Graphical Models

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Spring 2015

• In graphical models, we model a problem using a graph where

- Each node represents a random variable
- Each link expresses a probabilistic relationship between two nodes
 - Directed link: conditional dependency (forming a Bayesian network)
 - Undirected: correlation (forming a Markov random field, or Markov network)
- Graphical models offer the following advantages:
 - Visualization of the probabilistic models and motivating new models
 - Insight into the probabilistic properties (e.g., conditional independence between any two groups of nodes)
 - Complex computation (required to perform inference/learning) that can be carried along the graph

1 Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks

2 Evaluating Continuous Marginals

- Bayesian Estimation
- 4 Evaluating Discrete Marginals
 - Belief Propagation
 - Sampling
- 5 Latent Dirichlet Allocation
 - 6 Markov Random Fields**

1 Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks

2 Evaluating Continuous Marginals

- **3** Bayesian Estimation
- 4 Evaluating Discrete Marginals
 - Belief Propagation
 - Sampling
- 5 Latent Dirichlet Allocation
- 6 Markov Random Fields**

Bayesian Networks

Definitions

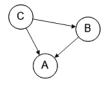
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks

2 Evaluating Continuous Marginals

- **3** Bayesian Estimation
- 4 Evaluating Discrete Marginals
 - Belief Propagation
 - Sampling
- 5 Latent Dirichlet Allocation
- 6 Markov Random Fields**

Definitions (1/3)

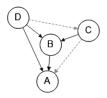
- Consider the joint probability P(A = a, B = b, C = c) (or P(A, B, C)for short) of three random variables A, B, and C
- It can be factorized into, for example, P(A|B, C)P(B|C)P(C)
 - Holds for any distribution
- We can draw the factorization as a graph:



- Each node is a random variable
- A link denotes conditional dependency
- The graph must be a *Directed Acyclic Graph* (*DAG*) [Proof: by induction on the number of nodes]

Definitions (2/3)

- Given $P(X_1, X_2, \dots, X_M)$ of M random variables, we have
 - Some factorization, e.g., $P(X_1, X_2, \dots, X_M) = P(X_1 | X_2, \dots, X_M) \cdots P(X_M)$
 - A fully connected graph
- It is the *missing links* that convey interesting information



 $\bullet\,$ A missing link from D to C implies independence between D and C

• P(C|D) = P(C), denoted by $\{C\} \perp \lfloor \{D\}$ or $\{C\} \perp \lfloor \{D\} \mid \emptyset$

- A missing link from C to A implies **conditional independence** between C and A given B and D
 - P(A|B, C, D) = P(A|B, D), denoted by $\{A\} \perp \{C\} \mid \{B, D\}$

• A graph visualizes a factorization:

$$P(X_1, X_2, \cdots, X_M) = \prod_{i=1}^M P(X_i | parent(X_i)),$$

where $parent(X_i)$ is the values of the parent nodes of X_i

- One graph for each factorization
 - Given a set of variables, we may construct different graphs based on different factorizations

Extensions (1/2)

• Values of some random variables may be observed in our problem

- E.g., we may only care about $P(B, C, \dots | A)$ given an observed variable A = a
- Denoted as solid nodes in the graph
- There can be deterministic variables
 - E.g., we may assume parameters (e.g., μ and Σ in classification, and w in regression) and hyperparameters (e.g., α and β in regression) to simplify calculation of a specific term in the factorization
 - Denoted by small dots in the graph
- Repeating subgraphs can be collapsed into a plate marked by multiplicity

65

• Observed variable X = x vs deterministic variable α ?

Extensions (2/2)

- Observed variable X = x vs deterministic variable α ?
- Even X is observed, $P(X = x) \neq 1$ if X has a nontrivial distribution
 - Can be in the consequent of a conditional probability
- P(α) is undefined
 - Can only be a parameter in a conditional probability
 - α cannot have parents
 - Must be observed
 - If α parametrizes P(Y) (denoted by $P(Y) = P(Y; \alpha)$), then $P(X|Y; \alpha) = P(X|Y)$

• Note, however, that $P(X; \alpha = c) \neq P(X; \alpha = c')$

D Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks
- 2 Evaluating Continuous Marginals
- **3** Bayesian Estimation
- 4 Evaluating Discrete Marginals
 - Belief Propagation
 - Sampling
- 5 Latent Dirichlet Allocation
- 6 Markov Random Fields**

Independence and Conditional Independence

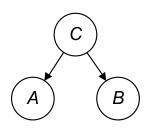
• $\{A\} \perp \{B\} | \{C\}$ denotes conditional independence

- P(A|B, C) = P(A|C)
- Or equivalently, P(A, B|C) = P(A|B, C)P(B|C) = P(A|C)P(B|C)
- Many tasks are solved by the aid of conditional independence between nodes
- But checking conditional independence involving more than three nodes is usually cumbersome
- A graph visualizes the conditional independence and provides an easy way for checking
 - Given three sets of nodes P, Q, and R, you should be able to tell whether $P \perp \!\!\perp Q \mid R$ by directly looking at the graph

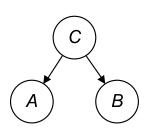
65

Canonical Cases (1/3)

- Consider a tail-to-tail path at C
- If C is not observed
 - $\{A\} \perp \{B\} \mid \emptyset$?

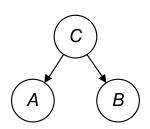


Canonical Cases (1/3)



- Consider a tail-to-tail path at C
- If C is not observed
 - {*A*} ⊥⊥ {*B*} | Ø? No
 - $p(A,B) = \int p(A,B,C)dC = \int p(A|C)p(B|C)p(C)dC$, which does not equal to p(A)p(B) for all distributions
- If C is observed
 - $\{A\} \perp \{B\} \mid \{C\}$?

Canonical Cases (1/3)



- Consider a tail-to-tail path at C
- If C is not observed
 - {*A*} ⊥⊥ {*B*} | Ø? No
 - $p(A,B) = \int p(A,B,C)dC = \int p(A|C)p(B|C)p(C)dC$, which does not equal to p(A)p(B) for all distributions
- If C is observed

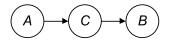
•
$$\{A\} \perp \{B\} \mid \{C\}$$
? Yes

•
$$p(A, B|C) = \frac{p(A, B, C)}{p(C)} = \frac{p(A|C)p(B|C)p(C)}{p(C)} = p(A|C)p(B|C)$$

• We say the path from A to B is **blocked** by C if C is observed

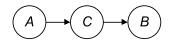
Canonical Cases (2/3)

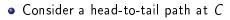
- $\bullet\,$ Consider a head-to-tail path at $C\,$
- If C is not observed
 - $\{A\} \perp \{B\} \mid \emptyset$?



