymbol{a})+O\left(\|\boldsymbol{x}-\boldsymbol{a}\|^{3}\right)$ if $f \in \mathcal{C}^{3}$ [Proof]

Mean Value Theorem Revisited

Theorem (Mean Value Theorem)

Given a function $\boldsymbol{f}: \mathcal{V} \rightarrow \mathbb{R}^{m}$, where $\mathcal{V} \subseteq \mathbb{R}^{n}$ is open and $f \in \mathcal{C}^{1}$. For any $\boldsymbol{b}, \boldsymbol{a} \in \mathcal{V}$, there exists $\boldsymbol{M}=\left[\begin{array}{c}\nabla f_{1}\left(\boldsymbol{c}^{(1)}\right)^{\top} \\ \vdots \\ \nabla f_{m}\left(\boldsymbol{c}^{(m)}\right)^{\top}\end{array}\right]$ for some $\boldsymbol{c}^{(1)}, \cdots, \boldsymbol{c}^{(m)} \in \mathcal{V}$ such that $f(\boldsymbol{b})-f(\boldsymbol{a})=\boldsymbol{M}(\boldsymbol{b}-\boldsymbol{a})$.

- Can be easily proved by the Taylor's Theorem [Proof]

Outline

(1) Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem
(2) Matrix Calculus
- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**
(3) Calculus of Variations**
- Functionals

Vector Derivatives

- Recall that the derivative of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ at a point $\boldsymbol{x} \in \mathbb{R}^{n}$
can be written as a Jacobian matrix $\left[\begin{array}{ccc}\frac{\partial f_{1}}{\partial x_{1}}(\boldsymbol{x}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\boldsymbol{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\boldsymbol{x}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\boldsymbol{x})\end{array}\right]$
- Given $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$, define $\frac{\partial y}{\partial x} \in \mathbb{R}^{m \times n}$ such that $\left(\frac{\partial y}{\partial x}\right)_{i, j}=\frac{\partial y_{i}}{\partial x_{j}}$
- We can express the above Jacobian matrix succinctly as $\frac{\partial f(x)}{\partial x}$
- $\frac{\partial}{\partial x}(\boldsymbol{A x})=\boldsymbol{A}$ and $\frac{\partial x}{\partial x}=\boldsymbol{I}$
- $\frac{\partial y}{\partial x} \in \mathbb{R}^{m \times 1}$ for $x \in \mathbb{R}$; and $\frac{\partial y}{\partial x} \in \mathbb{R}^{1 \times n}$ for $y \in \mathbb{R}$
- $\frac{\partial}{\partial x}\left(\boldsymbol{a}^{\top} \boldsymbol{x}\right)=\frac{\partial}{\partial x}\left(\boldsymbol{x}^{\top} \boldsymbol{a}\right)=\boldsymbol{a}^{\top}$ for any $\boldsymbol{a} \in \mathbb{R}^{n}$
- $\frac{\partial}{\partial x}\left(\boldsymbol{x}^{\top} \boldsymbol{x}\right)=2 \boldsymbol{x}^{\top}$
- Differentiation rules are applicable

$$
\begin{aligned}
& \text { - } \frac{\partial}{\partial x}\left(\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}\right)=\boldsymbol{x}^{\top} \frac{\partial}{\partial x}(\boldsymbol{A} \boldsymbol{x})+(\boldsymbol{A} \boldsymbol{x})^{\top}\left(\frac{\partial x}{\partial x}\right)^{\top}=\boldsymbol{x}^{\top}\left(\boldsymbol{A}+\boldsymbol{A}^{\top}\right) \text { for any } \\
& \boldsymbol{A} \in \mathbb{R}^{n \times n}[\text { Proof }]
\end{aligned}
$$

