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Functions and Limits

Caution!

The functions f (or f ) discussed here are not required to be linear anymore.

De�nition (Limit of a Function)

A function f : V→ Rm, V⊆ Rn, has a limit f ∗(a) at the point a ∈ V if
given any ε ∈ R, ε > 0, there exists δ ∈ R, δ > 0 such that for all x ∈ V,
0< ‖x −a‖< δ, we have ‖f (x)− f ∗(a)‖< ε. This is denoted by
limx→a f (x) = f ∗(a).

De�nition (Continuity)

A function f : V→ Rm, V⊆ Rn, is continuous at a i� f ∗(a) = f (a); that
is, given any ε > 0, there exists δ > 0 such that for all x ∈ V,
0< ‖x −a‖< δ, we have ‖f (x)− f (a)‖< ε.
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Sequences and Convergence (1/2)

A sequence of vectors {x(k)}k can be think of as the R(f ) for some
f : N→ Rn

A sequence is increasing i� x(1) < x(2) < · · · , and nondecreasing i�
x(1) 6 x(2) 6 · · ·
Nondecreasing and nonincreasing sequences are called monotone

sequences

De�nition (Limit of a Sequence)

A sequence {x(k)}k has a limit x∗ if given any ε ∈ R, ε > 0, there exists
K ∈ N, such that for all k > K , we have

∥∥x(k)−x∗
∥∥< ε. This is denoted

by limk→∞ x(k) = x∗.

A sequence having a limit is called a convergent sequence

Given a sequence {x(k)}k convergent to a, we can see that a function
f : V→ Rm is continuous at a i� limk→∞ f (x(k)) = f (a) [Proof:
Using de�nitions and the fact that limk→∞ f (x(k)) = f (limk→∞ x(k))]
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Sequences and Convergence (2/2)

Given a sequence {x(k)}k and an increasing sequence of nature
numbers {mk }k , we call {x(mk)}k the subsequence of {x(k)}k

A subsequence is obtained by neglecting some elements of a given
sequence

If a sequence converges to x∗, then all its subsequences converge to
x∗ too [Proof]
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Extreme Value Theorem

Theorem

Let f :Ω→R be a continuous function over a compact set Ω⊆Rn. There

exist x0,x1 ∈Ω such that f (x0)6 f (x)6 f (x1),∀x ∈Ω; that is,

f (x0) =minx∈Ω(f (x)) and f (x1) =maxx∈Ω f (x).

We say f is bounded on Ω i� there exists l ,h ∈ R such that
l 6 f (x)6 h,∀x ∈Ω

The above theorem says that f is bounded on Ω if Ω is compact
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Min, Max, Inf, and Sup

Given a subset S (e.g., [0,1) or {2,4,6, · · · }) of R (or any other ordered
set where elements can be compared with each other), we have:

De�nition (Supremum)

An point p ∈ R is called the supremum, denoted by sups∈S s, i� a)
s 6 p,∀s ∈ S; b) for any ε > 0, there exist s ∈ S such that s > p−ε.

p is called the maximum i� p ∈ S

De�nition (In�mum)

An point p ∈ R is called the in�mum, denoted by infs∈S s, i� a)
s > p,∀s ∈ S; b) for any ε > 0, there exist s ∈ S such that s < p+ε.

p is called the minimum i� p ∈ S
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Convergence of Functions (1/2)

Given a set of data {x(t)}Nt=1, suppose we use an ML algorithm to

train a model, say f (N)

Usually, we want to know how the ML algorithm works when N →∞
We can think of {f (N)}N as a sequence, and then investigate the
properties of its limit f ∗

De�nition (Pointwise Convergence)

A sequence of functions {f (N)}N , where f
(N) : V→ Rm and V⊆ Rn,

converges pointwise to a function f ∗ : V→ Rm i� for any x ∈ V, we have
limN→∞ f (N)(x) = f ∗(x).

