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Hidden Markov Models

A Hidden Markov Model (HMM) is a Markov chain where we don't
know which state the process X (t) locates in at any time t

Let z(t) ∈ {0,1}K be a vector where z
(t)
i = 1 if X (t) = Si ; 0 otherwise

P[z(t) = e i ] = P[X (t) = Si ] (for brevity, we use the shorthand P[z
(t)
i ])

In HMM, z(t) is hidden (not observable) and is a latent variable

When a state is visited, however, we can record an observation x(t)

P[x(t)|z
(t)
i ] is called the emission probability of state i at time t

Like transition probabilities, the emission probabilities are usually
assumed to be time homogeneous

If we assume that the emission probability of state i follows some

distribution parametrized by θi , we can rewrite it as P[x(t)|z
(t)
i ,θi ]

Markov chain is a special case of HMM where

x(t) must be one of the S1, · · · ,SK
P[x(t) = Sj |z

(t)
i ] = 1 if i = j ; 0 otherwise
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HMM is a candidate for modeling a problem when we are given a
sequence X= {x(t)}Tt=1 of observations of length T , where x(t) are
not i.i.d.
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Goals

HMM is a candidate for modeling a problem when we are given a
sequence X= {x(t)}Tt=1 of observations of length T , where x(t) are
not i.i.d.

Generally, we want to perform the following tasks:

1 Given X, learn the parameters Θ= (π(1),A, {θi }
K
i=1) maximizing the

likelihood P[X|Θ]

π(1) is the initial state probability
A is the transition matrix
θi is the parameter of the emission probability of state i

2 Given the learned Θ, infer the hidden state sequence Z= {z(t)}Tt that
generated X with the highest probability P[X|Z,Θ]

3 Given the learned Θ, evaluate P[Xnew |Θ] for a new sequence Xnew
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Applications

For classi�cation, we can model each class as an HMM

Learn the parameter Θi of each class Ci using a training sequence
X= {x(t)}Tt=1

(or a set X= {x(n,t)}N,T
n=1,t=1

of n training sequences)
Predict a new sequence Xnew to be in class Ci if the posterior
P[Ci |X

new ]∝ P[Xnew |Θi ]P[Ci ] is the highest

Applications:

Pattern recognition (speech recognition, gesture recognition,
handwritten character recognition, etc.)
Sequential data analysis
Molecular biology, biochemistry, and genetics, etc.

One most powerful property of an HMM is that it can accommodate
the local warping (compression/stretching) in the time axis

E.g., the likelihood P[Xnew |Θ] =
∑

ZP[Xnew ,Z|Θ] of a speech Xnew

will not change dramatically when it is spoken slowly, as Z having more
transitions to the same state will contribute to the likelihood more
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Problem Formulation

Problem: given a sequence X= {x(t)}Tt=1 of observations up to time
T , we want to �nd Θ= (π(1),A, {θi }

K
i=1) that maximizes P[X|Θ]

If we know Z= {z(t)}Tt=1, we have

P[X|Θ] =
∑

ZP[X,Z|Θ]
P[X,Z|Θ] = P[X|Z,Θ]P[Z|Θ]
P[Z|Θ] = P[z(1), · · · ,z(T)|Θ] = P[z(2), · · · ,z(T)|z(1),Θ]P[z(1)|Θ]=
P[z(3), · · · ,z(T)|z(2),z(1),Θ]P[z(2)|z(1),Θ]P[z(1)|π(1)] = · · ·=
P[z(1)|π(1)]

(∏T−1

t=1
P[z(t+1)|z(t),A]

)
P[X|Z,Θ] =

∏T
t=1

P[x(t)|z(t),θ
d(z(t))], where d(z(t)) is the index of

attribute of z(t) equal to 1

Unfortunately, we don't know Z so Θ cannot be solved analytically

Solution?

