Graphical Models

Shan-Hung Wu
shwu@cs.nthu.edu.tw
Department of Computer Science,
National Tsing Hua University, Taiwan

NetDB-ML, Spring 2015

Introduction

- In graphical models, we model a problem using a graph where
- Each node represents a random variable
- Each link expresses a probabilistic relationship between two nodes
- Directed link: conditional dependency (forming a Bayesian network)
- Undirected: correlation (forming a Markov random field, or Markov network)
- Graphical models offer the following advantages:
- Visualization of the probabilistic models and motivating new models
- Insight into the probabilistic properties (e.g., conditional independence between any two groups of nodes)
- Complex computation (required to perform inference/learning) that can be carried along the graph

Outline

(1) Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks
(2) Evaluating Continuous Marginals
(3) Bayesian Estimation
(4) Evaluating Discrete Marginals
- Belief Propagation
- Sampling
(5) Latent Dirichlet Allocation
(6) Markov Random Fields**

Outline

(1) Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks
(2) Evaluating Continuous Marginals
(3) Bayesian Estimation
(a Evaluating Discrete Marginals
- Belief Propagation
- Sampling
(5) Latent Dirichlet Allocation
(6) Markov Random Fields**

Outline

(1) Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks
(2) Evaluating Continuous Marginals
(3) Bayesian Estimation
(a) Evaluating Discrete Marginals
- Belief Propagation
- Sampling
(5) Latent Dirichlet Allocation
(6) Markov Random Fields**

Definitions (1/3)

- Consider the joint probability $P(A=a, B=b, C=c)$ (or $P(A, B, C)$ for short) of three random variables A, B, and C
- It can be factorized into, for example, $P(A \mid B, C) P(B \mid C) P(C)$
- Holds for any distribution
- We can draw the factorization as a graph:

- Each node is a random variable
- A link denotes conditional dependency
- The graph must be a Directed Acyclic Graph (DAG) [Proof: by induction on the number of nodes]

Definitions $(2 / 3)$

- Given $P\left(X_{1}, X_{2}, \cdots, X_{M}\right)$ of M random variables, we have
- Some factorization, e.g.,

$$
P\left(X_{1}, X_{2}, \cdots, X_{M}\right)=P\left(X_{1} \mid X_{2}, \cdots, X_{M}\right) \cdots P\left(X_{M}\right)
$$

- A fully connected graph
- It is the missing links that convey interesting information

- A missing link from D to C implies independence between D and C
- $P(C \mid D)=P(C)$, denoted by $\{C\} \Perp\{D\}$ or $\{C\} \Perp\{D\} \mid \emptyset$
- A missing link from C to A implies conditional independence between C and A given B and D
- $P(A \mid B, C, D)=P(A \mid B, D)$, denoted by $\{A\} \Perp\{C\} \mid\{B, D\}$

Definitions (3/3)

- A graph visualizes a factorization:

$$
P\left(X_{1}, X_{2}, \cdots, X_{M}\right)=\prod_{i=1}^{M} P\left(X_{i} \mid \operatorname{parent}\left(X_{i}\right)\right)
$$

where parent $\left(X_{i}\right)$ is the values of the parent nodes of X_{i}

- One graph for each factorization
- Given a set of variables, we may construct different graphs based on different factorizations

Extensions (1/2)

- Values of some random variables may be observed in our problem
- E.g., we may only care about $P(B, C, \cdots \mid A)$ given an observed variable $A=a$
- Denoted as solid nodes in the graph
- There can be deterministic variables
- E.g., we may assume parameters (e.g., $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ in classification, and \boldsymbol{w} in regression) and hyperparameters (e.g., α and β in regression) to simplify calculation of a specific term in the factorization
- Denoted by small dots in the graph
- Repeating subgraphs can be collapsed into a plate marked by multiplicity

Extensions (2/2)

- Observed variable $X=x$ vs deterministic variable α ?

