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© Hidden Markov Models
@ Definitions and Usage
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Hidden Markov Models

e A Hidden Markov Model (HMM) is a Markov chain where we don't
know which state the process X (t) locates in at any time ¢

o Let z{t) €{0,1}¥ be a vector where z,.( =1if X(t) = §;: 0 otherwise
o Plzlt) =gl =P[X11) =5 (for brevity, we use the shorthand P[z,-(t)})
o In HMIM, z(*) is hidden (not observable) and is a latent variable

@ When a state is visited, however, we can record an observation x ()

° P[x(‘)lzi(t)] is called the emission probability of state i at time t

o Like transition probabilities, the emission probabilities are usually
assumed to be time homogeneous

o If we assume that the emission probability of state j foIIows some

distribution parametrized by 6;, we can rewrite it as P[x |z ,9,—]

@ Markov chain is a special case of HMM where

o xt) must be one of the S;,---, Sk
o Plx(t) =S;|z!"] =1 if i =j; 0 otherwise
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Graph Representation

A — P t t-1
7 - (z']z7) 2
= P( z])
B=P(x'|2)
1 t-1 t
x x x

@ HMM is a candidate for modeling a problem when we are given a
sequence X = {x(!)}T_, of observations of length T, where x*) are
not i.i.d.
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Goals

e HMM is a candidate for modeling a problem when we are given a
sequence X = {x(!)}]_; of observations of length T, where x*) are
not i.i.d.

o Generally, we want to perform the following tasks:

O Given X, learn the parameters © = (nt'1), A,{0;}X ;) maximizing the
likelihood P[X|O]
o 1!l is the initial state probability

o A is the transition matrix
e 0; is the parameter of the emission probability of state J

@ Given the learned ©, infer the hidden state sequence Z:{z(t)}tT that
generated X with the highest probability P[X|Z, O]

© Given the learned ©, evaluate P[X""|®] for a new sequence X"
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Applications

@ For classification, we can model each class as an HMM

o Learn the parameter ©; of each class C; using a training sequence
X ={x®}T_, (oraset X={x(mt) ,I)I':Tl,tzl of n training sequences)

o Predict a new sequence X" to be in class C; if the posterior
P[C;i|X™Y] oc P[X™"|@;]P[(;] is the highest

@ Applications:

o Pattern recognition (speech recognition, gesture recognition,
handwritten character recognition, etc.)

o Sequential data analysis

o Molecular biology, biochemistry, and genetics, etc.

@ One most powerful property of an HMM is that it can accommodate
the local warping (compression/stretching) in the time axis
o E.g., the likelihood P[X"¢"|©] =} , P[X"*",Z|O] of a speech X"*

will not change dramatically when it is spoken slowly, as Z having more
transitions to the same state will contribute to the likelihood more
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© Learning the Model Parameters
@ Expectation Maximization for HMM
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Problem Formulation

o Problem: given a sequence X :{x“)}tT:1 of observations up to time
T, we want to find ©® = (ﬂ(l),A,{G;},Kzl) that maximizes P[X|©]

o If we know Z :{z(”}tT:l, we have

PX|G] = Zz, DCZI@
P[X, 28] = P[X|Z, @ (Z]|0]
° P[Zl®] PlzY),. 7e] = Plz! T)Iz“) OlP[z 1)|®]=
P[z3),... (T)|Z(2) z1) Q|P[z (2)‘2(1) @] ZWrW] =... =
Plz! |7t (HtT:llp[ (t4+1) |7 (¢) A])

o PXI2,0] =[], Plx")|z(*),8, )], where d(z!*)) is the index of

attribute of z(*) equal to 1

@ Unfortunately, we don’'t know Z so © cannot be solved analytically

@ Solution?
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Problem Formulation

o Problem: given a sequence X :{x“)}tT:1 of observations up to time
T, we want to find ©® = (ﬂ(l),A,{G;},Kzl) that maximizes P[X|©]

o If we know Z :{z(”}tT:l, we have

PX|G] = Zz, DCZI@
P[X, 28] = P[X|Z, @ (Z]|0]
° P[Zl®] PlzY),. 7e] = Plz! T)Iz“) OlP[z 1)|@]:
P[z3),... (T)|Z(2) z1) Q|P[z (2)‘2(1) @] ZWrW] =... =
Plz! |7t (HtT:llp[ (t4+1) |7 (¢) A])

o PXI2,0] =[], Plx")|z(*),8, )], where d(z!*)) is the index of
attribute of z(*) equal to 1
@ Unfortunately, we don’'t know Z so © cannot be solved analytically