Since each z(t) is discrete and corresponds to an instance
x(t), we can resort to the EM algorithm
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Formulating Q(Θ;Θold) (1/4)

Recall that P[X,Z|Θ] = P[X|Z,Θ]P[Z|Θ] =(∏T
s=1P[x

(s)|z(s),θd(z(s))]
)
P[z(1)|π(1)]

(∏T−1
t=1 P[z(t+1)|z(t),A]

)
Q(Θ;Θold ) = EZ

[
ln(P[X,Z|Θ]) |X,Θold

]
=
∑

Z ln(P[X,Z|Θ])P[Z|X,Θold ]
=
∑

Z ln
(
P[z(1)|π(1)]

)
P[Z|X,Θold ]

+
∑

Z ln
(∏T−1

t=1 P[z(t+1)|z(t),A]
)
P[Z|X,Θold ]

+
∑

Z ln
(∏T

t=1P[x
(t)|z(t),θd(z(t))]

)
P[Z|X,Θold ]
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Formulating Q(Θ;Θold) (2/4)

The �rst term
∑

Z ln
(
P[z(1)|π(1)]

)
P[Z|X,Θold ]

=
∑

Z ln
(
π
(1)

d(z(1))

)
P[Z|X,Θold ]

=
∑

eK

z(1)=e1
· · ·
∑

eK

z(T)=e1
ln
(
π
(1)

d(z(1))

)
P[z(1), · · · ,z(T)|X,Θold ]

=
∑

eK

z(1)=e1
ln
(
π
(1)

d(z(1))

)∑
eK

z(2)=e1
· · ·
∑

eK

z(T)=e1
P[z(1), · · · ,z(T)|X,Θold ]

=
∑

eK

z(1)=e1
ln
(
π
(1)

d(z(1))

)
P[z(1)|X,Θold ]

=
∑K

i=1 ln
(
π
(1)
i

)
P[z

(1)
i |X,Θold ]
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Formulating Q(Θ;Θold) (3/4)

The second term
∑

Z ln
(∏T−1

t=1 P[z(t+1)|z(t),A]
)
P[Z|X,Θold ]

=
∑

Z

∑T−1
t=1 ln

(
P[z(t+1)|z(t),A]

)
P[Z|X,Θold ]

=∑T−1
t=1

∑
eK

z(1)=e1
· · ·
∑

eK

z(T)=e1
ln
(
P[z(t+1)|z(t),A]

)
P[z(1), · · · ,z(T)|X,Θold ]

=
∑T−1

t=1

∑
eK

z(t)=e1

∑
eK

z(t+1)=e1
ln
(
P[z(t+1)|z(t),A]

)∑
eK

z(1)=e1
· · ·
∑

eK

z(t−1)=e1∑
eK

z(t+2)=e1
· · ·
∑

eK

z(T)=e1
P[z(1), · · · ,z(T)|X,Θold ]

=
∑T−1

t=1

∑
eK

z(t)=e1

∑
eK

z(t+1)=e1
ln
(
P[z(t+1)|z(t),A]

)
P[z(t),z(t+1)|X,Θold ]

=
∑T−1

t=1

∑K
i=1

∑K
j=1 ln

(
P[z

(t+1)
j |z

(t)
i ,A]

)
P[z

(t)
i ,z

(t+1)
j |X,Θold ]

=
∑T−1

t=1

∑K
i=1

∑K
j=1 ln(ai ,j)P[z

(t)
i ,z

(t+1)
j |X,Θold ]
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Formulating Q(Θ;Θold) (4/4)

Similarly, the third term∑
Z ln

(∏T
t=1P[x

(t)|z(t),θd(z(t))]
)
P[Z|X,Θold ] =∑T

t=1

∑K
i=1 ln

(
P[x(t)|z

(t)
i ,θi ]

)
P[z

(t)
i |X,Θold ] [Proof]

Q(Θ;Θold ) =
∑K

i=1 ln
(
π
(1)
i

)
P[z

(1)
i |X,Θold ]

+
∑T−1

t=1

∑K
i=1

∑K
j=1 ln(ai ,j)P[z

(t)
i ,z

(t+1)
j |X,Θold ]

+
∑T

t=1

∑K
i=1 ln

(
P[x(t)|z

(t)
i ,θi ]

)
P[z

(t)
i |X,Θold ]

In the E-step, we need to evaluate P[z
(t)
i |X,Θold ] and

P[z
(t)
i ,z

(t+1)
j |X,Θold ] for all t (to be discussed later)