Unfortunately, pointwise convergence is not strong enough to
guarantee �reasonable� relations between f (N) and f ∗

E.g., for all x ∈ [0,1], a sequence of continuous function f (N)(x) = xN

converges pointwise to f ∗(x) =

{
0, 06 x < 1
1, x = 1

, which is obviously

not continuous

Shan-Hung Wu (CS, NTHU) Calculus NetDB-ML, Spring 2013 9 / 47



Convergence of Functions (2/2)

De�nition (Uniform Convergence)

A sequence of functions {f (N)}N , where f
(N) : V→ Rm and V⊆ Rn,

converges uniformly to a function f ∗ : V→ Rm i� given any ε > 0, there

exists K ∈ N such that for all N > K , we have
∥∥∥f (N)− f ∗

∥∥∥< ε for all

x ∈ V.

Intuitively, f (N) can be �tted into any given �ε-tube� around f ∗as
long as N is large enough

Theorem

If a sequence of continuous functions {f (N)}N converges uniformly to f ∗,
then f ∗ will be continuous.

Can be proved by either the �ε/3 trick� or the �ε-tube� intuition
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Derivative (1/2)

De�nition (Derivative)

A function f : [s, t]→ R, s, t ∈ R, is di�erentiable at a ∈ (s, t) i�

limδ→0
f (a+δ)−f (a)

δ (or equivalently, limx→a
f (x)−f (a)

x−a
) exists. The limit is

called the derivative of f at a, and is denoted by f ′(a), f (1)(a), or df
dx
(a).

�d � means the in�nitesimal di�erence, and f ′(a) is the slope of a
tangent line to f at f (a)

If a function f is di�erentiable at a, then it is continuous at a
(converse is not true, as evidenced by f (x) = |x | and a = 0)

f is said to be di�erentiable i� it is di�erentiable at any point of its
domain

f is said to be continuously di�erentiable i� f is di�erentiable and
f ′ is continuous
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Derivative (2/2)

If f is di�erentiable, we can think of f ′ as a function too (although
may not be continuous/di�erentiable)

E.g., given f (x) = ex , we have

f ′(x) = limδ→0
e(x+δ)−ex

δ = limδ→0

ex(eδ−1)
δ . Let t = eδ−1, then

f ′(x) = limt→0
ex t

ln(1+t) = ex limt→0
1

ln(1+t)1/t
= ex 1

ln(limt→0(1+t)1/t)
=

ex 1

lne
= ex

f ∈ Cn denotes that f is n-times continuously di�erentiable
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Rolle's and Mean Value Theorem

Theorem (Rolle's Theorem)

Given a function f : [s, t]→ R, where s, t ∈ R, f ∈ C1, and f (s) = f (t).
There exists some u ∈ (s, t) such that f ′(u) = 0.

Starting from f (s), f must change its direction at some point when it
is getting to f (t)

We can �rotate� the above theorem to get a new one:

Theorem (Mean Value Theorem)

Given a function f : [s, t]→ R, where s, t ∈ R and f ∈ C1. There exists

some u ∈ (s, t) such that f ′(u) =
f (t)−f (s)

t−s
.
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Partial Derivative for Multivariate Functions

De�nition (Partial Derivative)

The partial derivative of a function f : V→ R, V⊆ Rn, in the direction
along the ith component at point a is de�ned as
limδ→0

f (a1,··· ,ai+δ,··· ,an)−f (a1,··· ,an)
δ , denoted by ∂f

∂xi
(a).

We can only look at one component a time

Given f (x1,x2) = (x1+ x2)
2, we have ∂f

∂x1
(x1,x2) =

limδ→0
(x1+δ+x2)

2−(x1+x2)
2

δ = limδ→0
δ(2x1+2x2)

δ = 2x1+2x2

Simply treat x2 as constant here
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Integral

Given a function f : V→ R, V⊆ Rn, the set {[x>, f (x)]> : x ∈ V} is
called the graph of f

Now consider a function f : [s, t]→ R, s, t ∈ R, how do you
approximate the area between the curve y = f (x) and the x-axis in the
graph of f ?