@ Solution? Since each z(t) is discrete and corresponds to an instance
x) we can resort to the EM algorithm
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Formulating Q(©;©°/9) (1/4)

o Recall that P[X,2/6] = P[X|2, G]P[2/6)] =
(1‘[;1 P[x(s)|z<sJ,ed(z(s,)]) Pz ( Tl P[z(f+1>|z(t),A])

o 0(©;0°) = E; [In (P[X,2/0]) |X, ©°¥]
=Y ,In(P . z|@) (2], ©°%]

=Y o In(Plz) )] ) z|x ®°H]
+ 5o (T PL2 |z A1) PIZIX, ©°]
—i—ZZln(Ht 1P ), 84(z10)] ) PIZIX, €]
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Formulating Q(®;©°9) (2/4)

The first term 3, In (P[zV|1]) P[2]X, @]
=Yz In (m ), ) PIRIX €]

= Z%J:el . “ZEFT):el
=2 ¢, In (”ffl()zm))
= Zgﬁ]:el In (”ffl()zm))
=< () PLY

Shan-Hung Wu (CS, NTHU)
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Formulating Q(©;©°/) (3/4)

The second term Y, In ( Z-_ll P[z(t+1)|z(t),A]) P[Z|X,©°]
—Zz [ Hn (PzD |20 A)) PlZ|X, @]

tT:11 Zz(l]:e "'sz(ﬂ:el In (P[z(t+1)| “),A]) Pz ... 2(T)x, @°H]

1

_ v T-1l5ex ex t+1) ek ex
= Lt=1 sz:el Zz(m):el In (PLz(1|2(1), Al) ZZ(IJ:GI "‘ZZ(H):el
e e 1 Id
sz(prz):el"'zzf(n:el 'D[z( )."'.Z )|x'®o ]

= ZtT:—ll ZeKt . Zef(tm In ( [z(f+1)|z(f),A]) P[z(t), z(t+1) |, @°ld]
= Zth_ll Z, 1 Zj pIn ( t+1)|2,-(t),A]) P[Z,-(t).zj(tH)IDC,@O’d]
= Z;r:—ll Zi:l ijl |n ai,j) [Zi(t)rzj(t+1)|x' @o/d]
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Formulating Q(®;©°9) (4/4)

@ Similarly, the third term
2 zIn (HtT:l P[X“)Iz(t),ed(z(t))]> P[Z|X,©°4d] =

ST 5K In (P[x<ﬂ|z}”,e,-]) Plz!") X, ©°] [Proof]
0 0(0;0%) = ¥ In (m) Iz, 0]

+ZZ—:_11 Z,K:1 ;(:1 In (ai,j) P[zi(t),zj(tﬂ)lx,@"ld]

+ X (P12, 0,1) PLYx, ©94)

@ In the E-step, we need to evaluate P[zi(t)lx,@"’d] and
P[z.(t),zj(tﬂ)lx,@o’d] for all t (to be discussed later)

1

o After the evaluation, we denote ylgt) = P[z,-(t)lfJC,@o’d] and
5,%-) = P[zl.(t),zj(tH)IDC,@"’d] respectively as constants in the M-step

o vi" =28 and Ty =1
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. .@old
@ Problem: arg@:(nm'A'{el_}L)maxQ(@,@ ), where

0 9(©:0%) =3 [ in (! )y + T I T Inaiy) )
+ZtT:1 Zlelln (P[X(t”Zi(t):ei})Y:!t)
@ Subject to
° Z,K:NTEI) =1
) Zj(:lai’j:]' for all 1<I< K

o We can solve (1), A, and {6}, by considering only the first,
second, and third terms respectively
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Solving m(1)

o Lagrangian: L(m),0) = 3/ In (mf")) y[Y —oc (L1 it 1)

(1

e Taking the partial derivatives of L with respect to 7r; ) and « and then

setting them to zero we have

1<i<Kand Y K alt =1

e Summing all equations for 7;
(1)
(1) Yi (1)
7T = L =vY;
! Z;(:ﬂ’,gl) !