After the evaluation, we denote γ
(t)
i = P[z

(t)
i |X,Θold ] and

ξ
(t)
i ,j = P[z

(t)
i ,z

(t+1)
j |X,Θold ] respectively as constants in the M-step

γ
(t)
i =

∑K
j=1
ξ
(t)
i ,j and

∑K
i=1
γ
(t)
i = 1
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Solving Θ

Problem: argΘ=(π(1),A,{θi }
K
i=1)

maxQ(Θ;Θold ), where

Q(Θ;Θold) =
∑K

i=1
ln
(
π
(1)
i

)
γ
(1)
i +

∑T−1

t=1

∑K
i=1

∑K
j=1

ln(ai ,j)ξ
(t)
i ,j

+
∑T

t=1

∑K
i=1

ln
(
P[x(t)|z

(t)
i ,θi ]

)
γ
(t)
i

Subject to∑K
i=1
π
(1)
i = 1∑K

j=1
ai ,j = 1 for all 16 i 6 K

We can solve π(1), A, and {θi }
K
i=1 by considering only the �rst,

second, and third terms respectively
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Solving π(1)

Lagrangian: L(π(1),α) =
∑K

i=1 ln
(
π
(1)
i

)
γ
(1)
i −α

(∑K
i=1π

(1)
i −1

)
Taking the partial derivatives of L with respect to π

(1)
i and α and then

setting them to zero we have
γ
(1)
i

π
(1)
i

−α= 0⇒ π
(1)
i =

γ
(1)
i

α for all

16 i 6 K and
∑K

i=1π
(1)
i = 1

Summing all equations for π
(1)
i we have α=

∑K
i=1γ

(1)
i , and therefore

π
(1)
i =

γ
(1)
i∑K

i=1γ
(1)
i

= γ
(1)
i
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Solving A

Lagrangian: L(A, {αi }
K
i=1) =∑T−1

t=1

∑K
i=1

∑K
j=1 ln(ai ,j)ξ

(t)
i ,j −

∑K
i=1αi

(∑K
j=1 ai ,j −1

)
Taking the partial derivatives of L with respect to ai ,j and αi and then

setting them to zero we have
∑T−1

t=1 ξ
(t)
i ,j

ai ,j
−αi = 0⇒ ai ,j =

∑T−1
t=1 ξ

(t)
i ,j

αi
and∑K

j=1 ai ,j = 1 for all 16 i 6 K

Summing the equations for ai ,j along j we have

αi =
∑K

j=1

∑T−1
t=1 ξ

(t)
i ,j , and therefore ai ,j =

∑T−1
t=1 ξ

(t)
i ,j∑T−1

t=1

∑K
j=1ξ

(t)
i ,j

=
∑T−1

t=1 ξ
(t)
i ,j∑T−1

t=1 γ
(t)
i
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Solving {θi }
K
i=1 (1/3)

Problem: �nding {θk }
K
k=1 such that∑T

t=1

∑K
k=1 ln

(
P[x(t)|z

(t)
k ,θk ]

)
γ
(t)
k is maximized

Suppose x(t) is discrete such that x
(t)
i = 1 if the prede�ned value Oi

from {O1, · · · ,Od } is observed; 0 otherwise

We can assume that the emission probability

P[x(t)|z
(t)
k ,θk ] =

∏d
i=1 b

x
(t)
i

k,i follows the multinomial distribution where

θk = {bk,i }
d
i=1 and bk,i is the probability that Oi is observed in state k∑d

i=1
bk,i = 1
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Solving {θi }
K
i=1 (2/3)

Lagrangian: L({bk,i }
K ,d
k=1,i=1, {αk }

K
k=1) =∑T

t=1

∑K
k=1 ln

(∏d
i=1 b

x
(t)
i

k,i

)
γ
(t)
k −

∑K
k=1αk

(∑d
i=1 bk,i −1

)
=∑T

t=1

∑K
k=1

∑d
i=1 x

(t)
i ln(bk,i )γ

(t)
k −

∑K
k=1αk

(∑d
i=1 bk,i −1

)
Taking the partial derivatives of L with respect to bk,i and αk and
then setting them to zero we have∑T

t=1 x
(t)
i γ

(t)
k

bk,i
−αk = 0⇒ bk,i =

∑T
t=1 x

(t)
i γ

(t)
k

αk
and
∑d

i=1 bk,i = 1 for all

16 k 6 K

Summing the equations for bk,i along i we have

αk =
∑d

i=1

∑T
t=1 x

(t)
i γ

(t)
k , and therefore

bk,i =
∑T

t=1 x
(t)
i γ

(t)
k∑T

t=1γ
(t)
k

∑d
i=1 x

(t)
i

=
∑T

t=1 x
(t)
i γ

(t)
k∑T

t=1γ
(t)
k
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Solving {θi }
K
i=1 (3/3)

What if x(t) are continuous?