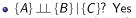
Canonical Cases (2/3)

- Consider a head-to-tail path at C
- If C is not observed
 - {*A*} ⊥⊥ {*B*} | ∅? No
- If C is observed
 - $\{A\} \perp \{B\} \mid \{C\}$?

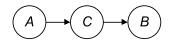




- If C is not observed
 - {*A*} ⊥⊥ {*B*} | ∅? No
- If C is observed

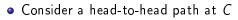


- $p(A,B|C) = \frac{p(A,B,C)}{p(C)} = \frac{p(B|C)p(C|A)p(A)}{p(C)} = p(B|C)p(A|C)$
- The path from A to B is blocked by C if C is observed



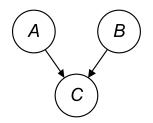
14 / 65

Canonical Cases (3/3)

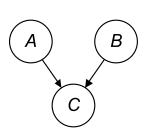


• If C is not observed

• $\{A\} \perp \{B\} \mid \emptyset$?



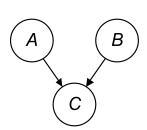
Canonical Cases (3/3)



- Consider a head-to-head path at C
- If C is not observed
 - $\{A\} \perp \{B\} \mid \emptyset$? **Yes**
 - $p(A,B) = \int p(A,B,C)dC =$ $\int p(C|A,B)p(A)p(B)dC =$
 - $p(A)p(B) \int p(C|A, B) dC = p(A)p(B)$
 - The path from A to B is blocked by C if C is not observed
- If C is observed
 - $\{A\} \perp \{B\} \mid \{C\}$?

65

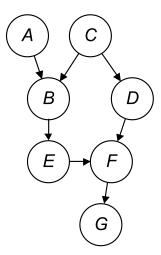
Canonical Cases (3/3)



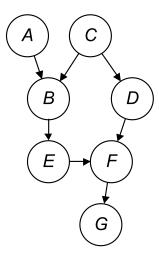
- Consider a head-to-head path at C
- If C is not observed
 - $\{A\} \perp \{B\} \mid \emptyset$? **Yes**
 - $p(A,B) = \int p(A,B,C)dC =$ $\int p(C|A,B)p(A)p(B)dC =$
 - $p(A)p(B) \int p(C|A,B)dC = p(A)p(B)$
 - The path from A to B is blocked by C if C is not observed
- If C is observed
 - $\{A\} \perp \{B\} \mid \{C\}$? **No**
 - Actually, if C has descendents, A and B become dependent if any of the descendents is observed [Homework]

65

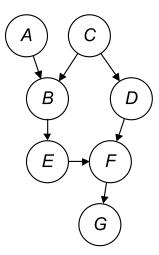
- Given three sets of non-intersecting random variables P, Q, and R, we say P is *d-separated* ("d" means "direct") from Q given R, denoted as P ⊥⊥ Q | R, iff all paths from P to Q are blocked
- A path (of arbitrary length) is blocked if either
 - There are two links meet head-to-tail or tail-to-tail at a node, and that node is in *R*, or
 - There are two links meet head-to-head at a node, and neither the node, nor its descendents, is in *R*
- Deterministic parameters play no role in d-separation
 - A parameter α must be observed and have no parent
 - Path passing through α must be tail-to-tail, so is blocked



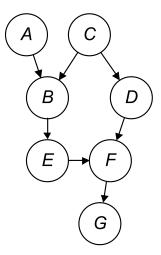
• $\{A\} \perp \{C\} \mid \emptyset$?



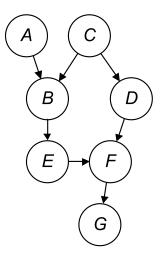
{A} ⊥⊥ {C} | Ø? Yes
{B} ⊥⊥ {D} | {C}?



- $\{A\} \perp \{C\} \mid \emptyset$? Yes
- $\{B\} \perp \{D\} \mid \{C\}$? Yes
- $\{B\} \perp \{D, F\} \mid \{C, E\}$?



- $\{A\} \perp \{C\} \mid \emptyset$? Yes
- $\{B\} \perp \{D\} \mid \{C\}$? Yes
- $\{B\} \perp \{D, F\} \mid \{C, E\}$? Yes
- $\{D\} \perp \{E\} \mid \{C, G\}$?



- $\{A\} \perp \{C\} \mid \emptyset$? Yes
- $\{B\} \perp \{D\} \mid \{C\}$? Yes
- $\{B\} \perp \{D, F\} \mid \{C, E\}$? Yes

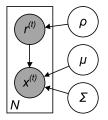
Bayesian Networks

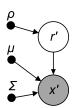
- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks
- 2 Evaluating Continuous Marginals
- **3** Bayesian Estimation
- 4 Evaluating Discrete Marginals
 - Belief Propagation
 - Sampling
- 5 Latent Dirichlet Allocation
- 6 Markov Random Fields**

• How to model a problem as a graph right (or, how determine the right factorization)?

- How to model a problem as a graph right (or, how determine the right factorization)?
 - Identify nodes
 - For each node X, draw links from others Y₁, Y₂, ··· to X based on your assumptions of dependency
 - Make sure
 - The network is connected
 - You did not add too many links that prevents the graph from being a DAG
- You should not invert the direction of a link just because you know how to use Bayes' rule

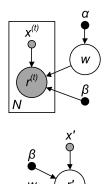
Example: Classification





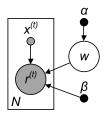
- Model parameters $\rho = \{\rho_i\}_{i=1}^{K}$, $\mu = \{\mu_i\}_{i=1}^{K}$, and $\Sigma = \{\Sigma_i\}_{i=1}^{K}$ are deterministic variables
- Here we assume a *generative model* where an observation (x) is the cause of some reasons (r) that may not be observable
- Training:
 - $(\rho, \mu, \Sigma)_{MAP} = \arg_{\rho, \mu, \Sigma} \max p(\rho, \mu, \Sigma | \mathcal{X})$
- Prediction: $y' = \arg_y \max P(y|x'; \rho, \mu, \Sigma)$

Example: Linear Regression (1/2)



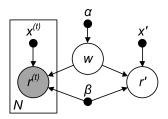
• Why don't we draw links from $r^{(t)}/r'$ to $x^{(t)}/x'$?