Matrix Derivatives

- Given $x \in \mathbb{R}$ and $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, define
- $\frac{\partial \boldsymbol{A}}{\partial x} \in \mathbb{R}^{m \times n}$ such that $\left(\frac{\partial \boldsymbol{A}}{\partial x}\right)_{i, j}=\frac{\partial \partial_{i, j}}{\partial x}$
- $\frac{\partial x}{\partial \boldsymbol{A}} \in \mathbb{R}^{m \times n}$ such that $\left(\frac{\partial x}{\partial \boldsymbol{A}}\right)_{i, j}=\frac{\partial x}{\partial a_{i, j}}$
- x should be related to \boldsymbol{A} (e.g., $a_{i, j}, \operatorname{tr}(\boldsymbol{A})$, or $\operatorname{det}(\boldsymbol{A})$, etc.)
- $\frac{\partial \boldsymbol{A}}{\partial a_{i, j}}$ is a matrix whose element at the i th row and j th column equals 1 , and others 0
- Although looked similar to vector derivatives, matrix derivatives have no obvious geometric implications and are used mainly to simplify the calculation of partial derivatives
- $\frac{\partial}{\partial x}(\boldsymbol{A B})=\boldsymbol{A} \frac{\partial \boldsymbol{B}}{\partial x}+\frac{\partial \boldsymbol{A}}{\partial x} \boldsymbol{B}$ [Proof]
- $\frac{\partial}{\partial x}\left(\boldsymbol{A}^{-1}\right)=-\boldsymbol{A}^{-1} \frac{\partial \boldsymbol{A}}{\partial x} \boldsymbol{A}^{-1}$ [Proof: $\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{I}$ and apply the above]

Outline

(1) Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem

(2) Matrix Calculus

- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**
(3) Calculus of Variations**
- Functionals

Derivatives of Traces

- $\frac{\partial}{\partial \boldsymbol{A}} \operatorname{tr}(\boldsymbol{A B})=\frac{\partial}{\partial \boldsymbol{A}} \operatorname{tr}(\boldsymbol{B A})=\boldsymbol{B}^{\top}$, as

$$
\frac{\partial}{\partial a_{i j}} \operatorname{tr}(\boldsymbol{A B})=\frac{\partial}{\partial a_{i, j}} \sum_{r=1}^{n} \sum_{s=1}^{n} a_{r, s} b_{s, r}=b_{j, i}
$$

$$
\text { - } \frac{\partial}{\partial \boldsymbol{A}} \operatorname{tr}(\boldsymbol{A})=\frac{\partial}{\partial \boldsymbol{A}} \operatorname{tr}(\boldsymbol{A} \boldsymbol{I})=\boldsymbol{I}
$$

- $\frac{\partial}{\partial \boldsymbol{A}} \operatorname{tr}\left(\boldsymbol{A}^{\top} \boldsymbol{B}\right)=\boldsymbol{B}$ [Proof]
- $\frac{\partial}{\partial \boldsymbol{A}} \operatorname{tr}\left(\boldsymbol{A B} \boldsymbol{A}^{\top}\right)=\boldsymbol{A}\left(\boldsymbol{B}+\boldsymbol{B}^{\top}\right)$ [Proof]

Derivatives of Determinants $(1 / 2)$

Theorem

Given an invertible matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}$, we have $\frac{\partial}{\partial x} \ln (\operatorname{det}(\boldsymbol{A}))=\operatorname{tr}\left(\boldsymbol{A}^{-1} \frac{\partial \boldsymbol{A}}{\partial x}\right)$.

Proof.