We can assume that P[x(t)|z
(t)
k ,θk ] follows the multivariate normal

distribution where θk = (µk ,Σk)

It can be shown that

µk =
∑T

t=1γ
(t)
k

x
(t)∑T

t=1γ
(t)
k

Σk =
∑T

t=1γ
(t)
k

(x(t)−µk)(x
(t)−µk)

>∑T
t=1γ

(t)
k

[Homework]
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Learning form Multiple Sequences

Suppose we are given a set X= {x(n,t)}N,T
n=1,t=1 of observation

sequences, where sequences are independent with each other

P[X|Θ] =
∏N

n=1
P[X(n)|Θ], where X(n) = {x(n,t)}Tt=1

Then for discrete x(t) with multinomial emission probability:

π
(1)
i =

∑N
n=1γ

(n,1)
i

N

ai ,j =

∑N
n=1

∑T−1
t=1 ξ

(n,t)
i ,j∑N

n=1

∑T−1
t=1 γ

(n,t)
i

bk,i =
∑N

n=1

∑T
t=1 x

(n,t)
i

γ
(n,t)
k∑N

n=1

∑T
t=1γ

(n,t)
k

This is analogous to the estimators of a Markov chain we have seen

previously, except that γ
(t)
i = P[z

(t)
i |X,Θold ] and

ξ
(t)
i ,j = P[z

(t)
i ,z

(t+1)
j |X,Θold ] are soft counts of state visits
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We Are Not Done Yet

Given Θold , in the E-step we need to evaluate γ
(t)
i and ξ

(t)
i ,j

γ
(t)
i = P[z

(t)
i |X,Θold ] =

P[X,z
(t)
i

|Θold ]

P[X|Θold ]

ξ
(t)
i ,j = P[z

(t)
i ,z

(t+1)
j |X,Θold ] =

P[X,z
(t)
i

,z
(t+1)
j

|Θold ]

P[X|Θold ]

We can evaluate γ
(t)
i and ξ

(t)
i ,j by considering all possible state

sequences:

P[X|Θold ] =
∑

ZP[X,Z|Θold ]

P[X,z
(t)
i |Θold ] =

∑
Z,z(t)=e i

P[X,Z|Θold ]

However, there are exponentially many sequences (speci�cally, KT and

KT−1 for P[X|Θold ] and P[X,z
(t)
i |Θold ] respectively)

The evaluation would be very slow, if not infeasible

Better idea?

for all t⇒belief propagation
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Forward-Backward Procedure

There is an algorithm, called the forward-backward procedure, that

provides an e�cient way to evaluate γ
(t)
i and ξ

(t)
i ,j

Given a Θ= (π(1),A, {θi }
K
i=1), de�ne the forward variable as

α
(t)
i = P[x(1), · · · ,x(t),z

(t)
i |Θ]

α
(t)
i denotes the probability that a partial sequence {x(1), · · · ,x(t)}

until time t is observed while the state ends in Si at time t

Similarly, de�ne the backward variable as

β
(t)
i = P[x(t+1), · · · ,x(T)|z

(t)
i ,Θ]

β
(t)
i denotes the probability that a partial sequence {x(t+1), · · · ,x(T)}

after time t will be observed given a starting state Si at time t

We can express γ
(t)
i and ξ

(t)
i ,j using the forward/backward variables:

γ
(t)
i =

α
(t)
i β

(t)
i∑K

j=1α
(t)
j β

(t)
j

and ξ
(t)
i ,j =

α
(t)
i ai ,jP[x(t+1)|z

(t+1)
j ,θj ]β

(t+1)
j∑K

k=1

∑K
l=1α

(t)
k

ak,lP[x(t+1)|z
(t+1)
l

,θl ]β
(t+1)
l
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Expressing γ
(t)
i Using α