1)

(1) (1)
Y _ (1) _v;
n’u)—oc—O:>Tt = L for all

i
i

we have o = Z,K:ﬂ/,m, and therefore
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Solving A

o Lagrangian: L(A{o;}f{,) =

G @) e - e (D a1
e Taking the partial derivatives of L with respect to a;; and «; and then
z%{aﬁd LLED

setting them to zero we have —=0=a;;= =

YK aij=1forall 1<i<K

J=1
@ Summing the equations for a; ; along j we have
T—1(t) T—1 ()
o t) o Xen &y _ led &y
o = ZJ 1Z & , and therefore a; ; = TSR p0 s T1
t=1 J=1%ij t=1 i
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Solving {9;},-K=1 (1/3)

o Problem: finding {Gk},'le such that
Z;l Zle In <P[x(t)|z£t),6k]>y,((t) is maximized

e Suppose x(t) is discrete such that x,-(t) =1 if the predefined value O;
from {Oyq,---, Oy} is observed; 0 otherwise

@ We can assume that the emission probability
P[x(t)lzlgt),ek] = ]_[7:1 b;:'(,t) follows the multinomial distribution where

P :{bky,-},?’:1 and by ; is the probability that O; is observed in state k
o Yl bki=1
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o Lagrangian: L({by ,}k 1 ,_1 {ock},’le) =
X (t) K d _
thl Zk:l In <Hi—1 bki )Vk _Zkzl Xk <Zi:1 bk,i—l)-
Zt 1Zk 12171 i |" (bxk.i) Vk Zk 1 Xk (Zd bk,i—l)

o Taking the partial derivatives of L with respect to by ; and 4 and
then setting them to zero we have

(1) (1) T _(t) (1)
Yy 21X Vi d
By 0k =0= by === and } i, byj=1forall

1<k<K
@ Summing the equations for by ; along i we have

t t
Ok = Z,dﬂ ZtT 1 ,( )Y,(( ), and therefore
by - Zz 1% f(t) ZZ-:1X;(”V§:)
ki = (&) — yT 0
Zt I‘Yk Z, 1 i Zf:lyk
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e What if x(*) are continuous?
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e What if x(*) are continuous?

o We can assume that P[x(t)lz,gt),ek] follows the multivariate normal

distribution where 0, = (1, Z¢)

@ It can be shown that

O 0
Z;r:ﬂ’;:]
T (t) (t)_ (t) _ T
o 5, = Ze=tVk X = ”"(l)(x Hi) [Homework]
Zt:le
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Learning form Multiple Sequences

o Suppose we are given a set X = {x(™ ﬁ”l—t 1 of observation

sequences, where sequences are mdependent with each other
o PIXIO] =TTV, PIX("|@], where X(" = {x(mthT |
@ Then for discrete x(*) with multinomial emission probability:

(1) _ X i v

@ TT- e yE—
i
T—1¢(nt)
° a: Zn IZt 1 E,l;
ij =™ N <T-1 (nt)
Yo t-‘rllyl(nt)
t) (nt)
° b Zn IZt 1% ,n Yk
ki = nt)
Zn IZ[’ lyk

@ This is analogous to the estimators of a Markov chain we have seen
previously, except that yft) = P[z,(”|rx,®°’d] and

555.) = P[zl.“),zj(tH)IDC,@"’d] are soft counts of state visits
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© Learning the Model Parameters