Extensions (2/2)

- Observed variable $X=x$ vs deterministic variable α ?
- Even X is observed, $P(X=x) \neq 1$ if X has a nontrivial distribution
- Can be in the consequent of a conditional probability
- $P(\alpha)$ is undefined
- Can only be a parameter in a conditional probability
- α cannot have parents
- Must be observed
- If α parametrizes $P(Y)$ (denoted by $P(Y)=P(Y ; \alpha)$), then $P(X \mid Y ; \alpha)=P(X \mid Y)$
- Note, however, that $P(X ; \alpha=c) \neq P\left(X ; \alpha=c^{\prime}\right)$

Outline

(1) Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks
(2) Evaluating Continuous Marginals
(3) Bayesian Estimation

4) Evaluating Discrete Marginals

- Belief Propagation
- Sampling
(5) Latent Dirichlet Allocation
(4) Markov Random Fields**

Independence and Conditional Independence

- $\{A\} \Perp\{B\} \mid\{C\}$ denotes conditional independence
- $P(A \mid B, C)=P(A \mid C)$
- Or equivalently, $P(A, B \mid C)=P(A \mid B, C) P(B \mid C)=P(A \mid C) P(B \mid C)$
- Many tasks are solved by the aid of conditional independence between nodes
- But checking conditional independence involving more than three nodes is usually cumbersome
- A graph visualizes the conditional independence and provides an easy way for checking
- Given three sets of nodes P, Q, and R, you should be able to tell whether $P \Perp Q \mid R$ by directly looking at the graph

Canonical Cases (1/3)

- Consider a tail-to-tail path at C
- If C is not observed
- $\{A\} \Perp\{B\} \mid \emptyset$?

Canonical Cases (1/3)

- Consider a tail-to-tail path at C
- If C is not observed
- $\{A\} \Perp\{B\} \mid \emptyset$? No
- $p(A, B)=\int p(A, B, C) d C=$ $\int p(A \mid C) p(B \mid C) p(C) d C$, which does not equal to $p(A) p(B)$ for all distributions
- If C is observed
- $\{A\} \Perp\{B\} \mid\{C\}$?

Canonical Cases (1/3)

- Consider a tail-to-tail path at C
- If C is not observed
- $\{A\} \Perp\{B\} \mid \emptyset$? No
- $p(A, B)=\int p(A, B, C) d C=$ $\int p(A \mid C) p(B \mid C) p(C) d C$, which does not equal to $p(A) p(B)$ for all distributions
- If C is observed
- $\{A\} \Perp\{B\} \mid\{C\}$? Yes
- $p(A, B \mid C)=\frac{p(A, B, C)}{p(C)}=$ $\frac{p(A \mid C) p(B \mid C) p(C)}{p(C)}=p(A \mid C) p(B \mid C)$
- We say the path from A to B is blocked by C if C is observed

Canonical Cases $(2 / 3)$

- Consider a head-to-tail path at C
- If C is not observed
- $\{A\} \Perp\{B\} \mid \emptyset$?

Canonical Cases $(2 / 3)$

- Consider a head-to-tail path at C
- If C is not observed
- $\{A\} \Perp\{B\} \mid \emptyset$? No
- If C is observed
- $\{A\} \Perp\{B\} \mid\{C\}$?

Canonical Cases $(2 / 3)$

- Consider a head-to-tail path at C
- If C is not observed
- $\{A\} \Perp\{B\} \mid \emptyset$? No
- If C is observed
- $\{A\} \perp\{B\} \mid\{C\}$? Yes
- $p(A, B \mid C)=\frac{p(A, B, C)}{p(C)}=$ $\frac{p(B \mid C) p(C \mid A) p(A)}{p(C)}=p(B \mid C) p(A \mid C)$
- The path from A to B is blocked by C if C is observed

Canonical Cases $(3 / 3)$

- Consider a head-to-head path at C
- If C is not observed
- $\{A\} \Perp\{B\} \mid \emptyset$?

