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o In supervised learning, we see examples x(*)’s that are 1) i.i.d. and 2)
given the unambiguous “right” labels r(1)'s

@ In sequential decision making and control problems, neither holds
@ The next example may be the outcome of your “action” to the
previous example

o We've seen how random process helps modeling the dependency

@ It is very difficult to provide explicit supervision on the “correct” action
of an example

e E.g., if we have just built a four-legged robot and are trying to program
it to walk, then initially we have no idea what the “correct” actions
(")) to take are to make it walk under a certain condition (x(*))

e E.g., in the mouse-in-maze problem, we cannot tell the mouse the
“correct” path to leave the maze
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Reinforcement Learning

@ In the reinforcement learning framework, we will instead provide only a
reward function for the learning algorithm to maximize

o In the four-legged walking example, the reward function might give the
robot positive rewards for moving forwards, and negative rewards for
falling over

o In the mouse-in-maze problem, we can define a reward if the mouse has
left the maze

@ Machine learns the correct from “critics” repeatedly, rather than from
correct labels once

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 5/ 52



Agent Point of View

@ The learner is a decision making agent that sees states of an
environment, takes actions, and receives reward (or penalty) for its
actions in trying to solve a problem

o The state of the environment may be changed due the action

@ After a set of trial-and-error runs, it should learn the best policy,
which is the sequence of actions that maximizes the total reward

ENVIRONMENT

Reward

State @ Action

@ Assumption: environment does not change with time
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© Markov Decision Process
@ Definitions
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Markov Processes Revisited

@ A random process is called the Markov process if it satisfies the
Markov property: P [X("“L”) <xx0) =xp, X1 =x, —c0 <1< to} =
P [X(toHl) < x|x () :XO]

States are fully States are partially

observable observable
Transition is ) )

Markov chains Hidden Markov models
autonomous

e .. Partially observable
Transition is Markov decision y .
Markov decision
controlled processes

processes
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Markov Decision Process

e A Markov decision process {X(")}; defined over (S,4,P,R,y) is a
Markov process, where
o § is the state space
o A is the action space
o P(X+1) =5/|x1) =5 a) (or simply P(S'|S;a)) is the transition
distribution that is controlled by the action, but does not change with
time ¢
o R:8xAx8—R (or simply R: 8’ — R ) is the deterministic
(expected) reward function
o v € R is the discount factor

@ An MDP proceeds as follows:

x(0) @% y(1) al y(2) @

with the total payoff total payoff
R(X© ¢ xMWy 1yr(x) o) x@)) 1 42R(x 2 ¢ xB)) 4 ...
(or RIXW) +yR(XP) +v2R(XP)) +--)
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@ Determine the actions over time such that the expected total payoff
Eyoy RX©,a @ X M) +yR(XW, 0N X)) +42R(XP) 0@ X))+

is maximized
@ Note that the reward at time ¢ is discounted by a factor of y

@ To make this expectation large, we would like to accrue positive
rewards as soon as possible

o Because, e.g., the agent may be powered by battery of limited capacity
@ In economic applications where R(-) is the amount of money made, y

has a natural interpretation in terms of the interest rate (where a
dollar today is worth more than a dollar tomorrow)
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© Markov Decision Process

@ Bellman Equations
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Policy and Value Function

e A policy is a function m:8 — A

o We say that we are executing some policy 7t if, whenever we are in
state S, we take action a = 7t(S)

@ We can also define the value function for a policy 7t by

Vr(S) :E[R(X(O),a(o),X(”) +YR(X(1),a(1J,X(2))+,,,|X(0) = S: 7]
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Bellman Equations

@ Given a fixed policy 7, the values of V; satisfy the Bellman equations:

Va(S) =) P(SIS;n(S)) [R(S,7(S), ") +yVn(S")]
NS
for all §'s

@ In a finite-state MDP (|8] < c0), Bellman equations can be used to
efficiently solve for the values of V;

o |8| linear equations in |8| variables
o Time complexity: O(|S]*)
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© Markov Decision Process

@ Determining the Best Actions
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Determining the Best Actions

@ Optimal value function:
V*(S) :=max V(S)
7T
e By Bellman equations:

Vi(S)=max ) P(S'IS;a) [R(S,a,8") +yV*(S")]
ac
§'e8

@ Define the optimal policy m* :8 — A as

m*(S) :=argmax ) P(S'IS;a) [R(S,a,8")+yV*(S")]
acA
§'e8
e Memoryless property: 7 is independent with X(©)

o We can use the same policy 7t no matter what the initial state of our
MDP is to maximize value
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Value Iteration (1/2)

o 7*(S) :=argmax,c 4 Y ) s P(S'IS;7(S))V*(S’) can be easily solved
in O(|8||A]) time, if we already have V*(S)'s

o O(|8[*|A|) for the optimal policy for all states S's

o Idea: guess V(S)'s first, and iteratively improve them
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Value Iteration (2/2)

Input: MDP (S, A,P,R,v)
Output: 7t(S)’s for all S's

For each state S, initialize V(S) + 0;
repeat
foreach S do
| V(S)  maxeeq Y gics P(S'IS;a) [R(S,a, ") +yV(S'));
end
until V(S)’s converge;
foreach S do
| 7(S) « argmaxeen Y_ges P(S'1S;:a) [R(S,a,8") +yV(S")];
end
Algorithm 1: Value Iteration.
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Policy Iteration (1/2)

@ Recall that given any 71, we can solve V,; by the system of Bellman
equations

o Idea: iteratively improve 7
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Policy Iteration (2/2)

Input: MDP (8, A,P,R,Y)
Output: 7t(S)’s for all S's

For each state S, initialize 7t(S) randomly;
repeat

Solve V(S)'s from the system of Bellman equations;

foreach S do

| () « argmaxgen X ges P(S'IS:a) [R(S,a,8") +yV(S);

end

until 7t(S)’s converge;
Algorithm 2: Policy Iteration.
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Value vs. Policy Iteration

@ Which one is better?
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Value vs. Policy Iteration

@ Which one is better?
@ Time complexity for each iteration:

o Value iteration: O(|8|?A|)
o Policy iteration: O(|S]*|A|+|S|)

@ For MDPs with small state spaces, policy iteration is often very fast
and converges with very few iterations

@ However, for large MDPs, solving for V,; explicitly is time consuming
(O(I8P)). Value iteration is preferred

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 21 / 52



© Single-Agent RL
o Difference from MDP
@ Model-based Learning
@ Temporal-Difference Learning (Model-Free)
@ (Q-Learning (Model-Free)
@ Exploration Policies
@ SARSA (Model-Free)
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© Single-Agent RL
o Difference from MDP
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@ In some applications, there could be terminal/absorbing states
o An absorbing state transit to itself with probability 1

e E.g., in the mouse-in-maze problem, the “leaving the maze” is an
absorbing state

@ A sequence of actions from starting to terminal states is called an
episode or trial

@ The agent can perform many trails, and the goal would be to learn the
best policy for an episode
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Example: k-Armed Bandit

"
»
i
e
|
1
.
1
!

@ Action: pull a lever

o Goal: maximizes the total reward
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The MDP Point of View

@ A single state MDP

o As pulling a lever (an action) does not change anything in the bandit
machine

@ However,

o The rewards received when action a takes state S to state S’ may be
generated by following some unknown distribution
o The expected reward R(S,a,S’) is unknown

@ For the robot walking problem, the state transition distribution
P(8'|S;a) is unknown
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Example: Data Partitioning and Replication for

the Cloud Database Systems

@ Each state represents (current workload, a particular placement of
data chunks) on the machines

@ An action: splitting hot data chunks, merging cold data chunks, or
replicating chunks, etc.

@ R: system throughput, which is unknown

o It is generally hard to predict the performance given a particular
workload and data consolidation

o P(S'|S;a) is unknown too since the workload from clients is
unpredictable
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Exploration vs. Exploitation

@ What would you do if you were the agent?
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Exploration vs. Exploitation

@ What would you do if you were the agent?
@ To perform actions to explore R(S,a,S’) and P(S’|S;a) first

o Learn R(S,a,S’) and P(S’|S;a) from their samples “queried” from the
environment

@ Then, to perform actions to exploit the learned P(r|S;a) and
P(S'|S;a) to maximize the total rewards

o The best policy can be computed locally by the agent itself (thanks to
MDP)
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© Single-Agent RL

@ Model-based Learning
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How to Learn R(S,a,S’) and P(S'[S;a)?
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How to Learn R(S,a,S’) and P(S'[S;a)?