1 Partition [s, t] evenly into n segments of width t−s
n
, and let hi (or li ),

16 i 6 n, be the highest (or lowest) value of f in each segment
2 We can approximate the area by H(n) =

∑n
i=1

hi (
t−s
n
) (or

L(n) =
∑n

i=1
li (

t−s
n
))

The larger the value of n, the more precise the approximation

De�nition (Integral)

A function f : [s, t]→ R, s, t ∈ R, is integrable i� both limn→∞H(n) and
limn→∞L(n) exist and are equal to each other. The limit is called the
integral of f , denoted by

∫t
s f (x)dx .
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Fundamental Theorem of Calculus

Theorem (Fundamental Theorem of Calculus)

Given a function f : [s, t]→ R, s, t ∈ R. We have:

a) The function F : [s, t]→ R, F (x) =
∫x
s f (z)dz, is di�erentiable and

dF
dx
(x) = d

dx

∫x
s f (z)dz = f (x);

b) If there exists a di�erentiable function G : [s ′, t ′]→ R, [s, t]⊆ [s ′, t ′],
such that dG

dx
(x) = f (x) for every x ∈ [s, t], then

∫t
s f (x)dx = G (t)−G (s).

F is called the inde�nite integral (or antiderivative) of f and is a
function of �accumulated area� from s

F can be �reversed� by di�erentiation and f is the �rate of
accumulation�∫t

s f (x)dx is called the de�nite integral formally and represents an
area

De�nite integral can be computed by using inde�nite integrals (which
are usually easier to get)
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Isn't It Straightforward?

Recall that the derivative of a real-valued function f at a is de�ned as
f ′(a) = limx→a

f (x)−f (a)
x−a

This is not applicable to x ∈ Rn and f (x) ∈ Rm, as we cannot divide
vectors

We need a more general de�nition where the vectors can be �tted in
with

Note that f ′(a) = limx→a
f (x)−f (a)

x−a
i�

0= limx→a
f (x)−f (a)

x−a
− f ′(a) = limx→a

f (x)−f (a)−f ′(a)(x−a)
x−a

Since the limit equals 0, the sign of numerator and denominator at the
right hand side does not matter; that is, the above equation is
equivalent to

0= limx→a
|f (x)−f (a)−f ′(a)(x−a)|

|x−a|
= limx→a

|f (x)−(f ′(a)(x−a)+f (a))|
|x−a|

Now we can replace |·| with a vector norm ‖·‖

But what does it mean?

In the graph of f , f ′(a)(x −a)+ f (a) is a
tangent line to f at f (a)
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Derivative of Vector-Valued Functions

The notion of a tangent line can be generalized into an a�ne

function A : Rn→ Rm, A(x) = L(x)+c , where L : Rn→ Rm is a
linear transformation and c ∈ Rm

An a�ne function is a �point� in an a�ne space

Theorem (Derivative)

A function f : V→ Rm, V⊆ Rn, is di�erentiable at a ∈ V i� there exists a

linear transformation L(a) : Rn→ Rm such that

limδ→0
‖f (a+δ)−(L(a)(δ)+f (a))‖

‖δ‖ = 0 (or equivalently,

limx→a
‖f (x)−(L(a)(x−a)+f (a))‖

‖x−a‖ = 0). L(a) is called the derivative of f at

a, denoted by f ′(a).

Since f ′(a) is linear, it can be represented by a matrix Ja

How does Ja look like?
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Jacobian Matrices (1/2)

Any function f : V→ Rm, V⊆ Rn and f (v) =w can be rewritten as: f1(v1, · · · ,vn) = w1
...

fm(v1, · · · ,vn) = wm


If f is linear, each real-valued fi , 16 i 6m, can be represented by a
row vector j i ∈ Rn such that j>i v = wi (Remember the system of
linear equations?)

Let Ja =

 j>1
...

j>m

 be the matrix representation of f ′(a)
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Jacobian Matrices (2/2)

Let δ= δe j , where 16 j 6 n and δ ∈ R

Looking at the de�nition limδ→0
‖f (a+δ)−(L(a)(δ)+f (a))‖

‖δ‖ = 0

row-by-row, we have limδ→0
fi(a+δe j)−(δj>i e j+fi(a))

δ = 0 for each i and
j

This implies that limδ→0

fi (a+δej )−fi (a)

δ = j>i e j

The right hand side denotes the element of Ja at the ith row and the
jth column
The left hand side is the partial derivative ∂fi∂xj

(a) by de�nition

Ja =


∂f1
∂x1

(a) · · · ∂f1
∂xn

(a)
...

