
Reinforcement Learning

Shan-Hung Wu
shwu@cs.nthu.edu.tw

Department of Computer Science,

National Tsing Hua University, Taiwan

NetDB-ML, Spring 2015

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 1 / 52

Outline

1 Introduction

2 Markov Decision Process

De�nitions
Bellman Equations
Determining the Best Actions

3 Single-Agent RL

Di�erence from MDP
Model-based Learning
Temporal-Di�erence Learning (Model-Free)
Q-Learning (Model-Free)
Exploration Policies
SARSA (Model-Free)

4 Multi-Agent RL and Game Theory**

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 2 / 52

Outline

1 Introduction

2 Markov Decision Process

De�nitions
Bellman Equations
Determining the Best Actions

3 Single-Agent RL

Di�erence from MDP
Model-based Learning
Temporal-Di�erence Learning (Model-Free)
Q-Learning (Model-Free)
Exploration Policies
SARSA (Model-Free)

4 Multi-Agent RL and Game Theory**

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 3 / 52

Why?

In supervised learning, we see examples x(t)'s that are 1) i.i.d. and 2)
given the unambiguous �right� labels r(t)'s

In sequential decision making and control problems, neither holds

The next example may be the outcome of your �action� to the
previous example

We've seen how random process helps modeling the dependency

It is very di�cult to provide explicit supervision on the �correct� action
of an example

E.g., if we have just built a four-legged robot and are trying to program
it to walk, then initially we have no idea what the �correct� actions
(r(t)) to take are to make it walk under a certain condition (x(t))
E.g., in the mouse-in-maze problem, we cannot tell the mouse the
�correct� path to leave the maze

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 4 / 52

Reinforcement Learning

In the reinforcement learning framework, we will instead provide only a
reward function for the learning algorithm to maximize

In the four-legged walking example, the reward function might give the
robot positive rewards for moving forwards, and negative rewards for
falling over
In the mouse-in-maze problem, we can de�ne a reward if the mouse has
left the maze

Machine learns the correct from �critics� repeatedly, rather than from
correct labels once

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 5 / 52

Agent Point of View

The learner is a decision making agent that sees states of an
environment, takes actions, and receives reward (or penalty) for its
actions in trying to solve a problem

The state of the environment may be changed due the action

After a set of trial-and-error runs, it should learn the best policy,
which is the sequence of actions that maximizes the total reward

Assumption: environment does not change with time

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 6 / 52

Outline

1 Introduction

2 Markov Decision Process

De�nitions
Bellman Equations
Determining the Best Actions

3 Single-Agent RL

Di�erence from MDP
Model-based Learning
Temporal-Di�erence Learning (Model-Free)
Q-Learning (Model-Free)
Exploration Policies
SARSA (Model-Free)

4 Multi-Agent RL and Game Theory**

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 7 / 52

Outline

1 Introduction

2 Markov Decision Process

De�nitions
Bellman Equations
Determining the Best Actions

3 Single-Agent RL

Di�erence from MDP
Model-based Learning
Temporal-Di�erence Learning (Model-Free)
Q-Learning (Model-Free)
Exploration Policies
SARSA (Model-Free)

4 Multi-Agent RL and Game Theory**

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 8 / 52

Markov Processes Revisited

A random process is called the Markov process if it satis�es the
Markov property: P

[
X(t0+t1) 6 x|X(t0) = x0,X(t) = xt,−∞< t < t0

]
=

P
[
X(t0+t1) 6 x|X(t0) = x0

]
States are fully

observable

States are partially

observable

Transition is

autonomous
Markov chains Hidden Markov models

Transition is

controlled

Markov decision
processes

Partially observable
Markov decision

processes

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 9 / 52

Markov Decision Process

A Markov decision process {X(t)}t de�ned over (S,A,P,R,γ) is a
Markov process, where

S is the state space
A is the action space

P(X(t+1) = S ′|X(t) = S; a) (or simply P(S ′|S;a)) is the transition

distribution that is controlled by the action, but does not change with
time t
R : S×A×S→ R (or simply R : S ′→ R) is the deterministic
(expected) reward function

γ ∈ R is the discount factor

An MDP proceeds as follows:

X(0) a(0)

−→ X(1) a(1)

−→ X(2) a(2)

−→ ·· · ,

with the total payo� total payo�

R(X(0),a(0),X(1))+γR(X(1),a(1),X(2))+γ2R(X(2),a(2),X(3))+ · · ·

(or R(X(1))+γR(X(2))+γ2R(X(3))+ · · ·)
Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 10 / 52