Canonical Cases (3/3)

- Consider a head-to-head path at C
- If C is not observed
- $\{A\} \Perp\{B\} \mid \emptyset$? Yes
- $p(A, B)=\int p(A, B, C) d C=$ $\int p(C \mid A, B) p(A) p(B) d C=$ $p(A) p(B) \int p(C \mid A, B) d C=p(A) p(B)$
- The path from A to B is blocked by C if C is not observed
- If C is observed
- $\{A\} \Perp\{B\} \mid\{C\}$?

Canonical Cases (3/3)

- Consider a head-to-head path at C
- If C is not observed
- $\{A\} \perp\{B\} \mid \emptyset$? Yes
- $p(A, B)=\int p(A, B, C) d C=$ $\int p(C \mid A, B) p(A) p(B) d C=$ $p(A) p(B) \int p(C \mid A, B) d C=p(A) p(B)$
- The path from A to B is blocked by C if C is not observed
- If C is observed
- $\{A\} \Perp\{B\} \mid\{C\}$? No
- Actually, if C has descendents, A and B become dependent if any of the descendents is observed [Homework]

D-Separation (1/2)

- Given three sets of non-intersecting random variables P, Q, and R, we say P is d-separated (" d " means "direct") from Q given R, denoted as $P \Perp Q \mid R$, iff all paths from P to Q are blocked
- A path (of arbitrary length) is blocked if either
- There are two links meet head-to-tail or tail-to-tail at a node, and that node is in R, or
- There are two links meet head-to-head at a node, and neither the node, nor its descendents, is in R
- Deterministic parameters play no role in d-separation
- A parameter α must be observed and have no parent
- Path passing through α must be tail-to-tail, so is blocked

D-Separation (2/2)

- $\{A\} \perp\{C\} \mid \emptyset$?

D-Separation (2/2)

- $\{A\} \perp\{C\} \mid \emptyset$? Yes
- $\{B\} \Perp\{D\} \mid\{C\}$?

D-Separation (2/2)

- $\{A\} \Perp\{C\} \mid \emptyset$? Yes
- $\{B\} \Perp\{D\} \mid\{C\}$? Yes
- $\{B\} \Perp\{D, F\} \mid\{C, E\}$?

D-Separation (2/2)

- $\{A\} \Perp\{C\} \mid \emptyset$? Yes
- $\{B\} \Perp\{D\} \mid\{C\}$? Yes
- $\{B\} \Perp\{D, F\} \mid\{C, E\}$? Yes
- $\{D\} \perp\{E\} \mid\{C, G\}$?

D-Separation (2/2)

- $\{A\} \Perp\{C\} \mid \emptyset$? Yes
- $\{B\} \Perp\{D\} \mid\{C\}$? Yes
- $\{B\} \Perp\{D, F\} \mid\{C, E\}$? Yes
- $\{D\} \Perp\{E\} \mid\{C, G\}$? No

Outline

(1) Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks
(2) Evaluating Continuous Marginals
(3) Bayesian Estimation
(4) Evaluating Discrete Marginals
- Belief Propagation
- Sampling
(5) Latent Dirichlet Allocation
(6) Markov Random Fields**

Modeling a Problem

- How to model a problem as a graph right (or, how determine the right factorization)?

Modeling a Problem

- How to model a problem as a graph right (or, how determine the right factorization)?
(1) Identify nodes
(2) For each node X, draw links from others Y_{1}, Y_{2}, \cdots to X based on your assumptions of dependency
(3) Make sure
- The network is connected
- You did not add too many links that prevents the graph from being a DAG
- You should not invert the direction of a link just because you know how to use Bayes' rule

Example: Classification

- Model parameters $\boldsymbol{\rho}=\left\{\rho_{i}\right\}_{i=1}^{K}, \boldsymbol{\mu}=\left\{\boldsymbol{\mu}_{i}\right\}_{i=1}^{K}$, and $\boldsymbol{\Sigma}=\left\{\boldsymbol{\Sigma}_{i}\right\}_{i=1}^{K}$ are deterministic variables
- Here we assume a generative model where an observation (x) is the cause of some reasons (\boldsymbol{r}) that may not be observable
- Training:

$$
(\rho, \mu, \Sigma)_{M A P}=\arg _{\rho, \mu, \Sigma} \max p(\rho, \mu, \Sigma \mid X)
$$

- Prediction: $y^{\prime}=\arg _{y} \max P\left(y \mid \boldsymbol{x}^{\prime} ; \boldsymbol{\rho}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$

Example: Linear Regression (1/2)

- Why don't we draw links from $r^{(t)} / r^{\prime}$ to $x^{(t)} / x^{\prime}$?