. . .
...

∂fm
∂x1

(a) · · · ∂fm
∂xn

(a)

 is called the Jacobian matrix (or

derivative matrix) of f at a
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Gradient (1/2)

De�nition

If a function f : V→ R, V⊆ Rn, is di�erentiable, then the gradient of f is

de�ned by ∇f (x) =
[
∂f
∂x1

(x), · · · , ∂f∂xn (x)
]>

= f ′(x)>.

The Jacobian matrix of f at a can be rewritten as Ja =

 ∇f1(a)
>

...
∇fm(a)>


From the previous page, we can see that in the graph of fi ,
{x :∇fi (a)>(x −a)+ fi (a)} is a tangent hyperplane to fi at fi (a)

The norm of ∇fi (a) is the �slope� of the tangent hyperplane
∇fi (a) also acts as the direction that for a given small displacement
from a, fi increase more in the direction of ∇fi (a) than in any other
direction [Proof]
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Gradient (2/2)

The gradient ∇f (x) is a function from Rn to Rn and can be pictured
as a vector �eld

Each vector in the �eld is the direction of maximum rate of increase of
f

E.g., consider f (x1,x2) = −(cos2 x1+ cos2 x2)
2:
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Hessian Matrices (1/2)

De�nition (Hessian Matrix)

Given a di�erentiable function f : V→ R, V⊆ Rn. If ∇f (x) is
di�erentiable, we have the derivative of ∇f (x) as:

H(x) =


∂2f
∂x21

(x) · · · ∂2f
∂xn∂x1

(x)

...
. . .

...
∂2f
∂x1∂xn

(x) · · · ∂2f
∂x2n

(x)

 ,
which is called the Hessian matrix of f at x .

∂2f
∂xi∂xj

(x) means taking the partial derivative of f in the direction xj

�rst, and then xi

Shan-Hung Wu (CS, NTHU) Calculus NetDB-ML, Spring 2013 25 / 47



Hessian Matrices (2/2)

Theorem (Clairaut's/Schwarz's Theorem)

If a function f : Rn→ R is twice continuously di�erentiable at x , then its

Hessian matrix at x is symmetric.

If the second partial derivatives of f is not continuous, then there is no
such a guarantee

Here is an example:

f (x1,x2) =

{
x1x2(x

2
1−x22 )

(x21+x22 )
, [x1,x2]

> 6= [0,0]>

0, [x1,x2]
> = [0,0]>.

The Hessian matrix of f at the point [0,0]> is not symmetric
[Homework]
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Di�erentiation Rules

Theorem (Chain Rule)

Let f : (s, t)→D and g :D→ R be di�erentiable functions, where D⊆ Rn

is an open set and s, t ∈ R. The composite function g ◦ f : (s, t)→ R is

di�erentiable and (g ◦ f ) ′(x) = g ′(f (x))f ′(x) =∇g(f (x))>

 f ′1 (x)
...

f ′n (x)

.
g ′ and f ′ are derivatives but with respect to di�erent variables

Theorem (Product Rule)

Let f : Rn→ Rm and g : Rn→ Rm be di�erentiable functions. Then the

function h : Rn→ R, h(x) = f (x)>g(x), is di�erentiable and

h ′(x) = f (x)>g ′(x)+g(x)>f ′(x)>.
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Level Sets

De�nition (Level Set)

The level set of a function f : Rn→ R at level c ∈ R is the set of points
S = {x : f (x) = c}.

When n = 2, S is a plane curve

When n = 3, S is a surface
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Level Sets and Gradients

Theorem

The vector ∇f (a) is orthogonal to the tangent vector to an arbitrary curve

passing through a on a level set at level f (a).

Proof.