@ Why not use their sample means?
e Given the trials

x(10) A% w1y aly iy at

x(20) 429 w21) A 20y a®Y

e Example estimation of (discrete) P(S’|S;a):

o P(S'[S:a) = # times the action « takes states to state s’
T # times action « is taken in states
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Learning R(S,a,S’)

e E.g., average all reward values, r's, received when action a takes state
S to state S’

@ But this requires memory to store all r's

@ Cheaper solution?
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The Moving Average

@ The exponential moving average:

o X% — x4 (=)D (1) 2aln— 2
T 1+ (=) + (1-m) 24
o Recent samples are more important

o %, =nx™ + (1—m)%,_; [Proof]

-, where 1 is a small constant

o To learn R(S,a,S’), keep the current estimator R(S,a,S’) and 1

o Every time when a new value r is seen, update B
R(S,a,8') = (1—m)R(S,a,S")+nr=R(S,a,S")+n(r—R(S,a,S"))

@ 1 is similar to the learning rate we've seen in the perception classifier
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Problems of Model-based Learning

@ R(S,a,S’) and P(S’|S;a) can only be estimated if we have samples

o If P(S'|S;a) is small, there may be too few samples to have a good
estimate

e Low P(S’|S;a) may also lead to a poor estimate of R(S,a,S’)
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© Single-Agent RL

@ Temporal-Difference Learning (Model-Free)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 34 / 52



Temporal-Difference Learning (1/2)

o We explore/estimate R(S,a,S’) and P(S’|S;a) in order to compute
VE(S)
@ Why not estimate V*(S) directly?
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Temporal-Difference Learning (1/2)

We explore/estimate R(S,a,S’) and P(S’|S;a) in order to compute
VE(S)
@ Why not estimate V*(S) directly?

@ Recall that V*(S) is an expectation, let's compute the moving average
estimator V*(S) again

@ Given an exploration policy 7, we can compute a sample of V*(S) by
sample = R(S,7(S),S’) +yV*(S’) after each action

o Based on the Bellman’s equation
o The unknown V*(S’) is replaced by V*(S’)

@ So, we can update the estimator V*(S) = V*(S) +1(sample — V*(S))
after each action
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Temporal-Difference Learning (2/2)

Input: 8, A, and y of an MDP, a policy 7, and 1
Output: V*(S)’s for all §’s

For each state S, initialize V(S) arbitrarily;

foreach episode do

Initialize S;

repeat
Choose action a < 7t(S);
Take action a, observe S’ and reward R(S,a,S’);
Vr(S) = Vr(S) +n(R(S,a,S") +vVr(S)) = Va(S)];
S+ S’

until S /s terminal state;

end
Algorithm 3: Temporal-Difference (TD) Learning.
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Problem of TD Learning

@ The given (exploration) policy 7t is not the optimal (exploitation)
policy 7t* that generates V% (S)’s

@ We need to solve w*(S)'s from V *(S)’s, as did in the value iteration
algorithm

e But, without knowing/estimating R(S,a,S’) and P(S’|S;a), we cannot
do that now!
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© Single-Agent RL

@ O-Learning (Model-Free)
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The O Function

o We need something that
e we can estimate in spite of low transition probability; and
o the estimated value helps computing V*(S)'s and *

@ Define a function Q*: 8 x A — R by letting O*(S,a) be the maximum
expected cumulative reward that an agent will receive when starting
from state S and action a and then obeying the optimal policy
afterward

o We have V*(S) = max, 0*(S,a)

@ Similar to the Bellman’'s equations

VE(S)= ) P(S'IS;m(S)) [R(S, 7 (5),$") +vV* (8],
S'es
now we have

0*(S,a) =3 gcsgP(S'IS;a)[R(S,a,8")+yV*(S")]
=) ¢esP(S'S;a) [R(S,a,S") +ymax, Q* (S, a)]
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Getting the Best Policy

@ 0*(S,a) is an expectation, so we can estimate it using the moving
average, as did in the TD learning

@ Even better, we can derive v*(S)’s directly from Q*(S,a)’s

o By definition of O*, we have 7t*(S) = argmax, Q*(S, a)
o No need for R(S,a,S’) and P(S’|S;a)
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Q-Learning (1/2)