Example: Linear Regression (1/2)

- Why don't we draw links from $r^{(t)} / r^{\prime}$ to $x^{(t)} / x^{\prime}$?
- Regression is not a generative model
- We don't know how to evaluate $P\left(\boldsymbol{x}^{\prime} \mid r^{\prime}, \cdots\right)$ given our assumptions
- Training: $\boldsymbol{w}_{M A P}=\arg _{\boldsymbol{w}} \operatorname{maxp}(\boldsymbol{w} \mid X, \alpha, \beta)$
- Recall that we may assume

$$
p(\boldsymbol{w}) \sim \mathcal{N}\left(\mathbf{0}, \alpha^{-1} \boldsymbol{I}\right)
$$

- Prediction: $y^{\prime}=\arg _{y} \max p\left(y \mid \boldsymbol{x}^{\prime}, \boldsymbol{w}, \beta\right)$

Example: Linear Regression (2/2)

- \boldsymbol{w} is a random variable in Bayesian estimation for r^{\prime}
- Prediction:
$y^{\prime}=\arg _{y} \max p\left(y \mid x^{\prime}, \mathcal{X}, \alpha, \beta\right)=$ $\arg _{y} \max \int p\left(y, \boldsymbol{w} \mid \boldsymbol{x}^{\prime}, \mathcal{X}\right) d \boldsymbol{w}$
- There is no separate training phase

Example: Clustering

- $\boldsymbol{\pi}=\left\{\pi_{i}\right\}_{i=1}^{K}, \boldsymbol{\mu}=\left\{\boldsymbol{\mu}_{i}\right\}_{i=1}^{K}, \boldsymbol{\Sigma}=\left\{\boldsymbol{\Sigma}_{i}\right\}_{i=1}^{K}$
- Target: $\left(\left\{\boldsymbol{z}^{(t)}\right\}_{t}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)_{M A P}=$ $\arg _{\left\{\mathbf{z}^{(t)}\right\}_{t}, \boldsymbol{\pi}, \boldsymbol{\mu}, \Sigma} \operatorname{maxp}\left(\left\{\boldsymbol{z}^{(t)}\right\}_{t}, \boldsymbol{\pi}, \boldsymbol{\mu}, \Sigma \mid X\right)$
- $p\left(\left\{\mathbf{z}^{(t)}\right\}_{t}, \boldsymbol{\pi}, \boldsymbol{\mu}, \Sigma \mid X\right)=$ $p\left(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma} \mid\left\{\boldsymbol{z}^{(t)}\right\}_{t}, X\right) p\left(\left\{\mathbf{z}^{(t)}\right\}_{t} \mid X\right)$ $\propto p\left(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma} \mid\left\{\mathbf{z}^{(t)}\right\}_{t}, \mathcal{X}\right) p\left(\mathcal{X} \mid\left\{\mathbf{z}^{(t)}\right\}_{t}\right) p\left(\left\{\mathbf{z}^{(t)}\right\}_{t}\right)$
- Can be simplified to $p\left(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma} \mid\left\{\boldsymbol{z}^{(t)}\right\}_{t}, \mathcal{X}\right) p\left(X \mid\left\{\boldsymbol{z}^{(t)}\right\}_{t}\right)$ is we have no preference on a particular $\left\{\mathbf{z}^{(t)}\right\}_{t}$ set
- The problem is, we cannot evaluate $p\left(X \mid\left\{\mathbf{z}^{(t)}\right\}_{t}\right)$ without knowing $\boldsymbol{\pi}, \boldsymbol{\mu}$, and $\boldsymbol{\Sigma}$
- E-step: treat $\boldsymbol{\pi}, \boldsymbol{\mu}$, and $\boldsymbol{\Sigma}$ as parameters and estimate $\left\{\boldsymbol{z}^{(t)}\right\}_{t}$
- M-step: treat $\left\{\boldsymbol{Z}^{(t)}\right\}_{t}$ as parameter and estimate $\boldsymbol{\pi}, \boldsymbol{\mu}$, and $\boldsymbol{\Sigma}$