Let S be the level set at level f (a) and γ : R→ Rn be a curve lying on S

passing through a; that is, there exists c such that γ(c) = a. Suppose
γ ′(c) = v 6= 0 so v is a tangent vector to γ at a. We have
(f ◦γ) ′(c) = f ′(γ(c))γ ′(c) = f ′(a)v . Since γ lies on S , we have
f ◦γ(t) = f (a) for all t ∈ R. The function f ◦γ is a constant, implying
that (f ◦γ) ′(c) = 0. So f ′(a)v =∇f (a)>v = 0.
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Taylor's Theorem (1/2)

Theorem

Given a function f : [a,b]→ R and f ∈ Cm. We have

f (b) = f (a)+
f (1)(a)

1! (b−a)+
f (2)(a)

2! (b−a)2+ · · ·+ f (m−1)(a)
(m−1)! (b−a)m−1+Rm,

where Rm =
f (m)(c)

m! (b−a)m for some c ∈ (a,b).

Proof.

De�ne R(x) =

f (b)− f (x)−
f (1)(x)

1! (b− x)−
f (2)(x)

2! (b− x)2− · · ·− f (m−1)(x)
(m−1)! (b− x)m−1.

We show that R(a) = f (m)(c)
m! (b−a)m for some c ∈ (a,b). Note that

R(1)(x) =

−f (1)(x)+
[
f (1)(x)−

f (2)(x)
1! (b− x)

]
+
[
f (2)(x)

1! (b− x)−
f (3)(x)

2! (b− x)2
]
+

· · ·+
[
f (m−1)(x)
(m−2)! (b− x)m−2−

f (m)(x)
(m−1)! (b− x)m−1

]
=−

f (m)(x)
(m−1)! (b− x)m−1.

De�ne g(x) = R(x)−(b−x
b−a

)mR(a). It's easy to check that g(a) = g(b) = 0.

By Rolle's theorem there exists some c ∈ (a,b) such that 0= g (1)(c) =

R(1)(c)+
m(b−c)m−1

(b−a)m R(a) = −
f (m)(c)
(m−1)!(b− c)m−1+

m(b−c)m−1

(b−a)m R(a),

implying R(a) =
f (m)(c)

m! (b−a)m.
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Taylor's Theorem (2/2)

An well-known application is Taylor series:

ex = 1+ x + x2

2! + · · ·=
∑∞

n=0

xn

n! for all x (expending ex at a = 0)

ln(1+ x) =
∑∞

n=1
(−1)n+1 xn

n
for |x |< 1, which implies ln(1+ x)≈ x for

|x |� 1

A function f :D→ R, where D is an open interval, is said to be
analytic i� for any x ,a ∈ D, f can be written as
f (x) =

∑∞
n=0 cn(x −a)n for some cn ∈ R

An analytic f is easy to analyze, e.g., cn =
f (n)(a)

n!
f is analytic i� give any x , the Taylor series at a converges to f (x)
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Order of Convergence

Consider f (x) : V→ Rm and g(x) : V→ Rm, where V⊆ Rn includes 0

We denote f (x) = o(g(x)) i� f (x) goes to 0 faster than g(x) does

Speci�cally, limx→0

‖f (x)‖
‖g(x)‖ = 0

We denote f (x) = O(g(x)) i� f (x) goes to 0 faster than or equal to
g(x) does

Speci�cally, for a su�ciently small δ ∈ R, there exists c ∈ R such that

if ‖x‖< δ, then ‖f (x)‖‖g(x)‖ 6 c

E.g., x2 = o(x), x = O(x), [x3,2x2]> = o([x ,0]>)

Don't mix this up with the order of growth
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Taylor Theorem for Multivariate Functions (1/2)

Recall that a function f : [a,b]→ R, f ∈ Cm, can be written as

f (b) = f (a)+
f (1)(a)

1! (b−a)+
f (2)(a)

2! (b−a)2+ · · ·+ f (m−1)(a)
(m−1)! (b−

a)m−1+
f (m)(a+δ(b−a))

m! (b−a)m, where δ ∈ (0,1) is a constant

By the continuity of f (m), we have lim(b−a)→0 f
(m)(a+δ(b−a)) =

f (m)(a)⇒ lim(b−a)→0
f (m)(a+δ(b−a))−f (m)(a)