(t)
i And β

(t)
i

γ
(t)
i = P[z

(t)
i |X,Θ] =

P[X,z
(t)
i |Θ]

P[X|Θ] =
P[X|z

(t)
i ,Θ]P[z

(t)
i |Θ]

P[X|Θ]

=
P[x(1),··· ,x(t)|z(t)i ,Θ]P[x(t+1),··· ,x(T)|z

(t)
i ,Θ]P[z

(t)
i |Θ]

P[X|Θ]

=
P[x(1),··· ,x(t)z(t)i ,|Θ]P[x(t+1),··· ,x(T)|z

(t)
i ,Θ]

P[X|Θ]

=
α

(t)
i β

(t)
i

P[X|Θ] =
α

(t)
i β

(t)
i∑K

j=1P[X,z
(t)
j |Θ]

=
α

(t)
i β

(t)
i∑K

j=1α
(t)
j β

(t)
j

The numerator α
(t)
i β

(t)
i explains the whole observation sequence

{x(1), · · · ,x(t)} and that at time t, the state is Si

α
(t)
i β

(t)
i is normalized by dividing over all possible intermediate states

at time t to ensure that
∑K

i=1γ
(t)
i = 1
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Expressing ξ
(t)
i ,j Using α

(t)
i And β

(t)
i (1/2)

ξ
(t)
i ,j = P[z

(t)
i ,z

(t+1)
j |X,Θ] =

P[X,z
(t)
i ,z

(t+1)
j |Θ]

P[X|Θ]

=
P[X|z

(t)
i ,z

(t+1)
j ,Θ]P[z

(t)
i ,z

(t+1)
j |Θ]

P[X|Θ]

=
P[X|z

(t)
i ,z

(t+1)
j ,Θ]P[z

(t+1)
j |z

(t)
i ,Θ]P[z

(t)
i |Θ]

P[X|Θ]

=
(

1
P[X|Θ]

)
P[x(1) · · · ,x(t)|z

(t)
i ,Θ]P[x(t+1)|z

(t+1)
j ,Θ]

P[x(t+2) · · · ,x(T)|z
(t+1)
j ,Θ]ai ,jP[z

(t)
i |Θ]

=
P[x(1)··· ,x(t),z(t)i |Θ]P[x(t+1)|z

(t+1)
j ,Θ]P[x(t+2)··· ,x(T)|z

(t+1)
j ,Θ]ai ,j

P[X|Θ]

=
α

(t)
i ai ,jP[x(t+1)|z

(t+1)
j ,Θ]β

(t+1)
j

P[X|Θ] =
α

(t)
i ai ,jP[x(t+1)|z

(t+1)
j ,Θ]β

(t+1)
j∑K

k=1

∑K
l=1P[X,z

(t)
k

,z
(t+1)
l

|Θ]

=
α

(t)
i ai ,jP[x(t+1)|z

(t+1)
j ,θj ]β

(t+1)
j∑K

k=1

∑K
l=1α

(t)
k

ak,lP[x(t+1)|z
(t+1)
l

,θl ]β
(t+1)
l
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Expressing ξ
(t)
i ,j Using α

(t)
i And β

(t)
i (2/2)

ξ
(t)
i ,j =

α
(t)
i ai ,jP[x(t+1)|z

(t+1)
j ,θj ]β

(t+1)
j∑K

k=1

∑K
l=1α

(t)
k

ak,lP[x(t+1)|z
(t+1)
l

,θl ]β
(t+1)
l

α
(t)
i in the numerator explains the �rst t observations and ends in

state Si at time t

At time t+1, the process moves on to sate Sj with probability ai ,j ,
and generates the (t+1)st observation

Continue from Sj at time t+1, β
(t+1)
j explains the rest observations

Finally, normalize by dividing all possible pairs of states at time t and
t+1
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Evaluating α
(t)
i And β

(t)
i (1/2)

The merit of the forward-backward procedure is that α
(t)
i and β

(t)
i

can be evaluated e�ciently

α
(1)
i = P[x(1),z

(1)
i |Θ] = P[x(1)|z

(1)
i ,Θ]P[z

(1)
i |Θ] = P[x(1)|z

(1)
i ,θi ]π

(1)
i

α
(t+1)
j = P[x(1), · · · ,x(t+1),z

(t+1)
j |Θ] =

P[x(1), · · · ,x(t+1)|z
(t+1)
j ,Θ]P[z

(t+1)
j |Θ]