Outline

(1) Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks
(2) Evaluating Continuous Marginals
(3) Bayesian Estimation
(a) Evaluating Discrete Marginals
- Belief Propagation
- Sampling
(5) Latent Dirichlet Allocation
(6) Markov Random Fields**

Common Tasks

- Tasks given a graph, evidence E, and optionally parameters:
- Inference: solve $\arg _{z} \max P(Z=z \mid E)$
- E.g., training a classifier/regressor, making predictions, clustering, etc.
- Based on ML/MAP estimators, or full Bayesian estimation
- More?

Common Tasks

- Tasks given a graph, evidence E, and optionally parameters:
- Inference: solve $\arg _{z} \max P(Z=z \mid E)$
- E.g., training a classifier/regressor, making predictions, clustering, etc.
- Based on ML/MAP estimators, or full Bayesian estimation
- More?
- Evaluating the marginals $P(Z \mid E)$ in some complicate models
- E.g., Latent Dirichlet Allocation (LDA), etc.
- Learning the structure of a graph**
- E.g., association rules, other advanced topics

Outline

(1) Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks

(2) Evaluating Continuous Marginals

(3) Bayesian Estimation

4) Evaluating Discrete Marginals

- Belief Propagation
- Sampling
(5) Latent Dirichlet Allocation
(4) Markov Random Fields**

Conjugate Prior of the Likelihood (1)

- In many cases, we want to write down $P(Z \mid E)$ in closed form
- By Bayes' rule, we have $P(Z \mid E)=\frac{P(E \mid Z) P(Z)}{P(E)}$
- If we assume some distribution of the likelihood $P(E \mid Z)$, then we face a problem: how to pick the distribution of the prior $P(Z)$ such that the posterior $P(Z \mid E)$ is tractable?
- It is known that for certain likelihood distribution, some prior distribution will lead to the posterior distribution that is in the same family as prior distribution
- Prior of such distribution is called the conjugate prior of the likelihood

Linear Gaussian Model

- For each node X_{i}, we assume $p\left(X_{i} \mid \operatorname{parent}\left(X_{i}\right)\right)$ follows some (parametrized) distribution
- A common choice is to form a linear Gaussian model, where each node X_{i} resembles a linear combination of its parents $Y \in \operatorname{parent}\left(X_{i}\right)$
- $p\left(x_{i} \mid y_{1}, \cdots, y_{p}\right)=\mathcal{N}\left(x_{i} \mid \sum_{j=1}^{p} w_{i, j} y_{j}+b_{i}, \sigma_{i}^{2}\right)$, or

$$
p\left(\boldsymbol{x}_{i} \mid \boldsymbol{y}_{1}, \cdots, \boldsymbol{y}_{p}\right)=\mathcal{N}\left(\boldsymbol{x}_{i} \mid \sum_{j=1}^{p} \boldsymbol{W}_{i, j} \boldsymbol{y}_{j}+\boldsymbol{b}_{i}, \boldsymbol{\Sigma}_{i}\right)
$$

- And $p\left(\boldsymbol{y}_{1}, \cdots, \boldsymbol{y}_{p}\right)$ is Gaussian
- For two nodes X and Y, if $p\left(X_{i} \mid Y\right)$ and $p(Y)$ follow the linear Gaussian model, then $p\left(Y \mid X_{i}\right)$ and $p\left(X_{i}\right)$ are both normal distribution
- $p\left(X_{i}\right)$ is called the conjugate prior of the likelihood $p\left(Y \mid X_{i}\right)$ of X_{i}