Goal

Determine the actions over time such that the expected total payo�

E{X(t)}t
[R(X(0),a(0),X(1))+γR(X(1),a(1),X(2))+γ2R(X(2),a(2),X(3))+· · ·]

is maximized

Note that the reward at time t is discounted by a factor of γ

To make this expectation large, we would like to accrue positive
rewards as soon as possible

Because, e.g., the agent may be powered by battery of limited capacity

In economic applications where R(·) is the amount of money made, γ
has a natural interpretation in terms of the interest rate (where a
dollar today is worth more than a dollar tomorrow)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 11 / 52

Outline

1 Introduction

2 Markov Decision Process

De�nitions
Bellman Equations
Determining the Best Actions

3 Single-Agent RL

Di�erence from MDP
Model-based Learning
Temporal-Di�erence Learning (Model-Free)
Q-Learning (Model-Free)
Exploration Policies
SARSA (Model-Free)

4 Multi-Agent RL and Game Theory**

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 12 / 52

Policy and Value Function

A policy is a function π : S→A

We say that we are executing some policy π if, whenever we are in
state S, we take action a = π(S)

We can also de�ne the value function for a policy π by

Vπ(S) = E[R(X(0),a(0),X(1))+γR(X(1),a(1),X(2))+ · · · |X(0) = S;π]

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 13 / 52

Bellman Equations

Given a �xed policy π, the values of Vπ satisfy the Bellman equations:

Vπ(S) =
∑
S ′∈S

P(S ′|S;π(S))
[
R(S,π(S),S ′)+γVπ(S ′)

]
for all S's

In a �nite-state MDP (|S|<∞), Bellman equations can be used to
e�ciently solve for the values of Vπ

|S| linear equations in |S| variables
Time complexity: O(|S|3)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 14 / 52

Outline

1 Introduction

2 Markov Decision Process

De�nitions
Bellman Equations
Determining the Best Actions

3 Single-Agent RL

Di�erence from MDP
Model-based Learning
Temporal-Di�erence Learning (Model-Free)
Q-Learning (Model-Free)
Exploration Policies
SARSA (Model-Free)

4 Multi-Agent RL and Game Theory**

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 15 / 52

Determining the Best Actions

Optimal value function:

V∗(S) := max
π

Vπ(S)

By Bellman equations:

V∗(S) = max
a∈A

∑
S ′∈S

P(S ′|S;a)
[
R(S,a,S ′)+γV∗(S ′)

]
De�ne the optimal policy π∗ : S→A as

π∗(S) := argmax
a∈A

∑
S ′∈S

P(S ′|S;a)
[
R(S,a,S ′)+γV∗(S ′)

]
Memoryless property: π∗ is independent with X(0)

We can use the same policy π∗ no matter what the initial state of our
MDP is to maximize value

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 16 / 52

Value Iteration (1/2)

π∗(S) := argmaxa∈Aγ
∑

S ′∈S P(S ′|S;π(S))V∗(S ′) can be easily solved
in O(|S||A|) time, if we already have V∗(S)'s

O(|S|2|A|) for the optimal policy for all states S's

Idea: guess V(S)'s �rst, and iteratively improve them

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 17 / 52

Value Iteration (2/2)

Input: MDP (S,A,P,R,γ)
Output: π(S)'s for all S's

For each state S, initialize V(S)← 0;
repeat

foreach S do

V(S)←maxa∈A
∑

S ′∈S P(S ′|S;a) [R(S,a,S ′)+γV(S ′)];
end

until V(S)'s converge;
foreach S do

π(S)← argmaxa∈A
∑

S ′∈S P(S ′|S;a) [R(S,a,S ′)+γV(S ′)];
end

Algorithm 1: Value Iteration.

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 18 / 52

Policy Iteration (1/2)

Recall that given any π, we can solve Vπ by the system of Bellman
equations

Idea: iteratively improve π

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 19 / 52

Policy Iteration (2/2)

Input: MDP (S,A,P,R,γ)
Output: π(S)'s for all S's

For each state S, initialize π(S) randomly;
repeat

Solve V(S)'s from the system of Bellman equations;
foreach S do

π(S)← argmaxa∈A
∑

S ′∈S P(S ′|S;a) [R(S,a,S ′)+γV(S ′)];
end

until π(S)'s converge;
Algorithm 2: Policy Iteration.