Input: 8, A, and v of an MDP, and 1
Output: 71*(S)’s for all S's

For each state S and q, initialize Q(S,a) arbitrarily;
foreach episode do
Initialize S;
repeat
Choose action a using some exploration policy;,
Take action a, observe S’ and reward R(S,a,S’);
0(S,a) < Q(S,a) +n[(R(S,a,S") +ymax, Q(S",b)) — Q(S,a)l;
S« S
until S /s terminal state;

end
foreach S do
| 7*(S) = argmax, Q(S,a’);
end
Algorithm 4: Q-learning.
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Q-Learning (2/2)

@ Amazing results: Q-learning converges to the optimal policy!

o If you explore enough
o If i is small enough and does not decrease too quickly
o Does not matter how you select exploration actions!

@ The exploration policy (a's) is not the exploitation policy (b's) used to
update Q(S,a)’s

o Q-learning is an off-policy RL method
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© Single-Agent RL

@ Exploration Policies
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e-Greedy Poli

@ To actually maximize total rewards, an agent needs to gradually move
from exploration to exploitation

o How?
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e-Greedy Policy

@ To actually maximize total rewards, an agent needs to gradually move
from exploration to exploitation

o How?

Simplest: the e-greedy strategy

At every time step, flip a coin

o With probability €, act randomly (explore)
o With probability (1 —¢€), compute/update the best policy and act
accordingly (exploit)

Gradually decrease € over time
Any other idea?
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Softmax Policy

@ Could we have a “soft” policy between the two extremes (exploration
& exploitation) at each time step?
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Softmax Policy

@ Could we have a “soft” policy between the two extremes (exploration
& exploitation) at each time step?

o Idea: perform an action a more often if Q(S,a) is larger

@ Choose a based on the softmax function that converts Q(S,a)’s to

probabilities:
exp[Q(S.a)/1]
> o [expQ(S,a’)/1]

@ ¢ starts at a large value (exploration), and decreases over time

P(alS) =
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Exploration Function

o ldea: to explore areas with fewest samples

e E.g., in Q-learning, we can define an exploration function
f(g,n) = q+k/n, where g is an estimated Q-value, n is the number of
samples for the estimate, and k is some positive constant

@ Instead of the update rule:
0(5.a) - Q(5,a) | (R(S,0,8') +ymgx 018", b)) ~ O(5.a|
@ Use f when updating Q(S,a):

0(8,0) — 0(S,a) +7 { [R(s,a,s’) +vmbaxf(Q(s’.b),N(s',b))} —Q(s.a)}
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© Single-Agent RL

@ SARSA (Model-Free)
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@ There is an on-policy variant of Q-learning, called SARSA
(State-Action-Reward-State-Action)
e That is, the exploration policy (a's) is used as the exploitation policy
(b's) when updating O(S,a)’s
@ Still converges with probability 1 to the optimal policy, if a GLIE
(Greedy in the Limit with Infinite Exploration) policy is employed:
o All (S,a) pairs are visited an infinite number of times

o The policy converges (in the limit) to the exploitation/greedy policy
o E.g., e-greedy policy
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Input: 8, A, and vy of an MDP, and 1
Output: 7T(S)’s for all S’s

For each state S and a, initialize Q(S, a) arbitrarily;
foreach episode do
Initialize S;
repeat
Choose action a using some GLIE policy derived from Q;

Take action a, observe S’ and reward R(S,a,S’);
Choose action b using the same GLIE policy;
0(S,a) < Q(S,a) +nl(R(S,a,8") +vQ(S',b)) — O(S,a)];
S+ S/
until S is terminal state;

end
foreach S do
‘ 7*(S) = argmax, Q(S,a’);
end
Algorithm 5: SARSA algorithm.
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Q-Learning vs. SARSA

@ Which one is better? (Why on-policy algorithms?)
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Q-Learning vs. SARSA

@ Which one is better? (Why on-policy algorithms?)

@ Q-Learning tends to converge a little slower, but has the capability to
continue learning while changing the exploration policy

@ SARSA has the capability to avoid the mistakes due to exploration

@ See the live demo of the mouse-in-maze problem:

https://studywolf.wordpress.com/2013/07/01/
reinforcement-learning-sarsa-vs-q-learning/
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@ Multi-Agent RL and Game Theory**
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Multi-Agent RL and Game Theory

e TBA
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