@ The Forward-Backward Procedure
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We Are Not Done Yet

e Given ©°  in the E-step we need to evaluate y ) and E,

PDC,Z,'( )l@ald]
o v = Plg" 1,0 =
P x,z.m,z-(H—l) @cld
o &) = Pt St o = EEE 5 107

P[X|©°M]
@ We can evaluate y, ) and E by considering all possible state
sequences:
° P[x|@°'d >, PIX, 2|©°]
o PIX, 2@ =5, _, PIX,2/©°]

@ However, there are exponentially many sequences (specifically, KT and
KT-1 for P[X|©°"] and P[X, z t|@old) ] respectively)

@ The evaluation would be very slow, if not infeasible

o Better idea?
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We Are Not Done Yet

e Given ©°  in the E-step we need to evaluate y ) and E,

PDC,Z,'( )l@ald]
o v = Plg" 1,0 =
P x,z.m,z-(H—l) @cld
o &) = Pt St o = EEE 5 107

p[x|@old]
@ We can evaluate y, ) and E by considering all possible state
sequences:
° P[x|@°'d > o P[X, 2|@°]
e P[X, z |®°’d szz(t)=e,P[x,Z|@°’d]
@ However, there are exponentially many sequences (specifically, KT and
KT-1 for P[X|©°"] and P[X, z t|@old) ] respectively)
@ The evaluation would be very slow, if not infeasible
o Better idea? for all t =belief propagation
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Forward-Backward Procedure

@ There is an algorithm, called the forward backward procedure, that
provides an efficient way to evaluate y ) and E,

e Given a © = (1), A {6; } 1), define the forward variable as
oLt :p[x(l),... (t) z Yig]

1

° oc ) denotes the probability that a partial sequence {x(1) ... x(t)}

untll time t is observed while the state ends in S; at time t

1

@ Similarly, define the backward variable as
Bl = plx(trD) .. x(T-(D) @)

° Bﬁt] denotes the probability that a partial sequence {x(t+1) ... x(T)}
after time t will be observed given a starting state S; at time t

@ We can express y ) and 5 using the forward/backward variables:

Y(t) = 40‘;:][3;:—) and E, oc'[t]a,-’IP[ (1) 7, Hl]vei]ﬁ}tﬂ)
i ZJ'K:1 ocj('t)ﬁ(t Zk 1Zl 10‘k ak,p[ (t+1]|z,(l’+1)ye1”51(t+1)
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) Using o' And Blgt)

i

(t) (t) (t)
° Y,gt) = P[Z,'(t)DC,@] _ Pz 18] _ PiXlz; OIPlz; |O]

PIXI®] PIX|©]
p[x(l),..,,xm|z',(fJ,@}p[x(t+1),...,xm\z‘!ﬂ,@]p[z'm@]
- PIX|©]
PlxW), ... x(1z 1@1p[x(t+1D) ... x(T)|z(0) @]
= P[] '
‘X,Et]ﬁ,('t) _ (xlgt)(slgt) _ ‘X,Et)ﬁ,('t]
- P[X|®] — Zszlp[x’zj[t]l(,_)] - Zszl (xjgt)Bl[t)

@ The numerator oclgt)[.’);t) explains the whole observation sequence

{xM) ... x(t)} and that at time t, the state is S;

° ocf”ﬁlm is normalized by dividing over all possible intermediate states

at time ¢ to ensure that K ¢! =1
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(t) _(t+1)
(t) _ pr,y(t) ,(t+1) _ PX.z .z 6]
° Ei,j _P[zl- . Z; |X, 0] = IRSE)
B fXJ\ H»l)y@}P[z'(t)'Zj(H»l)l@]
= PIX[O]
_ Pz Y elplr 2 elPiZ e
= PIX[O]
_(_1 (1) ... (t) (t) (t+1) (t+1)
—<P[x|@]>P[X X012/, @IPx () @
1
Plx(r+2) ,x(T>|z,-“+ ', lai;Plz|e]
Pix... xt) 7Y |©]P f+”|j””,@}P[x““)m,x(T>|z}‘*“,®]a,-J
= PIX|O]
B “’gt)ai'jp[x(t+1)‘Z}t+1]’®JB}t‘*’l) B algt)ai'jp[x(t+1)|Zj(t+1)’®}B}t+1)
N pPIxie] N 25:12;(:1P[xvzlit]vzl(tﬂ)'@]
’gt)a Plx (t+1)‘ I[t+1) GJ]B;HI)