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 20 / 52

Value vs. Policy Iteration

Which one is better?

Time complexity for each iteration:

Value iteration: O(|S|2|A|)
Policy iteration: O(|S|2|A|+ |S|3)

For MDPs with small state spaces, policy iteration is often very fast
and converges with very few iterations

However, for large MDPs, solving for Vπ explicitly is time consuming
(O(|S|3)). Value iteration is preferred

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 21 / 52

Value vs. Policy Iteration

Which one is better?

Time complexity for each iteration:

Value iteration: O(|S|2|A|)
Policy iteration: O(|S|2|A|+ |S|3)

For MDPs with small state spaces, policy iteration is often very fast
and converges with very few iterations

However, for large MDPs, solving for Vπ explicitly is time consuming
(O(|S|3)). Value iteration is preferred

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 21 / 52

Outline

1 Introduction

2 Markov Decision Process

De�nitions
Bellman Equations
Determining the Best Actions

3 Single-Agent RL

Di�erence from MDP
Model-based Learning
Temporal-Di�erence Learning (Model-Free)
Q-Learning (Model-Free)
Exploration Policies
SARSA (Model-Free)

4 Multi-Agent RL and Game Theory**

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 22 / 52

Outline

1 Introduction

2 Markov Decision Process

De�nitions
Bellman Equations
Determining the Best Actions

3 Single-Agent RL

Di�erence from MDP
Model-based Learning
Temporal-Di�erence Learning (Model-Free)
Q-Learning (Model-Free)
Exploration Policies
SARSA (Model-Free)

4 Multi-Agent RL and Game Theory**

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 23 / 52

Episode

In some applications, there could be terminal/absorbing states

An absorbing state transit to itself with probability 1

E.g., in the mouse-in-maze problem, the �leaving the maze� is an
absorbing state

A sequence of actions from starting to terminal states is called an
episode or trial

The agent can perform many trails, and the goal would be to learn the
best policy for an episode

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 24 / 52

Example: k-Armed Bandit

Action: pull a lever

Goal: maximizes the total reward

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 25 / 52

The MDP Point of View

A single state MDP

As pulling a lever (an action) does not change anything in the bandit
machine

However,

The rewards received when action a takes state S to state S ′ may be
generated by following some unknown distribution
The expected reward R(S,a,S ′) is unknown

For the robot walking problem, the state transition distribution
P(S ′|S;a) is unknown

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 26 / 52

Example: Data Partitioning and Replication for
the Cloud Database Systems

Each state represents (current workload, a particular placement of
data chunks) on the machines

An action: splitting hot data chunks, merging cold data chunks, or
replicating chunks, etc.

R: system throughput, which is unknown

It is generally hard to predict the performance given a particular
workload and data consolidation

P(S ′|S;a) is unknown too since the workload from clients is
unpredictable

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 27 / 52

Exploration vs. Exploitation

What would you do if you were the agent?

To perform actions to explore R(S,a,S ′) and P(S ′|S;a) �rst

Learn R(S,a,S ′) and P(S ′|S;a) from their samples �queried� from the
environment

Then, to perform actions to exploit the learned P(r|S;a) and
P(S ′|S;a) to maximize the total rewards

The best policy can be computed locally by the agent itself (thanks to
MDP)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 28 / 52

Exploration vs. Exploitation

What would you do if you were the agent?

To perform actions to explore R(S,a,S ′) and P(S ′|S;a) �rst

Learn R(S,a,S ′) and P(S ′|S;a) from their samples �queried� from the
environment

Then, to perform actions to exploit the learned P(r|S;a) and
P(S ′|S;a) to maximize the total rewards

The best policy can be computed locally by the agent itself (thanks to
MDP)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 28 / 52

Outline

1 Introduction

2 Markov Decision Process

De�nitions
Bellman Equations
Determining the Best Actions

3 Single-Agent RL

Di�erence from MDP
Model-based Learning
Temporal-Di�erence Learning (Model-Free)
Q-Learning (Model-Free)
Exploration Policies
SARSA (Model-Free)

4 Multi-Agent RL and Game Theory**

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 29 / 52

How to Learn R(S,a,S ′) and P(S ′|S;a)?

Why not use their sample means?