Example: Linear Regression (1/2)



- Why don't we draw links from $r^{(t)}/r'$ to $x^{(t)}/x'$?
- Regression is *not* a generative model
 - We don't know how to evaluate $P(\mathbf{x}'|r', \cdots)$ given our assumptions
- Training: $\boldsymbol{w}_{MAP} = \arg_{\boldsymbol{w}} \max p(\boldsymbol{w}|\boldsymbol{\mathcal{X}}, \boldsymbol{\alpha}, \boldsymbol{\beta})$
 - Recall that we may assume $p(\mathbf{w}) \sim \mathcal{N}(\mathbf{0}, \alpha^{-1}\mathbf{I})$
- Prediction: $y' = \arg_y \max p(y|x', w, \beta)$

21 / 65

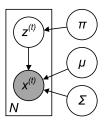


- *w* is a random variable in Bayesian estimation for r'
- Prediction:

$$y' = \arg_{y} \max p(y|\mathbf{x}', \mathcal{X}, \alpha, \beta) = \arg_{y} \max \int p(y, \mathbf{w}|\mathbf{x}', \mathcal{X}) d\mathbf{w}$$

• There is no separate training phase

Example: Clustering



- $\pi = {\pi_i}_{i=1}^{K}, \ \mu = {\mu_i}_{i=1}^{K}, \ \Sigma = {\Sigma_i}_{i=1}^{K}$
- Target: $(\{z^{(t)}\}_t, \pi, \mu, \Sigma)_{MAP} = \arg_{\{z^{(t)}\}_t, \pi, \mu, \Sigma} \max p(\{z^{(t)}\}_t, \pi, \mu, \Sigma | \mathcal{X})$
 - $p(\{\mathbf{z}^{(t)}\}_t, \pi, \mu, \Sigma | \mathcal{X}) =$ $p(\pi, \mu, \Sigma | \{\mathbf{z}^{(t)}\}_t, \mathcal{X}) p(\{\mathbf{z}^{(t)}\}_t | \mathcal{X})$ $\propto p(\pi, \mu, \Sigma | \{\mathbf{z}^{(t)}\}_t, \mathcal{X}) p(\mathcal{X} | \{\mathbf{z}^{(t)}\}_t) p(\{\mathbf{z}^{(t)}\}_t)$
 - Can be simplified to $p(\pi, \mu, \Sigma | \{z^{(t)}\}_t, \mathcal{X}) p(\mathcal{X} | \{z^{(t)}\}_t)$ is we have no preference on a particular $\{z^{(t)}\}_t$ set
 - The problem is, we cannot evaluate $p(\mathcal{X}|\{\boldsymbol{z}^{(t)}\}_t)$ without knowing $\boldsymbol{\pi}$, $\boldsymbol{\mu}$, and $\boldsymbol{\Sigma}$
- E-step: treat π, μ, and Σ as parameters and estimate {z^(t)}_t
- M-step: treat {z^(t)}_t as parameter and estimate π, μ, and Σ

23 / 65

Outline

Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks
- 2 Evaluating Continuous Marginals
- **3** Bayesian Estimation
- 4 Evaluating Discrete Marginals
 - Belief Propagation
 - Sampling
- 5 Latent Dirichlet Allocation
- 6 Markov Random Fields**

- Tasks given a graph, evidence E, and optionally parameters:
- Inference: solve $\arg_z \max P(Z = z|E)$
 - E.g., training a classifier/regressor, making predictions, clustering, etc.
 - Based on ML/MAP estimators, or full Bayesian estimation
- More?

- Tasks given a graph, evidence E, and optionally parameters:
- Inference: solve $\arg_z \max P(Z = z|E)$
 - E.g., training a classifier/regressor, making predictions, clustering, etc.
 - Based on ML/MAP estimators, or full *Bayesian estimation*
- More?
- Evaluating the marginals P(Z|E) in some complicate models
 - E.g., Latent Dirichlet Allocation (LDA), etc.
- Learning the structure of a graph**
 - E.g., association rules, other advanced topics

65

Outline

Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks

2 Evaluating Continuous Marginals

- **3** Bayesian Estimation
- 4 Evaluating Discrete Marginals
 - Belief Propagation
 - Sampling
- 5 Latent Dirichlet Allocation
- 6 Markov Random Fields**

• In many cases, we want to write down P(Z|E) in closed form

• By Bayes' rule, we have $P(Z|E) = \frac{P(E|Z)P(Z)}{P(E)}$

- If we assume some distribution of the likelihood P(E|Z), then we face a problem: how to pick the distribution of the prior P(Z) such that the posterior P(Z|E) is tractable?
- It is known that for certain likelihood distribution, some prior distribution will lead to the posterior distribution that is in the same family as prior distribution
 - Prior of such distribution is called the *conjugate prior* of the likelihood

- For each node X_i, we assume $p(X_i | parent(X_i))$ follows some (parametrized) distribution
- A common choice is to form a *linear Gaussian model*, where each node X_i resembles a linear combination of its parents Y ∈ parent(X_i)

•
$$p(x_i|y_1, \dots, y_p) = \mathcal{N}(x_i|\sum_{j=1}^p w_{i,j}y_j + b_i, \sigma_i^2)$$
, or
 $p(x_i|y_1, \dots, y_p) = \mathcal{N}(x_i|\sum_{j=1}^p W_{i,j}y_j + b_i, \Sigma_i)$
• And $p(y_1, \dots, y_p)$ is Gaussian

- For two nodes X and Y, if p(X_i|Y) and p(Y) follow the linear Gaussian model, then p(Y|X_i) and p(X_i) are both normal distribution
 - $p(X_i)$ is called the *conjugate prior* of the likelihood $p(Y|X_i)$ of X_i

65

Outline

Bayesian Networks

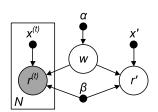
- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks

2 Evaluating Continuous Marginals

Bayesian Estimation

- 4 Evaluating Discrete Marginals
 - Belief Propagation
 - Sampling
- 5 Latent Dirichlet Allocation
- 6 Markov Random Fields**

Bayesian Estimation for Linear Regression (1/3)