Outline

(1) Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks
(2) Evaluating Continuous Marginals
(3) Bayesian Estimation
(4) Evaluating Discrete Marginals
- Belief Propagation
- Sampling
(5) Latent Dirichlet Allocation
(6) Markov Random Fields**

Bayesian Estimation for Linear Regression (1/3)

- Assuming hyperparameters α and β, we have $\int p\left(y, \boldsymbol{w} \mid x^{\prime}, \mathcal{X}, \alpha, \beta\right) d \boldsymbol{w}=$ $\int p\left(y \mid \boldsymbol{x}^{\prime}, \boldsymbol{w}, \mathcal{X}, \alpha, \beta\right) p\left(\boldsymbol{w} \mid \boldsymbol{x}^{\prime}, \mathcal{X}, \alpha, \beta\right) d \boldsymbol{w}=$ $\int p\left(y \mid \boldsymbol{x}^{\prime}, \boldsymbol{w}, \mathcal{X}, \beta\right) p\left(\boldsymbol{w} \mid \boldsymbol{x}^{\prime}, \mathcal{X}, \alpha, \beta\right) d \boldsymbol{w}=$ $\int p\left(y \mid \boldsymbol{x}^{\prime}, \boldsymbol{w}, \beta\right) p(\boldsymbol{w} \mid X, \alpha, \beta) d \boldsymbol{w}$
- $\{\boldsymbol{y}\} \Perp\{\mathcal{X}\} \mid\left\{\boldsymbol{x}^{\prime}, \boldsymbol{w}, \beta\right\}$
- $\{\boldsymbol{w}\} \Perp\left\{\boldsymbol{x}^{\prime}\right\} \mid\{X, \alpha, \beta\}$

Bayesian Estimation for Linear Regression (2/3)

- $y^{\prime}=\arg _{y} \max \int p\left(y \mid \boldsymbol{x}^{\prime}, \boldsymbol{w}, \beta\right) p(\boldsymbol{w} \mid \mathcal{X}, \alpha, \beta) d \boldsymbol{w}$
- $p\left(y \mid \boldsymbol{x}^{\prime}, \boldsymbol{w}, \beta\right)=\mathcal{N}\left(y \mid \boldsymbol{w}^{\top} \boldsymbol{x}^{\prime}, \beta^{-1}\right)$
- $p(\boldsymbol{w} \mid \mathcal{X}, \alpha, \beta)=p\left(\left\{\boldsymbol{r}^{(t)}\right\}_{t} \mid\left\{\boldsymbol{x}^{(t)}\right\}_{t}, \boldsymbol{w}, \alpha, \beta\right) p\left(\boldsymbol{w} \mid\left\{\boldsymbol{x}^{(t)}\right\}_{t}, \alpha, \beta\right)=$ $p\left(\left\{\boldsymbol{r}^{(t)}\right\}_{t} \mid\left\{\boldsymbol{x}^{(t)}\right\}_{t}, \boldsymbol{w}, \beta\right) p(\boldsymbol{w} \mid \alpha)$
- Let $\boldsymbol{r}=\left[\boldsymbol{r}^{(1)}, \cdots, r^{(N)}\right]^{\top}$ and $\boldsymbol{X}=\left[\boldsymbol{x}^{(1)}, \cdots, \boldsymbol{x}^{(N)}\right]^{\top} \in \mathbb{R}^{N \times d}$, we have
- $p\left(\left\{\boldsymbol{r}^{(t)}\right\}_{t} \mid\left\{\boldsymbol{x}^{(t)}\right\}_{t}, \boldsymbol{w}, \beta\right)=p(\boldsymbol{r} \mid \boldsymbol{X}, \boldsymbol{w}, \beta)=\mathcal{N}\left(\boldsymbol{r} \mid \boldsymbol{X} \boldsymbol{w}, \beta^{-1} \boldsymbol{I}\right)$
- $p(\boldsymbol{w} \mid \alpha)=\mathcal{N}\left(\boldsymbol{w} \mid \mathbf{0}, \alpha^{-1} \boldsymbol{I}\right)$
- Notice that $p(\boldsymbol{r} \mid \boldsymbol{X}, \boldsymbol{w}, \beta)$ and $p(\boldsymbol{w} \mid \alpha)$ form a linear Gaussian model
- \boldsymbol{w} is the parent of \boldsymbol{r} and the mean of $p(\boldsymbol{r} \mid \boldsymbol{X}, \boldsymbol{w}, \beta)$ is a linear combination of \boldsymbol{w}
- Therefore, $p(\boldsymbol{w} \mid \mathcal{X}, \alpha, \beta)=p(\boldsymbol{w} \mid \boldsymbol{r}, \boldsymbol{X}, \alpha, \beta)=\mathcal{N}\left(\boldsymbol{w} \mid \beta \boldsymbol{\Sigma} \boldsymbol{X}^{\top} \boldsymbol{r}, \boldsymbol{\Sigma}\right)$, where $\boldsymbol{\Sigma}=\left(\alpha \boldsymbol{I}+\beta \boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}$