1 = 0; that is,

f (m)(a+δ(b−a))− f (m)(a) = o(1)⇒ f (m)(a+δ(b−a)) =
f (m)(a)+o(1)

We can rewrite f as f (b) = f (a)+
f (1)(a)

1! (b−a)+
f (2)(a)

2! (b−a)2+

· · ·+ f (m)(a)
m! (b−a)m+o((b−a)m), since o(1) (b−a)m

m! = o((b−a)m)

If f ∈ Cm+1, we can further rewrite f as f (b) = f (a)+
f (1)(a)

1! (b−a)+
f (2)(a)

2! (b−a)2+ · · ·+ f (m)(a)
m! (b−a)m+O((b−a)m+1)

Rm+1 =
f (m+1)(c)
(m+1)! (b−a)m+1 = O((b−a)m+1), as f (m+1) is bound on

the compact set [a,b] and therefore can be regarded as a constant
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Taylor Theorem for Multivariate Functions (2/2)

Theorem

Given f : V→R, where V⊆Rn is an open set and f ∈ C2. For any x ,a ∈ V,
there exists c = a+ c(x −a)/‖x −a‖ for some c ∈ (0,‖x −a‖) such that

f (x) = f (a)+ 1
1!∇f (a)

>(x −a)+R2, where R2 =
1
2!(x −a)>H(c)(x −a).

Proof.

De�ne z : R→ Rn by z(δ) = a+δ(x −a)/‖x −a‖ and φ : R→ R by
φ(δ) = f ◦z(δ) = f (a+δ(x −a)/‖x −a‖), we can see that
f (x) = φ(‖x −a‖) and by Taylor's theorem,

f (x) = φ(0)+ φ(1)(0)
1! ‖x −a‖+ φ(2)(c)

2! ‖x −a‖2. Note

φ(1)(δ) = f (1)(z(δ))z(1)(δ) =∇f (z(δ))>
(

x−a
‖x−a‖

)
=
(

x−a
‖x−a‖

)>
∇f (z(δ))

and φ(2)(δ) =
(

x−a
‖x−a‖

)>
H(z(δ))z(1)(δ) =

(
x−a
‖x−a‖

)>
H(z(δ))

(
x−a
‖x−a‖

)
.

Substituting φ(1)(0) and φ(2)(c) in f (x) we have the proof.

We can also write R2 =
1
2!(x −a)>H(a)(x −a)+o(‖x −a‖2) [Proof]

Or R2 =
1
2!(x −a)>H(a)(x −a)+O(‖x −a‖3) if f ∈ C3 [Proof]
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Mean Value Theorem Revisited

Theorem (Mean Value Theorem)

Given a function f : V→ Rm, where V⊆ Rn is open and f ∈ C1. For any

b,a ∈ V, there exists M =

 ∇f1(c
(1))>

...

∇fm(c(m))>

 for some c(1), · · · ,c(m) ∈ V

such that f (b)− f (a) =M(b−a).

Can be easily proved by the Taylor's Theorem [Proof]
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Vector Derivatives

Recall that the derivative of a function f : Rn→ Rm at a point x ∈ Rn

can be written as a Jacobian matrix


∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
...

. . .
...

∂fm
∂x1

(x) · · · ∂fm
∂xn

(x)


Given x ∈ Rn and y ∈ Rm, de�ne ∂y∂x ∈ Rm×n such that

(
∂y
∂x

)
i ,j

= ∂yi
∂xj

We can express the above Jacobian matrix succinctly as
∂f (x)
∂x

∂
∂x (Ax) = A and ∂x

∂x = I

∂y
∂x ∈ Rm×1 for x ∈ R; and ∂y∂x ∈ R1×n for y ∈ R

∂
∂x (a

>x) = ∂
∂x (x

>a) = a> for any a ∈ Rn

∂
∂x (x

>x) = 2x>

Di�erentiation rules are applicable

∂
∂x (x

>Ax) = x> ∂∂x (Ax)+(Ax)>
(
∂x
∂x

)>
= x>(A+A>) for any

A ∈ Rn×n [Proof]
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Matrix Derivatives

Given x ∈ R and A ∈ Rm×n, de�ne

∂A
∂x ∈ Rm×n such that

(
∂A
∂x

)
i ,j

=
∂ai ,j
∂x

∂x
∂A ∈ Rm×n such that

(
∂x
∂A

)
i ,j

= ∂x
∂ai ,j

x should be related to A (e.g., ai ,j , tr(A), or det(A), etc.)