- Assuming hyperparameters α and β , we have $\int p(y, w | x', \mathcal{X}, \alpha, \beta) dw =$ $\int p(y | x', w, \mathcal{X}, \alpha, \beta) p(w | x', \mathcal{X}, \alpha, \beta) dw =$ $\int p(y | x', w, \mathcal{X}, \beta) p(w | x', \mathcal{X}, \alpha, \beta) dw =$ $\int p(y | x', w, \beta) p(w | \mathcal{X}, \alpha, \beta) dw$ • $\{y\} \perp \downarrow \{\mathcal{X}\} | \{x', w, \beta\}$
 - { \boldsymbol{w} } $\perp \perp \{\boldsymbol{x'}\} \mid \{\mathfrak{X}, \alpha, \beta\}$

Bayesian Estimation for Linear Regression (2/3)

•
$$y' = \arg_y \max \int p(y|\mathbf{x}', \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{X}, \alpha, \beta) d\mathbf{w}$$

• $p(y|\mathbf{x}', \mathbf{w}, \beta) = \mathcal{N}(y|\mathbf{w}^\top \mathbf{x}', \beta^{-1})$
• $p(\mathbf{w}|\mathcal{X}, \alpha, \beta) = p(\{r^{(t)}\}_t | \{\mathbf{x}^{(t)}\}_t, \mathbf{w}, \alpha, \beta) p(\mathbf{w}| \{\mathbf{x}^{(t)}\}_t, \alpha, \beta) = p(\{r^{(t)}\}_t | \{\mathbf{x}^{(t)}\}_t, \mathbf{w}, \beta) p(\mathbf{w}|\alpha)$
• Let $\mathbf{r} = [r^{(1)}, \cdots, r^{(N)}]^\top$ and $\mathbf{X} = [\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(N)}]^\top \in \mathbb{R}^{N \times d}$, we have
• $p(\{r^{(t)}\}_t | \{\mathbf{x}^{(t)}\}_t, \mathbf{w}, \beta) = p(\mathbf{r}|\mathbf{X}, \mathbf{w}, \beta) = \mathcal{N}(\mathbf{r}|\mathbf{X}\mathbf{w}, \beta^{-1}\mathbf{I})$
• $p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|0, \alpha^{-1}\mathbf{I})$

• Notice that $p(\mathbf{r}|\mathbf{X}, \mathbf{w}, \beta)$ and $p(\mathbf{w}|\alpha)$ form a linear Gaussian model

- *w* is the parent of *r* and the mean of *p*(*r*|*X*, *w*, β) is a linear combination of *w*
- Therefore, $p(\boldsymbol{w}|\boldsymbol{\mathcal{X}}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = p(\boldsymbol{w}|\boldsymbol{r}, \boldsymbol{X}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{\beta}\boldsymbol{\Sigma}\boldsymbol{X}^{\top}\boldsymbol{r}, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma} = (\boldsymbol{\alpha}\boldsymbol{I} + \boldsymbol{\beta}\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}$

Bayesian Estimation for Linear Regression (3/3)

•
$$y' = \arg_y \max \int p(y|\mathbf{x}', \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{X}, \alpha, \beta) d\mathbf{w}$$
, where
 $p(y|\mathbf{x}', \mathbf{w}, \beta) = \mathcal{N}(y|(\mathbf{x}')^\top \mathbf{w}, \beta^{-1})$ and
 $p(\mathbf{w}|\mathcal{X}, \alpha, \beta) = \mathcal{N}(\mathbf{w}|\beta \Sigma \mathbf{X}^\top \mathbf{r}, \Sigma)$

- Again, $p(y|x', w, \beta)$ and $p(w|\mathcal{X}, \alpha, \beta)$ form a linear Gaussian model
 - *w* is the parent of *y* and the mean of *p*(*y*|*x'*, *w*, β) is a linear combination of *w*
- We have $\int p(y|\mathbf{x}', \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{X}, \alpha, \beta) d\mathbf{w} = \mathcal{N}(y|\beta(\mathbf{x}')^{\top} \boldsymbol{\Sigma} \mathbf{X}^{\top} \mathbf{r}, \frac{1}{\beta} + (\mathbf{x}')^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}')$ • Finally, $y' = \beta(\mathbf{x}')^{\top} \boldsymbol{\Sigma} \mathbf{X}^{\top} \mathbf{r} = (\beta \boldsymbol{\Sigma} \mathbf{X}^{\top} \mathbf{r})^{\top} \mathbf{x}'$, where
- $\Sigma = (\alpha I + \beta X^{\top} X)^{-1}$

Why Bayesian Estimation?

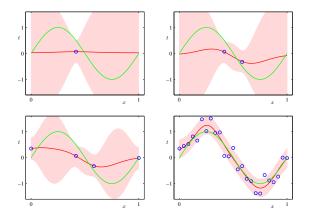


Figure : The prediction made by Bayesian estimation regressor is the red line; where the predictions made by MAP- (or ML-) estimated regressor could be any line in the shaded area.

Outline

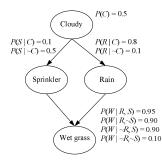
1 Bayesian Network

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks

2 Evaluating Continuous Marginals

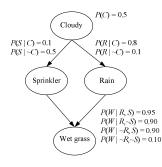
- **3** Bayesian Estimation
- 4 Evaluating Discrete Marginals
 - Belief Propagation
 - Sampling
- 5 Latent Dirichlet Allocation
- 6 Markov Random Fields**

Space Complexity



- For each node X_i, we need to evaluate/store all possible values of P(X_i|parent(X_i))
- Suppose each node has K states and there are totally M nodes, what's the space complexity?

Space Complexity



- For each node X_i, we need to evaluate/store all possible values of P(X_i|parent(X_i))
- Suppose each node has K states and there are totally M nodes, what's the space complexity?
 - Chain: $(K-1) + (M-1)K(K-1) = O(MK^2)$
 - Fully connected graph: $\sum_{i} (K-1) K^{|parent(X_i)|} = K^M 1 = O(K^M)$

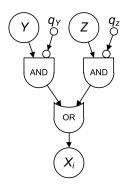
35 / 65

Reducing Space Complexity

• How?

Reducing Space Complexity

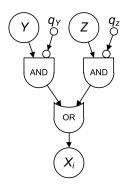
- How?
- Tying: sharing parameters between combinations of parent values



- E.g., modeling the dependency between binary variables as *noisy OR gates*
- Inhibitors are independent with each other and happens with probabilities q_i
- $P(X_i = 1 | Y = 1, Z = 0) = 1 q_Y$
- $P(X_i = 1 | Y = 1, Z = 1) = 1 q_Y q_Z$
- $P(X_i | parent(X_i)) =$ $1 - \prod_{Y \in parent(X_i), Y=1} q_Y$
- Space complexity?