Bayesian Estimation for Linear Regression (3/3)

- $y^{\prime}=\arg _{y} \max \int p\left(y \mid \boldsymbol{x}^{\prime}, \boldsymbol{w}, \beta\right) p(\boldsymbol{w} \mid X, \alpha, \beta) d \boldsymbol{w}$, where $p\left(y \mid \boldsymbol{x}^{\prime}, \boldsymbol{w}, \beta\right)=\mathcal{N}\left(\boldsymbol{y} \mid\left(\boldsymbol{x}^{\prime}\right)^{\top} \boldsymbol{w}, \beta^{-1}\right)$ and $p(\boldsymbol{w} \mid \mathcal{X}, \alpha, \beta)=\mathcal{N}\left(\boldsymbol{w} \mid \beta \boldsymbol{\Sigma} \boldsymbol{X}^{\top} \boldsymbol{r}, \boldsymbol{\Sigma}\right)$
- Again, $p\left(y \mid \boldsymbol{x}^{\prime}, \boldsymbol{w}, \beta\right)$ and $p(\boldsymbol{w} \mid X, \alpha, \beta)$ form a linear Gaussian model
- \boldsymbol{w} is the parent of y and the mean of $p\left(y \mid \boldsymbol{x}^{\prime}, \boldsymbol{w}, \beta\right)$ is a linear combination of \boldsymbol{w}
- We have

$$
\int p\left(y \mid \boldsymbol{x}^{\prime}, \boldsymbol{w}, \beta\right) p(\boldsymbol{w} \mid X, \alpha, \beta) d \boldsymbol{w}=\mathcal{N}\left(\boldsymbol{y} \mid \beta\left(\boldsymbol{x}^{\prime}\right)^{\top} \boldsymbol{\Sigma} \boldsymbol{X}^{\top} \boldsymbol{r}, \frac{1}{\beta}+\left(\boldsymbol{x}^{\prime}\right)^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}^{\prime}\right)
$$

- Finally, $\boldsymbol{y}^{\prime}=\beta\left(\boldsymbol{x}^{\prime}\right)^{\top} \boldsymbol{\Sigma} \boldsymbol{X}^{\top} \boldsymbol{r}=\left(\beta \boldsymbol{\Sigma} \boldsymbol{X}^{\top} \boldsymbol{r}\right)^{\top} \boldsymbol{x}^{\prime}$, where

$$
\boldsymbol{\Sigma}=\left(\alpha \boldsymbol{I}+\beta \boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-\mathbf{1}}
$$

Why Bayesian Estimation?

Figure : The prediction made by Bayesian estimation regressor is the red line; where the predictions made by MAP- (or ML-) estimated regressor could be any line in the shaded area.