∂A
∂ai ,j

is a matrix whose element at the ith row and jth column equals 1,

and others 0

Although looked similar to vector derivatives, matrix derivatives have
no obvious geometric implications and are used mainly to simplify the
calculation of partial derivatives
∂
∂x (AB) = A∂B∂x + ∂A

∂x B [Proof]

∂
∂x (A

−1) = −A−1 ∂A
∂x A

−1 [Proof: A−1A= I and apply the above]
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Derivatives of Traces

∂
∂A tr(AB) = ∂

∂A tr(BA) = B>, as
∂
∂ai ,j

tr(AB) = ∂
∂ai ,j

∑n
r=1

∑n
s=1 ar ,sbs,r = bj ,i

∂
∂A tr(A) =

∂
∂A tr(AI ) = I

∂
∂A tr(A

>B) = B [Proof]
∂
∂A tr(ABA

>) = A(B+B>) [Proof]
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Derivatives of Determinants (1/2)

Theorem

Given an invertible matrix A ∈ Rn×n and x ∈ R, we have
∂
∂x ln(det(A)) = tr(A−1 ∂A

∂x ).

Proof.

We only proof the case where A=UDU> is symmetric here. We have
∂
∂x ln(det(A)) =

∂
∂x ln(det(U)det(D)det(U)−1) = ∂

∂x ln(det(D)) =
∂
∂x ln(

∏n
i=1λi ) =

∑n
i=1

∂
∂x lnλi=

∑n
i=1

1
λi

∂λi
∂x = tr(D−1 ∂D

∂x ). Note U is
orthogonal, and diagonalizable, so there exists an antisymmetric matrix
W = 1

x
lnU such that U = eW x . By the chain rule we have

∂U
∂x = eW x

(
∂
∂xW x

)
=UW and ∂U

>

∂x = ∂
∂x e

W>x = ∂
∂x e

−W x =−U>W .

Therefore, tr(D−1 ∂D
∂x ) = tr((U>AU)−1 ∂

∂x (U
>AU)) =

tr((U>AU)−1(∂U
>

∂x AU +U> ∂A∂x U +U>A∂U∂x )))=

tr((U>AU)−1(−U>WAU +U> ∂A∂x U +U>AUW ) =

tr(−U>A−1WAU)+ tr(U>A−1 ∂A
∂x U)+ tr(W ), which can be simpli�ed

to tr(A−1 ∂A
∂x ) by the cyclic property of trace.
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Derivatives of Determinants (2/2)

∂
∂A ln(det(A)) = (A−1)>

Let ai ,j and bi ,j be the elements of A and A−1 respectively, then
∂
∂ai ,j

ln(det(A)) = tr(A−1 ∂A
∂ai ,j

) =
∑n

r=1

∑n
s=1

br ,s
∂as,r
∂ai ,j

= bj ,i
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Functionals

Consider a function f : R→ R, f (x) = ax +b (or f (x |a,b) = ax +b)

x is an argument and a and b are parameters

Let S be the set of functions f : V→W, we can de�ne a functional
F : S→W, F [f ], with f as the argument

E.g., value of a function f : R→ R at x : F : S→ R, F [f ] = f (x)

x is a parameter

We can write F [f ] as F [f |x ]

E.g., de�nite integral of a function f : R→ R: I : S→ R,
I [f ] =

∫b
a f (x)dx

a and b are parameters

E.g., expectation of f : R→ R de�ned over the values of a random
variable X : E : S→ R, E [f (X )] =

∫
f (x)pX (x)dx
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