Zk 1ZI l‘xk)aklp[ (41 ,(Hl]xel]ﬁ,(Hl)
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Expressing E,ES-) Using oclgt) And [3,(” (2/2)

(0 _ e Pl 01
L) ZkK:I Z;(:l (Xl((t)ak'/P[x(t*l)|Zl(t+1),9/][31(t+1)

° oc,m in the numerator explains the first t observations and ends in

state S; at time ¢t

° ¢

@ At time t+1, the process moves on to sate S; with probability a; ;,
and generates the (t+ 1)st observation

o Continue from S; at time t+1, B}Hl) explains the rest observations

@ Finally, normalize by dividing all possible pairs of states at time t and
t+1
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Evaluating o (t) And [3 (1/2)

@ The merit of the forward-backward procedure is that oc ) and [5

can be evaluated efficiently
o ol =PxW ;M) = PixV Y @1P VO] = PIxM)z™) 6;)m M
o (XJ(HU — pix®) ... ,x(t+1),zj(f+1)|@] —

Z_(t+1)|®]

Pix1), ... vX(t+1)|Zj(t+1),@]P[ :

= PIx®, - x(0]20) @] x4 @l Pl )
=P[x1),... xt) zJ (t+1) 9] p[x t+1)|zj(t+1)'®]
= P[X(t+1)|zj(t+1),@] Z,K L PIx® . vx(t),zi(t)'z'(t+1)|®]
= P[x(t+1)|zj(t+1) ey K, Pix1), ... .X(t),Zj(Hl)IZ,-(t),@]P[zi[”\@]
= P[X(”l)lzj(tﬂ),@]

TGP, x 01z elPL 1z, e1PLz 6]

!
= PIx(H D @] 7K Pix W, x®), 210l Pz Iz €]
_ (Zlel oc(t )P[ t+1)|zj(t+1),ej]
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Evaluating o; () And [3 (2/2)

° Basefil)on the recurrence relation
o) = PlxViz ", 01m) (1) g
{ oc}t—l—l) _ (Z,Kzl Oé,gt)ai,j) P[X (t+1) |Z H_l),ej] ) (x’j as the
optimal substructure that it can be evaluated efficiently within
O(K) time if all (x,m, 1</ <K, are known
o We can evaluate all /), 1< i< K and 1< t< T, within O(K2T)

time using the dynamic programming from t=1to T
@ Similarly, we can derive the recurrence relation for Blgt) as

(T) _
{ P =1 [Proof]

1 1
Bl = 3/ aiPIxt+ 1)1z ) g1 Y

o All B(t) can also be evaluated within O(K2T) time from t =T to 1

@ Once obtaining oc ) and [3 , we can derive all y,m and E,Ej-) within
O(K) and O(K2) time respectlvely

o The total time complexity for an E-step is O(K?T)
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The recurrence relations

t +1 t t+1

(a) Forward (b) Backward
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© Inferring the State Sequences
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Problem Formulation

@ Problem: given a sequence X and parameters ©, we want to infer the
hidden state sequence Z* ={z(!)}] such that it has the highest
posterior P[Z|X, O]

o This helps us understand the “reason’ behind X
o A common task in time series analysis

@ Since P[Z|X,0] = %lzg?} and P[X|O] is independent with Z, we
only need to find Z* maximizing P[X, Z|©]
@ Objective: argy maxP[X, Z|O]

@ We can try out all possible Z, at the cost of exponential time
complexity

o Efficient solution?
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The Optimal Substructure

PIX, 2/0] = P x|z QIrC)
f(HT PIx#2(5),0,(,)]) Pz ] ([T P11z (0), A))
= (PRI D20, 0,0