= P[x(1), · · · ,x(t)|z
(t+1)
j ,Θ]P[x(t+1)|z

(t+1)
j ,Θ]P[z

(t+1)
j |Θ]

= P[x(1), · · · ,x(t),z
(t+1)
j |Θ]P[x(t+1)|z

(t+1)
j ,Θ]

= P[x(t+1)|z
(t+1)
j ,Θ]

∑K
i=1P[x

(1), · · · ,x(t),z
(t)
i ,z

(t+1)
j |Θ]

= P[x(t+1)|z
(t+1)
j ,Θ]

∑K
i=1P[x

(1), · · · ,x(t),z
(t+1)
j |z

(t)
i ,Θ]P[z

(t)
i |Θ]

= P[x(t+1)|z
(t+1)
j ,Θ]∑K
i=1P[x

(1), · · · ,x(t)|z
(t)
i ,Θ]P[z

(t+1)
j |z

(t)
i ,Θ]P[z

(t)
i |Θ]

= P[x(t+1)|z
(t+1)
j ,Θ]

∑K
i=1P[x

(1), · · · ,x(t),z
(t)
i |Θ]P[z

(t+1)
j |z

(t)
i ,Θ]

=
(∑K

i=1α
(t)
i ai ,j

)
P[x(t+1)|z

(t+1)
j ,θj ]
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Evaluating α
(t)
i And β

(t)
i (2/2)

Based on the recurrence relation{
α
(1)
i = P[x(1)|z

(1)
i ,θi ]π

(1)
i

α
(t+1)
j =

(∑K
i=1α

(t)
i ai ,j

)
P[x(t+1)|z

(t+1)
j ,θj ]

, α
(t+1)
j has the

optimal substructure that it can be evaluated e�ciently within

O(K ) time if all α
(t)
i , 16 i 6 K , are known

We can evaluate all α
(t)
i , 16 i 6 K and 16 t 6 T , within O(K 2T )

time using the dynamic programming from t = 1 to T

Similarly, we can derive the recurrence relation for β
(t)
i as{

β
(T)
i = 1

β
(t)
i =

∑K
j=1 ai ,jP[x

(t+1)|z
(t+1)
j ,θj ]β

(t+1)
j

[Proof]

All β
(t)
i can also be evaluated within O(K 2T ) time from t = T to 1

Once obtaining α
(t)
i and β

(t)
i , we can derive all γ

(t)
i and ξ

(t)
i ,j within

O(K ) and O(K 2) time respectively

The total time complexity for an E-step is O(K 2T )
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The recurrence relations

N

i

1

j
a
ij

i

1

j

N

a
ij

(a) Forward (b) Backward

t t+1 t+1t

α
i

β
j

t+1

t+1
x

x
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Problem Formulation

Problem: given a sequence X and parameters Θ, we want to infer the
hidden state sequence Z∗ = {z(t)}Tt such that it has the highest
posterior P[Z|X,Θ]

This helps us understand the �reason� behind X

A common task in time series analysis

Since P[Z|X,Θ] = P[X,Z|Θ]
P[X|Θ] and P[X|Θ] is independent with Z, we

only need to �nd Z∗ maximizing P[X,Z|Θ]

Objective: argZmaxP[X,Z|Θ]

We can try out all possible Z, at the cost of exponential time
complexity

E�cient solution?
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The Optimal Substructure

P[X,Z|Θ] = P[X|Z,Θ]P[Z|Θ]

=
(∏T

s=1P[x
(s)|z(s),θd(z(s))]

)
P[z(1)|π(1)]

(∏T−1
t=1 P[z(t+1)|z(t),A]

)
=
(
P[z(1)|π(1)]P[x(1)|z(1),θd(z(1))]

)
(∏T−1

t=1 ad(z(t)),d(z(t+1))P[x
(t+1)|z(t+1),θd(z(t+1))]

)
De�ne
δ
(t)
i =max

z(1),··· ,z(t−1) P[x
(1), · · · ,x(t),z(1), · · · ,z(t−1),z(t) = e i |Θ]