Given the trials

X(1,0) a(1,0)

−→ X(1,1) a(1,1)

−→ X(1,2) a(1,2)

−→ ·· ·

X(2,0) a(2,0)

−→ X(2,1) a(2,1)

−→ X(2,2) a(2,2)

−→ ·· ·
· · ·

Example estimation of (discrete) P(S ′|S;a):

P̃(S ′|S;a) = # times the action a takes stateS to state S ′

times action a is taken in stateS

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 30 / 52

How to Learn R(S,a,S ′) and P(S ′|S;a)?

Why not use their sample means?

Given the trials

X(1,0) a(1,0)

−→ X(1,1) a(1,1)

−→ X(1,2) a(1,2)

−→ ·· ·

X(2,0) a(2,0)

−→ X(2,1) a(2,1)

−→ X(2,2) a(2,2)

−→ ·· ·
· · ·

Example estimation of (discrete) P(S ′|S;a):

P̃(S ′|S;a) = # times the action a takes stateS to state S ′

times action a is taken in stateS

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 30 / 52

Learning R(S,a,S ′)

E.g., average all reward values, r's, received when action a takes state
S to state S ′

But this requires memory to store all r's

Cheaper solution?

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 31 / 52

The Moving Average

The exponential moving average:

xn =
x(n)+(1−η)x(n−1)+(1−η)2x(n−2)+···

1+(1−η)+(1−η)2+··· , where η is a small constant

Recent samples are more important
xn = ηx(n)+(1−η)xn−1 [Proof]

To learn R(S,a,S ′), keep the current estimator R̃(S,a,S ′) and η

Every time when a new value r is seen, update
R̃(S,a,S ′) = (1−η)R̃(S,a,S ′)+ηr = R̃(S,a,S ′)+η(r− R̃(S,a,S ′))

η is similar to the learning rate we've seen in the perception classi�er

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 32 / 52

Problems of Model-based Learning

R(S,a,S ′) and P(S ′|S;a) can only be estimated if we have samples

If P(S ′|S;a) is small, there may be too few samples to have a good
estimate

Low P(S ′|S;a) may also lead to a poor estimate of R(S,a,S ′)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 33 / 52

Outline

1 Introduction

2 Markov Decision Process

De�nitions
Bellman Equations
Determining the Best Actions

3 Single-Agent RL

Di�erence from MDP
Model-based Learning
Temporal-Di�erence Learning (Model-Free)
Q-Learning (Model-Free)
Exploration Policies
SARSA (Model-Free)

4 Multi-Agent RL and Game Theory**

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 34 / 52

Temporal-Di�erence Learning (1/2)

We explore/estimate R(S,a,S ′) and P(S ′|S;a) in order to compute
V∗(S)

Why not estimate V∗(S) directly?

Recall that V∗(S) is an expectation, let's compute the moving average
estimator Ṽ∗(S) again

Given an exploration policy π, we can compute a sample of V∗(S) by
sample = R(S,π(S),S ′)+γṼ∗(S ′) after each action

Based on the Bellman's equation
The unknown V∗(S ′) is replaced by Ṽ∗(S ′)

So, we can update the estimator Ṽ∗(S) = Ṽ∗(S)+η(sample− Ṽ∗(S))
after each action

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 35 / 52

Temporal-Di�erence Learning (1/2)

We explore/estimate R(S,a,S ′) and P(S ′|S;a) in order to compute
V∗(S)

Why not estimate V∗(S) directly?

Recall that V∗(S) is an expectation, let's compute the moving average
estimator Ṽ∗(S) again

Given an exploration policy π, we can compute a sample of V∗(S) by
sample = R(S,π(S),S ′)+γṼ∗(S ′) after each action

Based on the Bellman's equation
The unknown V∗(S ′) is replaced by Ṽ∗(S ′)

So, we can update the estimator Ṽ∗(S) = Ṽ∗(S)+η(sample− Ṽ∗(S))
after each action

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 35 / 52

Temporal-Di�erence Learning (2/2)

Input: S, A, and γ of an MDP, a policy π, and η
Output: V∗(S)'s for all S's

For each state S, initialize Vπ(S) arbitrarily;
foreach episode do

Initialize S;
repeat

Choose action a← π(S);
Take action a, observe S ′ and reward R(S,a,S ′);
Vπ(S)← Vπ(S)+η [(R(S,a,S ′)+γVπ(S ′))−Vπ(S)];
S← S ′;

until S is terminal state;

end

Algorithm 3: Temporal-Di�erence (TD) Learning.