36 / 65

- How?
- Tying: sharing parameters between combinations of parent values



- E.g., modeling the dependency between binary variables as *noisy OR gates*
- Inhibitors are independent with each other and happens with probabilities q_i
- $P(X_i = 1 | Y = 1, Z = 0) = 1 q_Y$
- $P(X_i = 1 | Y = 1, Z = 1) = 1 q_Y q_Z$
- $P(X_i | parent(X_i)) =$ $1 - \prod_{Y \in parent(X_i), Y = 1} q_Y$
- Space complexity? $O(M^2)$ ((O(M)) for each node)

Outline

Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks

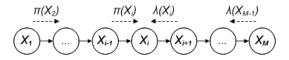
2 Evaluating Continuous Marginals

- **3** Bayesian Estimation
- 4 Evaluating Discrete Marginals
 - Belief Propagation
 - Sampling
- 5 Latent Dirichlet Allocation
- 6 Markov Random Fields**

- Sometimes, we want to evaluate the marginals of all nodes (given some evidence)
- **Belief propagation** allows some components of these marginals to be shared and evaluated just once
 - Reduces time complexity significantly

Evaluating $P(X_i)$'s in a Chain (1/2)

• Problem: to evaluate $P(X_i)$ of every node X_i in a chain:



- We can evaluate $P(X_i)$ one-by-one
- No problem if nodes are continuous and
 p(X_i) = ∫_{X_{jj≠i}} p(X₁, ..., X_i, ..., X_M) can be written as a closed form
 (e.g., by assuming a linear Gaussian model)
- Time consuming for discrete variables though, since $P(X_i) = \sum_{\{X_j: j \neq i\}} P(X_1) P(X_2|X_1), \cdots, P(X_i|X_{i-1}), P(X_{i+1}|X_i), \cdots, P(X_M|X_{M-1})$
 - Assuming that each node has K states, we have time complexity: $O(K^{M-1})$ for each node, $O(MK^{M-1})$ in total

Evaluating $P(X_i)$ s in a Chain (2/2)

• Speed up?

Evaluating $P(X_i)$ s in a Chain (2/2)

• Speed up?

- Observer that when computing P(X_i) and P(X_j), i ≠ j, most conditional probabilities P(X_{k+1}|X_k), 1 ≤ k ≤ M-1, are computed twice
 - It is plausible that we can "reuse" these conditional probabilities to reduce time complexity
- How?

• Speed up?

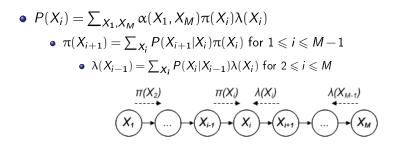
- Observer that when computing $P(X_i)$ and $P(X_j)$, $i \neq j$, most conditional probabilities $P(X_{k+1}|X_k)$, $1 \leq k \leq M-1$, are computed twice
 - It is plausible that we can "reuse" these conditional probabilities to reduce time complexity
- How?
 - One way is to precompute all $P(X_{k+1}|X_k)s$, $1 \le k \le M-1$, and then look up these results to obtain $P(X_i)s$
 - Still exponential to *M* in time complexity

Belief Propagation along a Chain (1/3)

• Notice that $P(X_i) = \sum_{X_1, X_M} P(X_1, X_i, X_M) =$ $\sum_{X_{1},X_{M}} P(X_{1},X_{M}|X_{i})P(X_{i}) = \sum_{X_{1},X_{M}} P(X_{1}|X_{i})P(X_{M}|X_{i})P(X_{i}) =$ $\sum_{X_{1},X_{M}} \frac{P(X_{i}|X_{1})P(X_{1})}{P(X_{i})} P(X_{M}|X_{i})P(X_{i}) = \sum_{X_{1},X_{M}} \alpha(X_{1})\pi(X_{i})\lambda(X_{i})$ • $\pi(X_i) = P(X_i|X_1)$ if i > 1, and $\pi(X_1) = P(X_1)$ • $\lambda(X_i) = P(X_M | X_i)$ if i < M, and $\lambda(X_M) = 1$ • $\alpha(X_1) = P(X_1) = \pi(X_1)$ is independent with X_i • In addition, $\pi(X_i) = P(X_i|X_1) = \sum_{X_{i-1}} P(X_i, X_{i-1}|X_1) =$ $\sum_{X_{i-1}} P(X_i|X_{i-1}, X_1) P(X_{i-1}|X_1) = \sum_{X_{i-1}} P(X_i|X_{i-1}) P(X_{i-1}|X_1) =$ $\sum_{X_{i-1}} P(X_i | X_{i-1}) \pi(X_{i-1})$ • $\lambda(X_i) = P(X_M | X_i) = \sum_{X_{i+1}} P(X_M | X_{i+1}, X_i) P(X_{i+1} | X_i) =$ $\sum_{X_{i+1}} P(X_M | X_{i+1}) P(X_{i+1} | X_i) = \sum_{X_{i+1}} P(X_{i+1} | X_i) \lambda(X_{i+1})$

65

Belief Propagation along a Chain (2/3)



- Starting from X_1 till X_{M-1} , each node X_i can forward all $\pi(X_{i+1})$ s downward along to chain upon receiving $\pi(X_i)$ s from its parent
- Starting from X_M till X₂, each node X_i forwards all its λ(X_{i-1})s upward along to chain upon upon receiving λ(X_i)s from its child
- After receiving both π(X_i)s and λ(X_i)s from its parent and child respectively, each node X_i can compute P(X_i)
 - Note that $\alpha(X_1) s$ can be broadcasted to all nodes by X_1 parallel to the above propagations

42 / 65

Belief Propagation along a Chain (3/3)

- The task of evaluating all P(X_i)s is now divided into local computation of πs and λs and exchange of these local results
 - We call the inference using this message-passing style as *belief propagation*
 - Time complexity?