Z∗ is the sequence having δ(T)∗ =max16i6K δ
(T)
i

Notice that we can calculate δ
(T)
j e�ciently if we already know

δ
(T−1)
i for all 16 i 6 K

δ
(t)
j =

(
max16i6K δ

(t−1)
i ai ,j

)
P[x(t)|z

(t)
j ,θj ]

δ
(t)
j has the optimal substructure and can be evaluated e�ciently
using dynamic programming

We can obtain Z∗ by backtracking
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The Viterbi Algorithm

Input: X← {x(t)}Tt=1 and Θ← (π(1),A, {θi }
K
i=1)

Output: Z← {z(t)}Tt=1 resulting the highest P[X,Z|Θ]

for i ← 1 to K do

δ
(1)
i ← π

(1)
i P[x(1)|z

(1)
i ,θi ];

ψ
(1)
i ← null;

end

for t← 2 to T do

for j ← 1 to K do

δ
(t)
j ←

(
max16i6K δ

(t−1)
i ai ,j

)
P[x(t)|z

(t)
j ,θj ];

ψ
(t)
j ← arg16i6K maxδ

(t−1)
i ai ,j ; // previous state

end

end

d(z(T))← arg16i6K maxδ
(T)
i ;

for t← T −1 to 1 do

d(z(t))←ψ
(t+1)

d(z(t+1))
; // backtracking

end

Algorithm 1: The Viterbi algorithm of time complexity O(K 2T ).
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Making Predictions

When HMM is used to model a class, we predict a new sequence Xnew

to be in class Ci if the posterior P[Ci |X
new ]∝ P[Xnew |Θi ]P[Ci ] is the

highest

Problem: given parameters Θ and a sequence X, we want to know
P[X|Θ]

Again, we can try out all possible Z using P[X|Θ] =
∑

ZP[X,Z|Θ],
but this is cost prohibitive

Better way?

Notice that P[X|Θ] =
∑K

i=1P[X,z
(t)
i |Θ] =

∑K
i=1α

(T)
i

Calculate the forward variables α
(T)
i for all 16 i 6 K �rst, which takes

O(K 2T ) time

Obtain P[X|Θ] by summing α
(T)
i
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Implementation Issues

When calculating α
(t)
j , β

(t)
i , and δ

(t)
j in a program, we risk getting

the under�ow

α
(t)
j =

(∑K
i=1

α
(t−1)
i ai ,j

)
P[x(t)|z

(t)
j ,θj ],

β
(t)
i =

∑K
j=1

ai ,jP[x
(t+1)|z

(t+1)
j ,θj ]β

(t+1)
j , and

δ
(t)
j =

(
max16i6K δ

(t−1)
i ai ,j

)
P[x(t)|z

(t)
j ,θj ] are all multiplication of small

numbers

We can calculate the normalized α̃
(t)
i and β̃

(t)
i by multiplying α

(t)
i

and β
(t)
i by ct =

∑K
j=1

1

α
(t)
j

(note
∑K

j=1β
(t)
j 6= 1) at each step of the

dynamic programming, and then denormalize the related targets

E.g., since α̃
(T)
i = α

(T)
i

∏T
t=1

ct and
∑K

i=1
α̃
(T)
i = 1, we denormalize

P[X|Θ] by P[X|Θ] =
∑K

i=1
α
(T)
i = 1∏T

t=1 ct

∑K
i=1
α̃
(T)
i = 1∏T

t=1 ct

For δ
(t)
j , we can simply calculate δ̃

(t)
j = logδ

(t)
j at each step, and then

exponent the related targets
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Model Selection

Reduce the number of states, K

The optimal K can be determined using the cross validation

Or, constrain the model structure

Limit the number of states K , K ′ < K , that can be transited to
This reduces the complexity of forward-backward procedure and Viterbi
algorithm to O(KK ′T )
In particular, the left-to-right HMM is commonly used (e.g., in
speech recognition)

1 2 3

a11

a12

a13

π1 4

Figure : An example left-to-right HMM. The process never moves to a state with
a smaller index (i.e., ai ,j = 0 if j < i), and a big jump in state index is not allowed
(i.e., ai ,j = 0 for j > i + c, where c = 2 in this case).
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