(Ht 1 9d(z d(z(t+1))P[X(t+1)|z(t+1)'ed(z(t+1))])

@ Define
51 =max,a) e Plxt), oo x(0), 20 L (1) (0 — g0
o 2* is the sequence having 5(T)* = max;<;<x 5"
@ Notice that we can calculate S}T) efficiently if we already know
57 M forall 1<i< K
o 6}” = (maxlg;gK 6?71)3,‘“") P[X(t)|2j(t),9j]
° 6}” has the optimal substructure and can be evaluated efficiently
using dynamic programming
o We can obtain Z* by backtracking
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The Viterbi Algorithm

Input: X < {x(V}T_; and © + (n(}), A {0;}K )
Output: Z < {z(V)}]_; resulting the highest P[X, Z|©]
for i+ 1to K do
5 M Px)Y) 0y);
YV null;
end
for t+—2to T do
for j«+ 1to K do
t

5}” — (maxlgig;{égt_l)a,-,j) P[x(t)|zj( ),ej];

—1 .
lb}t] <—arg1<,<Kmax6§t ]ai.j; // previous state

end
end
d(z(T)) « arg1<i<k maxéfn;
fort< T—1to1do
d(z!") i L, 5 // backtracking
end
Algorithm 1: The Viterbi algorithm of time complexity O(K2T).
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Outline

@ Making Predictions
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Making Predictions

@ When HMM is used to model a class, we predict a new sequence X"¢%
to be in class C; if the posterior P[C;|X™"] o« P[X"®"|@;]P[C;] is the
highest

@ Problem: given parameters ©® and a sequence X, we want to know
PX|©]

@ Again, we can try out all possible Z using P[X|O] =}, P[X,Z|©],
but this is cost prohibitive

o Better way?
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Making Predictions

@ When HMM is used to model a class, we predict a new sequence X"¢%
to be in class C; if the posterior P[C;|X™"] o« P[X"®"|@;]P[C;] is the
highest

@ Problem: given parameters ©® and a sequence X, we want to know
PIX|©]

@ Again, we can try out all possible Z using P[X|O] =}, P[X,Z|©],
but this is cost prohibitive

o Better way?
o Notice that P[X©] = Y K, Pix, 2/ 101 = ¥ K, ol T
o Calculate the forward variables oc,gT) for all 1 < i < K first, which takes
O(K2T) time
e Obtain P[X|®] by summing oc,gT)
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@ Practical Considerations
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Implementation Issues

e When calculating ocjm, [3(”

1
the underflow
o ol = (T1 o Vay) Pzt ),

, and 6}” in a program, we risk getting

J

Blgt) — Zszl ai,jP[X(tH)\Zj(tH)veﬂﬁj[-tﬂ), and

6}” = (maxlgigK 6}"‘_1)3;,]) P[x(t)lzj(t),ej} are all multiplication of small
numbers

@ We can calculate the normalized ’ovc,!tJ and E;” by multiplying oclm
and Bft) by ¢; = ZJK:1 é (note Zle B}t) # 1) at each step of the
dynamic programming, and then denormalize the related targets

e E.g., since &ET) = oc,gT) [T/ icand Y5, &,FT) =1, we denormalize
PXIO] by PLXIO) =T/ o) = T & =

e For 5(”, we can simply calculate g}t) = Iogé}t) at each step, and then
exponent the related targets
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Model Selection

@ Reduce the number of states, K
e The optimal K can be determined using the cross validation

@ Or, constrain the model structure
o Limit the number of states K, K’ < K, that can be transited to
o This reduces the complexity of forward-backward procedure and Viterbi
algorithm to O(KK'T)
o In particular, the left-to-right HMM is commonly used (e.g., in
speech recognition)

Figure : An example left-to-right HMM. The process never moves to a state with
a smaller index (i.e., a;; =0 if j < i), and a big jump in state index is not allowed
(i.e., aij =0 for j > i+c, where c =2 in this case).
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