Belief Propagation along a Chain (3/3)

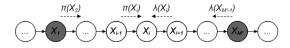
- The task of evaluating all P(X_i)s is now divided into local computation of πs and λs and exchange of these local results
 - We call the inference using this message-passing style as *belief propagation*
 - Time complexity?
 - $O(MK^2 + K^2)$ for each node $(O(MK^2)$ for message exchange and $O(K^2)$ for computing $P(X_i)$)
 - $O(MK^2 + MK^2)$ in total, provided that each node X_i stores its intermediate messages (i.e., $\pi(X_i)$ s and $\lambda(X_i)$ s)
 - Space complexity?

Belief Propagation along a Chain (3/3)

- The task of evaluating all P(X_i)s is now divided into local computation of πs and λs and exchange of these local results
 - We call the inference using this message-passing style as *belief* propagation
 - Time complexity?
 - $O(MK^2 + K^2)$ for each node $(O(MK^2)$ for message exchange and $O(K^2)$ for computing $P(X_i)$)
 - $O(MK^2 + MK^2)$ in total, provided that each node X_i stores its intermediate messages (i.e., $\pi(X_i)$ s and $\lambda(X_i)$ s)
 - Space complexity?
 - $O(K^2)$ on each node X_i (for $P(X_{i+1}|X_i)$ s, $P(X_i|X_{i-1})$ s, $\pi(X_i)$ s, and $\lambda(X_i)$ s)
 - O(MK²) totally

Evidences (1/2)

- What if we are given an evidence E?
 - Without loss of generality, let's consider a chain from X_1 to $X_{M'}$, where $\{X_1, X_{M'}\} \subseteq E$, as below:

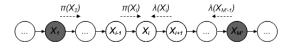


- Problem: to evaluate $P(X_i)$ for $2 \leq i \leq M' 1$
- $P(X_i|E) = P(X_i|X_1, X_{M'}) = \frac{P(X_i, X_1, X_{M'})}{P(X_1, X_{M'})} = \alpha(X_1, X_{M'})\pi(X_i)\lambda(X_i)$ [Proof]

•
$$\pi(X_i) = P(X_i|X_1)$$
 if $i > 1$, and $\pi(X_1) = P(X_1)$
• $\lambda(X_i) = P(X_{M'}|X_i)$ if $i < M'$, and $\lambda(X_{M'}) = 1$
• $\alpha(X_1, X_{M'}) = \frac{P(X_1)}{P(X_1, X_{M'})} = \frac{P(X_1)}{P(X_{M'}|X_1)P(X_1)} = \frac{1}{\pi(X_{M'})} = \frac{1}{\lambda(X_1)}$ is independent with X_i

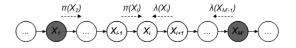
65

Evidences (2/2)



- Belief propagation is still applicable except that there is only one $\pi(X_{M'})$ and one $\lambda(X_1)$
 - $\alpha(X_1, X_{M'})$ can be broadcasted to all nodes by $X_{M'-1}$ once it computes $\pi(X_{M'})$ (or by X_2 once it computes $\lambda(X_1)$)
- Time/space complexity?

Evidences (2/2)



- Belief propagation is still applicable except that there is only one $\pi(X_{M'})$ and one $\lambda(X_1)$
 - $\alpha(X_1, X_{M'})$ can be broadcasted to all nodes by $X_{M'-1}$ once it computes $\pi(X_{M'})$ (or by X_2 once it computes $\lambda(X_1)$)
- Time/space complexity? Still $O(M'K^2)$ in both time and space
- If either X_1 or $X_{M'}$ is unobserved, we have either K $\lambda(X_1)$ or K $\pi(X_{M'})$ messages respectively

Outline

Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks

2 Evaluating Continuous Marginals

Bayesian Estimation

Evaluating Discrete Marginals
 Belief Propagation

- Sampling
- 5 Latent Dirichlet Allocation
- 6 Markov Random Fields**

Why Sampling?

• To evaluate discrete P(X|E) in a Bayesian network, we produce *n* samples of it and have the estimate:

$$P(X = x | E = e) = \frac{1}{n} (\# \text{ samples having } X = x \text{ given } E = e)$$

• More generally, to evaluate the expected value of some function f defined over X and E:

$$E[f|E = e] = \sum_{x} f(x, e) P(X = x|E = e)$$

we can produce n samples $x^{(t)}$, where $X^{(t)} \sim P(X)$, then estimate

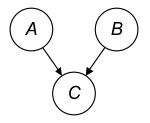
$$E[f|E = e] = \frac{1}{n} \sum_{t=1}^{n} f(x^{(t)}, e).$$

- Given M random variables X_1, X_2, \dots, X_M , we want samples of these variables following their joint distribution $P(X_1, X_2, \dots, X_M)$
 - How?

- Given *M* random variables X_1, X_2, \dots, X_M , we want samples of these variables following their joint distribution $P(X_1, X_2, \dots, X_M)$
 - How?
- If we have a graph, we can draw sets of samples {x₁, x₂, · · · , x_M} one-by-one, each by:
 - Sample nodes X's having no parent by following the corresponding P(X)
 - Repeat: sample each child node X whose parents are all sampled by following P(X|parent(X)) with parents set to their sampled values
- We call this ancestral sampling

Evidence

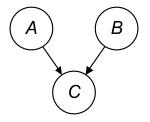
- If is a node without parent, simple fix the value to evidence
- Now suppose P(A, B, C) = P(A)P(B)P(C|A, B)



• If C = c is observed, how to make sure the sample value c follows P(C|A, B)?

Evidence

- If is a node without parent, simple fix the value to evidence
- Now suppose P(A, B, C) = P(A)P(B)P(C|A, B)



- If C = c is observed, how to make sure the sample value c follows P(C|A, B)?
- Sample and discard inconsistent ones
 - Start over from roots
- Very in-efficient

- **Gibbs sampling** is a Markov Chain Monte Carlo (MCMC) algorithm for obtaining a sequence of observations which are **approximately** from from the joint probability distribution of two or more random variables), when direct sampling is difficult
 - Monte Carlo vs. Las Vegas randomized algorithms?
- Suppose we want to obtain M samples of $X = \{X_1, \dots, X_N\}$ from a joint distribution $P(X_1, \dots, X_N)$
- Denote the *t*-th sample by $\mathbf{x}^{(t)} = \left\{ x_1^{(t)}, \dots, x_N^{(t)} \right\}$