We only proof the case where $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{\top}$ is symmetric here. We have $\frac{\partial}{\partial x} \ln (\operatorname{det}(\boldsymbol{A}))=\frac{\partial}{\partial x} \ln \left(\operatorname{det}(\boldsymbol{U}) \operatorname{det}(\boldsymbol{D}) \operatorname{det}(\boldsymbol{U})^{-1}\right)=\frac{\partial}{\partial x} \ln (\operatorname{det}(\boldsymbol{D}))=$ $\frac{\partial}{\partial x} \ln \left(\prod_{i=1}^{n} \lambda_{i}\right)=\sum_{i=1}^{n} \frac{\partial}{\partial x} \ln \lambda_{i}=\sum_{i=1}^{n} \frac{1}{\lambda_{i}} \frac{\partial \lambda_{i}}{\partial x}=\operatorname{tr}\left(\boldsymbol{D}^{-1} \frac{\partial \boldsymbol{D}}{\partial x}\right)$. Note \boldsymbol{U} is orthogonal, and diagonalizable, so there exists an antisymmetric matrix $\boldsymbol{W}=\frac{1}{x} \ln \boldsymbol{U}$ such that $\boldsymbol{U}=e^{\boldsymbol{W} x}$. By the chain rule we have $\frac{\partial \boldsymbol{U}}{\partial x}=e^{\boldsymbol{W} x}\left(\frac{\partial}{\partial x} \boldsymbol{W} x\right)=\boldsymbol{U} \boldsymbol{W}$ and $\frac{\partial \boldsymbol{U}^{\top}}{\partial x}=\frac{\partial}{\partial x} e^{\boldsymbol{W}^{\top} x}=\frac{\partial}{\partial x} e^{-\boldsymbol{W} x}=-\boldsymbol{U}^{\top} \boldsymbol{W}$.
Therefore, $\operatorname{tr}\left(\boldsymbol{D}^{-1} \frac{\partial \boldsymbol{D}}{\partial x}\right)=\operatorname{tr}\left(\left(\boldsymbol{U}^{\top} \boldsymbol{A} \boldsymbol{U}\right)^{-1} \frac{\partial}{\partial x}\left(\boldsymbol{U}^{\top} \boldsymbol{A} \boldsymbol{U}\right)\right)=$
$\left.\operatorname{tr}\left(\left(\boldsymbol{U}^{\top} \boldsymbol{A} \boldsymbol{U}\right)^{-1}\left(\frac{\partial \boldsymbol{U}^{\top}}{\partial x} \boldsymbol{A} \boldsymbol{U}+\boldsymbol{U}^{\top} \frac{\partial \boldsymbol{A}}{\partial x} \boldsymbol{U}+\boldsymbol{U}^{\top} \boldsymbol{A} \frac{\partial \boldsymbol{U}}{\partial x}\right)\right)\right)=$
$\operatorname{tr}\left(\left(\boldsymbol{U}^{\top} \boldsymbol{A} \boldsymbol{U}\right)^{-1}\left(-\boldsymbol{U}^{\top} \boldsymbol{W} \boldsymbol{A} \boldsymbol{U}+\boldsymbol{U}^{\top} \frac{\partial \boldsymbol{A}}{\partial \boldsymbol{x}} \boldsymbol{U}+\boldsymbol{U}^{\top} \boldsymbol{A} \boldsymbol{U} \boldsymbol{W}\right)=\right.$
$\operatorname{tr}\left(-\boldsymbol{U}^{\top} \boldsymbol{A}^{-1} \boldsymbol{W} \boldsymbol{A} \boldsymbol{U}\right)+\operatorname{tr}\left(\boldsymbol{U}^{\top} \boldsymbol{A}^{-1} \frac{\partial \boldsymbol{A}}{\partial x} \boldsymbol{U}\right)+\operatorname{tr}(\boldsymbol{W})$, which can be simplified to $\operatorname{tr}\left(\boldsymbol{A}^{-1} \frac{\partial \boldsymbol{A}}{\partial x}\right)$ by the cyclic property of trace.

Derivatives of Determinants (2/2)

- $\frac{\partial}{\partial \boldsymbol{A}} \ln (\operatorname{det}(\boldsymbol{A}))=\left(\boldsymbol{A}^{-1}\right)^{\top}$
- Let $a_{i, j}$ and $b_{i, j}$ be the elements of \boldsymbol{A} and \boldsymbol{A}^{-1} respectively, then

$$
\frac{\partial}{\partial a_{i, j}} \ln (\operatorname{det}(\boldsymbol{A}))=\operatorname{tr}\left(\boldsymbol{A}^{-1} \frac{\partial \boldsymbol{A}}{\partial a_{i, j}}\right)=\sum_{r=1}^{n} \sum_{s=1}^{n} b_{r, s} \frac{\partial a_{s, r}}{\partial a_{i, j}}=b_{j, i}
$$

Outline

(1) Calculus, The Basics

- Sequences and Limits
- Derivative and Integral of Real-Valued Functions
- Derivative of Vector-Valued Functions
- Differentiation Rules
- Level Sets and Gradients
- Taylor's Theorem
(2) Matrix Calculus
- Vector and Matrix Derivatives
- Derivatives of Traces and Determinants**
(3) Calculus of Variations**
- Functionals

Functionals

- Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a x+b($ or $f(x \mid a, b)=a x+b)$
- x is an argument and a and b are parameters
- Let \mathcal{S} be the set of functions $f: \mathcal{V} \rightarrow \mathcal{W}$, we can define a functional $F: S \rightarrow \mathcal{W}, F[f]$, with f as the argument
- E.g., value of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ at $x: F: S \rightarrow \mathbb{R}, F[f]=f(x)$
- x is a parameter
- We can write $F[f]$ as $F[f \mid x]$
- E.g., definite integral of a function $f: \mathbb{R} \rightarrow \mathbb{R}: I: \mathcal{S} \rightarrow \mathbb{R}$, $I[f]=\int_{a}^{b} f(x) d x$
- a and b are parameters
- E.g., expectation of $f: \mathbb{R} \rightarrow \mathbb{R}$ defined over the values of a random variable $X: E: \mathcal{S} \rightarrow \mathbb{R}, E[f(X)]=\int f(x) p_{X}(x) d x$