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 36 / 52

Problem of TD Learning

The given (exploration) policy π is not the optimal (exploitation)
policy π∗ that generates V ∗ (S)'s
We need to solve π∗(S)'s from V ∗ (S)'s, as did in the value iteration
algorithm

But, without knowing/estimating R(S,a,S ′) and P(S ′|S;a), we cannot
do that now!

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 37 / 52

Outline

1 Introduction

2 Markov Decision Process

De�nitions
Bellman Equations
Determining the Best Actions

3 Single-Agent RL

Di�erence from MDP
Model-based Learning
Temporal-Di�erence Learning (Model-Free)
Q-Learning (Model-Free)
Exploration Policies
SARSA (Model-Free)

4 Multi-Agent RL and Game Theory**

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 38 / 52

The Q Function

We need something that

we can estimate in spite of low transition probability; and
the estimated value helps computing V∗(S)'s and π∗

De�ne a function Q∗ : S×A→ R by letting Q∗(S,a) be the maximum
expected cumulative reward that an agent will receive when starting
from state S and action a and then obeying the optimal policy
afterward

We have V∗(S) = maxa Q∗(S,a)
Similar to the Bellman's equations

V∗(S) =
∑
S ′∈S

P(S ′|S;π∗(S))
[
R(S,π∗(S),S ′)+γV∗(S ′)

]
,

now we have

Q∗(S,a) =
∑

S ′∈S P(S ′|S;a) [R(S,a,S ′)+γV∗(S ′)]
=
∑

S ′∈S P(S ′|S;a) [R(S,a,S ′)+γmaxa Q∗(S,a)]

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 39 / 52

Getting the Best Policy

Q∗(S,a) is an expectation, so we can estimate it using the moving
average, as did in the TD learning

Even better, we can derive π∗(S)'s directly from Q∗(S,a)'s

By de�nition of Q∗, we have π∗(S) = argmaxa Q∗(S,a)
No need for R(S,a,S ′) and P(S ′|S;a)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 40 / 52

Q-Learning (1/2)

Input: S, A, and γ of an MDP, and η
Output: π∗(S)'s for all S's

For each state S and a, initialize Q(S,a) arbitrarily;
foreach episode do

Initialize S;
repeat

Choose action a using some exploration policy;
Take action a, observe S ′ and reward R(S,a,S ′);
Q(S,a)← Q(S,a)+η [(R(S,a,S ′)+γmaxb Q(S ′,b))−Q(S,a)];
S← S ′;

until S is terminal state;

end

foreach S do

π∗(S) = argmaxa ′Q(S,a ′);
end

Algorithm 4: Q-learning.

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 41 / 52

Q-Learning (2/2)

Amazing results: Q-learning converges to the optimal policy!

If you explore enough
If η is small enough and does not decrease too quickly
Does not matter how you select exploration actions!

The exploration policy (a's) is not the exploitation policy (b's) used to
update Q(S,a)'s

Q-learning is an o�-policy RL method

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 42 / 52

Outline

1 Introduction

2 Markov Decision Process

De�nitions
Bellman Equations
Determining the Best Actions

3 Single-Agent RL

Di�erence from MDP
Model-based Learning
Temporal-Di�erence Learning (Model-Free)
Q-Learning (Model-Free)
Exploration Policies
SARSA (Model-Free)

4 Multi-Agent RL and Game Theory**

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 43 / 52

ε-Greedy Policy

To actually maximize total rewards, an agent needs to gradually move
from exploration to exploitation

How?

Simplest: the ε-greedy strategy

At every time step, �ip a coin

With probability ε, act randomly (explore)
With probability (1−ε), compute/update the best policy and act
accordingly (exploit)

Gradually decrease ε over time

Any other idea?

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 44 / 52

ε-Greedy Policy

To actually maximize total rewards, an agent needs to gradually move
from exploration to exploitation

How?

Simplest: the ε-greedy strategy

At every time step, �ip a coin

With probability ε, act randomly (explore)
With probability (1−ε), compute/update the best policy and act
accordingly (exploit)

Gradually decrease ε over time

Any other idea?

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 44 / 52

Softmax Policy

Could we have a �soft� policy between the two extremes (exploration
& exploitation) at each time step?

Idea: perform an action a more often if Q(S,a) is larger

Choose a based on the softmax function that converts Q(S,a)'s to
probabilities:

P(a|S) =
exp [Q(S,a)/t]∑
a ′ [expQ(S,a ′)/t]

t starts at a large value (exploration), and decreases over time

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 45 / 52

Softmax Policy

Could we have a �soft� policy between the two extremes (exploration
& exploitation) at each time step?