Gibbs Sampling (2/2)

```
Input: M, a Bayesian network of X_1, \dots, X_N, and W burn-in samples
          to discard
Output: x^{(t)}'s for t = 1, \dots, M
Initiate \mathbf{x}^{(0)}:
for t \leftarrow 1 to W + M do
     for i \leftarrow 1 to N do
   x_i^{(t)} \leftarrow \text{ a value sampled from} \\ P(\mathbf{v} | \mathbf{v}^{(t)} ) \\ \end{cases}
                               P\left(X_{i}|X_{1}^{(t)},\ldots,X_{i-1}^{(t)},X_{i+1}^{(t-1)},\ldots,X_{N}^{(t-1)}\right);
     end
     if t > W then Output x_i^{(t)};
end
                  Algorithm 1: Gibbs sampling algorithm.
```

Gibbs Sampling (2/2)

```
Input: M, a Bayesian network of X_1, \dots, X_N, and W burn-in samples
           to discard
Output: x^{(t)}'s for t = 1, \dots, M
Initiate \mathbf{x}^{(0)}:
for t \leftarrow 1 to W + M do
     for i \leftarrow 1 to N do
    x_i^{(t)} \leftarrow \text{ a value sampled from} \\ P(\mathbf{y}_i | \mathbf{y}^{(t)} = \mathbf{y})
                                 P\left(X_{i}|X_{1}^{(t)},\ldots,X_{i-1}^{(t)},X_{i+1}^{(t-1)},\ldots,X_{N}^{(t-1)}\right);
     end
     if t > W then Output x_i^{(t)};
end
```

Algorithm 2: Gibbs sampling algorithm.

- Why does it work?
- Why discard early (burn-in) samples?

- Set the state space S of a Markov chain to the range of X (S may be astronomically large)
- Find a tpm (transition prob. matrix) P such that $P(X) \sim \pi_P$, the steady state distribution
- Then, we can have samples by simply running a random walk:
 - Pick x⁽⁰⁾ somehow;
 - 2 For t = 1, ..., W + N, sample $\mathbf{x}^{(t)}$ from $P(\mathbf{X}^{(t)} | \mathbf{X}^{(t-1)} = \mathbf{x}^{(t-1)})$;
 - Oiscard the first W burn-in samples, and output remaining samples;

Why Does the Gibbs Sampling Work?

• The tpm of the Gibbs sampler for P(X) where $X = \{X_1, ..., X_N\}$ is $P = \prod_{i=1}^{N} P^{(i)}$, where

$$\boldsymbol{P}_{\boldsymbol{x}',\boldsymbol{x}}^{(i)} = \begin{cases} 0 & \text{if } \boldsymbol{x}_{-i}' \neq \boldsymbol{x}_{-i} \\ P(X_i = x_i' | \boldsymbol{X}_{-i} = \boldsymbol{x}_{-i}) & \text{if } \boldsymbol{x}_{-i}' = \boldsymbol{x}_{-i} \end{cases}$$

and the subscript -i denotes all but the *i*-th element

- Informally, the Gibbs sampler cycles through each of the variables X_i , replacing the current value x_i with a sample from $P(X_i|X_{-i} = x_{-i})$
- If x is a sample from P(X), then so is x', since x' differs from x only by replacing x_i with a sample from P(X_i|X_{-i} = x_{-i})
- Since P⁽ⁱ⁾ maps samples from P(X) to samples from P(X), so does
 P. Thus, P(X) is a stationary distribution for P
- There is another explanation using detailed balance equations [Proof]

Outline

Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks

2 Evaluating Continuous Marginals

- **3** Bayesian Estimation
- 4 Evaluating Discrete Marginals
 - Belief Propagation
 - Sampling

5 Latent Dirichlet Allocation

Markov Random Fields**

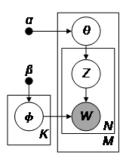
- Topic modeling is a method for analyzing large quantities of unlabeled data.
 - For our purposes, a *topic* is a probability distribution over a collection of words and a *topic model* is a formal statistical relationship between a group of observed and latent (unknown) random variables that specifies a probabilistic procedure to generate the topics—a generative model.
 - The central goal of a topic is to provide a "thematic summary" of a collection of documents.

- Given 2 documents D₁, D₂ with words
 - $D_1 = \{ cat, dog, bird, fish \}$
 - $D_2 = \{car, bike, bus\}$
 - We can discover the "topics" (pet, vehicle, ...).
 - A document may have one or more topics in practice.

- Latent Dirichlet allocation (LDA) is the most common topic model currently in use, allowing documents to have a mixture of topics.
 - LDA provides a generative model that describes how the documents in a corpus were created.

- A word is the basic unit of discrete data, defined to be an item from a vocabulary {w¹,..., w^V}.
 - A *document* D_i is a sequence of N words denoted by $\mathbf{w}_i = (w_{i,1}, w_{i,2}, \dots, w_{i,N})$, where $w_{i,n}$ is the *n*th word in the sequence.
 - A *corpus* is a collection of *M* documents denoted by $D = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_M\}.$

• Assume we know K topic distributions for our corpus, meaning K categoricals containing V elements each.



- Choose the topic distribution θ_i ~ Dir (α) for each document D_i where i ∈ {1,..., M} (θ_i is a categorical of length K).
- Observe the word distribution φ_k ~ Dirichlet(β) for each topic where k ∈ {1,..., K} (φ_k is a vector of length V).
 - β is a V-dimension vector of positive reals.
 - **a** For each of the words $w_{i,n}$ where $n \in \{1, ..., N\}$:
 - **()** Choose a topic $z_{i,n} \sim \text{Categorical}(\Theta_i)$.
 - **2** Choose a word $w_{i,n} \sim \text{Categorical}(\Phi_{z_{i,n}})$.

Given α, β, and document D_i with word sequence w_i, what are the most probable values for θ_i?

Given α, β, and document D_i with word sequence w_i, what are the most probable values for θ_i?

$$P(\theta_i | \mathbf{w}_i, \alpha, \beta) = \int \sum_{\mathbf{z}_i} P(\theta_i, \mathbf{z}_i, \varphi | \mathbf{w}_i, \alpha, \beta) d\varphi \\ \propto \int \sum_{\mathbf{z}_i} P(\mathbf{w}_i | \theta_i, \mathbf{z}_i, \varphi, \beta) P(\theta_i, \mathbf{z}_i, \varphi | \alpha) d\varphi$$

• The close form of the posterior is intractable (due to the unknown z_i)

Gibbs Sampling for LDA (1/3)

- In LDA, the distribution of the topics Z for words W is unknown and Z is multivariate.
- Hence, the Gibbs sampling procedure boils down to estimate

$$P(Z_{i,n}=t|\mathbf{z}_{-i,n},\mathbf{w}).$$

- Here, θ, φ are integrated out. If we know the exact Z_i for each document D_i, it's trivial to estimate θ_i and φ_i.
- We have

$$P(Z_{i,n} = t | \mathbf{z}_{-i,n}, \mathbf{w}, \alpha, \beta)$$

$$\propto P(Z_{i,n} = t, w_{i,n} | \mathbf{z}_{-i,n}, \mathbf{w}_{-i,n}, \alpha, \beta)$$

$$= P(w_{i,n} | Z_{i,n} = t, \mathbf{z}_{-i,n}, \mathbf{w}_{-i,n}, \beta) P(Z_{i,n} = t | \mathbf{z}_{-i,n}, \mathbf{w}_{-i,n}, \alpha)$$

$$= P(w_{i,n} | Z_{i,n} = t, \mathbf{z}_{-i,n}, \mathbf{w}_{-i,n}, \beta) P(Z_{i,n} = t | \mathbf{z}_{-i,n}, \alpha)$$

Gibbs Sampling for LDA (2/3)

• For the first term, we have

$$P(w_{i,n}|Z_{i,n} = t, \mathbf{z}_{-i,n}, \mathbf{w}_{-i,n}, \beta) = \int P(w_{i,n}|Z_{i,n} = t, \mathbf{\Phi}_t) P(\mathbf{\Phi}_t | \mathbf{z}_{-i,n}, \mathbf{w}_{-i,n}, \beta) d\mathbf{\Phi}_t$$

$$P(\phi_t | \mathbf{z}_{-i,n}, \mathbf{w}_{-i,n}, \beta) = \frac{P(\mathbf{w}_{-i,n} | \phi_t, \mathbf{z}_{-i,n}) P(\phi_t | \beta)}{P(\mathbf{w}_{-i,n} | \mathbf{z}_{-i,n}, \beta)}$$

~ Dirichlet $\left(\beta + \mathbf{N}_t^{-i,n(w)}\right)$

- Here, $\mathbf{N}_t^{-i,n(w)}$ is a V-dimension vector and $\mathbf{N}_{t,v}^{-i,n(w)}$ is the number of instances of the v-th word in the vocabulary assigned to topic t in document D_i , excluding the instance $w_{i,n}$. Recall that the Dirichlet is the conjugate prior for the multinomial. Thus, the posterior is also Dirichlet.
- Using the property of Dirichlet-multinomial distribution, we have

$$\begin{split} & P\left(w_{i,n}|Z_{i,n}=t,\mathbf{z}_{-i,n},\mathbf{w}_{-i,n},\boldsymbol{\beta}\right) \\ & = \frac{\Gamma\left(\sum_{v}\left(\beta_{v}+\mathbf{N}_{t,v}^{-i,n(w)}\right)\right)}{\Gamma\left(1+\sum_{v}\left(\beta_{v}+\mathbf{N}_{t,v}^{-i,n(w)}\right)\right)} \left(\frac{\Gamma\left(\mathbf{N}_{t,w_{i,n}}^{-i,n(w)}+\beta_{w_{i,n}}+1\right)}{\Gamma\left(\mathbf{N}_{t,w_{i,n}}^{-i,n(w)}+\beta_{w_{i,n}}\right)}\right) = \frac{\mathbf{N}_{t,w_{i,n}}^{-i,n(w)}+\beta_{w_{i,n}}}{\sum_{v}\left(\mathbf{N}_{t,v}^{-i,n(w)}+\beta_{v}\right)}. \end{split}$$

Shan-Hung Wu (CS, NTHU)

Gibbs Sampling for LDA (3/3)

• Similarly, for the second term, we have

$$P(Z_{i,n} = t | \mathbf{z}_{-i,n}, \alpha) = \int P(Z_{i,n} = t | \theta_i) P(\theta_i | \mathbf{z}_{-i,n}, \alpha) d\theta_i$$

$$P(\theta_i | \mathbf{z}_{-i,n}, \alpha) \propto P(\mathbf{z}_{-i,n} | \theta_i) P(\theta_i | \alpha)$$

~ Dirichlet $\left(\alpha + \mathbf{N}^{-i,n(z)}\right)$

where $\mathbf{N}^{-i,n(z)}$ is a K-dimension vector and $\mathbf{N}_k^{-i,n(z)}$ is the number of words assigned to topic k in document D_i , excluding the instance $z_{i,n}$.

• Then, we have

$$P(Z_{i,n} = t | \mathbf{z}_{-i,n}, \boldsymbol{\alpha}) = \frac{\mathbf{N}_{t}^{-i,n(z)} + \boldsymbol{\alpha}_{t}}{\sum_{k} \left(\mathbf{N}_{k}^{-i,n(z)} + \boldsymbol{\alpha}_{k} \right)}$$

Thus,

$$P(Z_{i,n} = t | \mathbf{z}_{-i,n}, \mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \propto \frac{\mathsf{N}_{t,w_{i,n}}^{-i,n(w)} + \boldsymbol{\beta}_{w_{i,n}}}{\sum_{v} \left(\mathsf{N}_{t,v}^{-i,n(w)} + \boldsymbol{\beta}_{v}\right)} \times \frac{\mathsf{N}_{t}^{-i,n(z)} + \boldsymbol{\alpha}_{t}}{\sum_{k} \left(\mathsf{N}_{k}^{-i,n(z)} + \boldsymbol{\alpha}_{k}\right)}.$$

 $\bullet\,$ To obtain Φ and $\theta,$ we can simply calculate

$$\Phi_{k,v} = \frac{n_v^{(k)} + \beta_v}{\sum_{j=1}^{V} \left(n_j^{(k)} + \beta_j\right)}$$
$$\Theta_{i,k} = \frac{n_k^{(i)} + \alpha_k}{\sum_{t=1}^{K} \left(n_t^{(i)} + \alpha_t\right)}$$

where $n_j^{(k)}$ is the frequency of word w^j in the vocabulary assigned to topic k, and $n_t^{(i)}$ is the number of words assigned to topic t in document D_i .

Outline

Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks

2 Evaluating Continuous Marginals

- **3** Bayesian Estimation
- 4 Evaluating Discrete Marginals
 - Belief Propagation
 - Sampling
- 5 Latent Dirichlet Allocation
- 6 Markov Random Fields**