Idea: perform an action a more often if Q(S,a) is larger

Choose a based on the softmax function that converts Q(S,a)'s to
probabilities:

P(a|S) =
exp [Q(S,a)/t]∑
a ′ [expQ(S,a ′)/t]

t starts at a large value (exploration), and decreases over time

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 45 / 52

Exploration Function

Idea: to explore areas with fewest samples

E.g., in Q-learning, we can de�ne an exploration function
f (q,n) = q+ k/n, where q is an estimated Q-value, n is the number of
samples for the estimate, and k is some positive constant

Instead of the update rule:

Q(S,a)← Q(S,a)+η
[
(R(S,a,S ′)+γmax

b
Q(S ′,b))−Q(S,a)

]
Use f when updating Q(S,a):

Q(S,a)← Q(S,a)+η
{[

R(S,a,S ′)+γmax
b

f (Q(S ′,b),N(S ′,b))
]
−Q(S,a)

}

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 46 / 52

Outline

1 Introduction

2 Markov Decision Process

De�nitions
Bellman Equations
Determining the Best Actions

3 Single-Agent RL

Di�erence from MDP
Model-based Learning
Temporal-Di�erence Learning (Model-Free)
Q-Learning (Model-Free)
Exploration Policies
SARSA (Model-Free)

4 Multi-Agent RL and Game Theory**

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 47 / 52

SARSA (1/2)

There is an on-policy variant of Q-learning, called SARSA
(State-Action-Reward-State-Action)

That is, the exploration policy (a's) is used as the exploitation policy
(b's) when updating Q(S,a)'s

Still converges with probability 1 to the optimal policy, if a GLIE
(Greedy in the Limit with In�nite Exploration) policy is employed:

All (S,a) pairs are visited an in�nite number of times
The policy converges (in the limit) to the exploitation/greedy policy
E.g., ε-greedy policy

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 48 / 52

SARSA (2/2)

Input: S, A, and γ of an MDP, and η
Output: π∗(S)'s for all S's

For each state S and a, initialize Q(S,a) arbitrarily;
foreach episode do

Initialize S;
repeat

Choose action a using some GLIE policy derived from Q;
Take action a, observe S ′ and reward R(S,a,S ′);
Choose action b using the same GLIE policy;
Q(S,a)← Q(S,a)+η [(R(S,a,S ′)+γQ(S ′,b))−Q(S,a)];
S← S ′;

until S is terminal state;

end

foreach S do

π∗(S) = argmaxa ′Q(S,a ′);
end

Algorithm 5: SARSA algorithm.

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 49 / 52

Q-Learning vs. SARSA

Which one is better? (Why on-policy algorithms?)

Q-Learning tends to converge a little slower, but has the capability to
continue learning while changing the exploration policy

SARSA has the capability to avoid the mistakes due to exploration

See the live demo of the mouse-in-maze problem:
https://studywolf.wordpress.com/2013/07/01/

reinforcement-learning-sarsa-vs-q-learning/

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 50 / 52

https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/
https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/

Q-Learning vs. SARSA

Which one is better? (Why on-policy algorithms?)

Q-Learning tends to converge a little slower, but has the capability to
continue learning while changing the exploration policy

SARSA has the capability to avoid the mistakes due to exploration

See the live demo of the mouse-in-maze problem:
https://studywolf.wordpress.com/2013/07/01/

reinforcement-learning-sarsa-vs-q-learning/

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 50 / 52

https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/
https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/

Outline

1 Introduction

2 Markov Decision Process

De�nitions
Bellman Equations
Determining the Best Actions

3 Single-Agent RL

Di�erence from MDP
Model-based Learning
Temporal-Di�erence Learning (Model-Free)
Q-Learning (Model-Free)
Exploration Policies
SARSA (Model-Free)

4 Multi-Agent RL and Game Theory**

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 51 / 52

Multi-Agent RL and Game Theory

TBA

Shan-Hung Wu (CS, NTHU) Reinforcement Learning NetDB-ML, Spring 2015 52 / 52

	Introduction
	Markov Decision Process
	Definitions
	Bellman Equations
	Determining the Best Actions

	Single-Agent RL
	Difference from MDP
	Model-based Learning
	Temporal-Difference Learning (Model-Free)
	Q-Learning (Model-Free)
	Exploration Policies
	SARSA (Model-Free)

	Multi-Agent RL and Game Theory**