Outline

(1) Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks
(2) Evaluating Continuous Marginals
(3) Bayesian Estimation

4) Evaluating Discrete Marginals

- Belief Propagation
- Sampling
(5) Latent Dirichlet Allocation
(6) Markov Random Fields**

Space Complexity

- For each node X_{i}, we need to evaluate/store all possible values of $P\left(X_{i} \mid\right.$ parent $\left.\left(X_{i}\right)\right)$
- Suppose each node has K states and there are totally M nodes, what's the space complexity?

Space Complexity

- For each node X_{i}, we need to evaluate/store all possible values of $P\left(X_{i} \mid\right.$ parent $\left.\left(X_{i}\right)\right)$
- Suppose each node has K states and there are totally M nodes, what's the space complexity?
- Chain: $(K-1)+(M-1) K(K-1)=$ $O\left(M K^{2}\right)$
- Fully connected graph:

$$
\sum_{i}(K-1) K^{\left|\operatorname{parent}\left(X_{i}\right)\right|}=K^{M}-1=
$$

Reducing Space Complexity

- How?

Reducing Space Complexity

- How?
- Tying: sharing parameters between combinations of parent values
- E.g., modeling the dependency between binary variables as noisy OR gates
- Inhibitors are independent with each other and happens with probabilities q_{i}
- $P\left(X_{i}=1 \mid Y=1, Z=0\right)=1-q_{Y}$
- $P\left(X_{i}=1 \mid Y=1, Z=1\right)=1-q_{Y} q_{Z}$
- $P\left(X_{i} \mid p a r e n t\left(X_{i}\right)\right)=$
$1-\prod_{Y \in \operatorname{parent}\left(X_{i}\right), Y=1} q_{Y}$
- Space complexity?

Reducing Space Complexity

- How?
- Tying: sharing parameters between combinations of parent values
- E.g., modeling the dependency between binary variables as noisy OR gates
- Inhibitors are independent with each other and happens with probabilities q_{i}
- $P\left(X_{i}=1 \mid Y=1, Z=0\right)=1-q_{Y}$
- $P\left(X_{i}=1 \mid Y=1, Z=1\right)=1-q_{Y} q_{Z}$
- $P\left(X_{i} \mid p a r e n t\left(X_{i}\right)\right)=$
$1-\prod_{Y \in \operatorname{parent}\left(X_{i}\right), Y=1} q_{Y}$
- Space complexity? $O\left(M^{2}\right)((O(M))$ for each node)

Outline

(1) Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks
(2) Evaluating Continuous Marginals
(3) Bayesian Estimation

4) Evaluating Discrete Marginals

- Belief Propagation
- Sampling
(5) Latent Dirichlet Allocation
(4) Markov Random Fields**

Evaluating Marginals of All Nodes

- Sometimes, we want to evaluate the marginals of all nodes (given some evidence)
- Belief propagation allows some components of these marginals to be shared and evaluated just once
- Reduces time complexity significantly

Evaluating $P\left(X_{i}\right)$'s in a Chain (1/2)

- Problem: to evaluate $P\left(X_{i}\right)$ of every node X_{i} in a chain:

- We can evaluate $P\left(X_{i}\right)$ one-by-one
- No problem if nodes are continuous and $p\left(X_{i}\right)=\int_{X_{j, j i}} p\left(X_{1}, \cdots, X_{i}, \cdots, X_{M}\right)$ can be written as a closed form (e.g., by assuming a linear Gaussian model)
- Time consuming for discrete variables though, since $P\left(X_{i}\right)=$ $\sum_{\left\{X_{j}:, j \neq i\right\}} P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right), \cdots, P\left(X_{i} \mid X_{i-1}\right), P\left(X_{i+1} \mid X_{i}\right), \cdots, P\left(X_{M} \mid X_{M-1}\right)$
- Assuming that each node has K states, we have time complexity: $O\left(K^{M-1}\right)$ for each node, $O\left(M K^{M-1}\right)$ in total

Evaluating $P\left(X_{i}\right)$ s in a Chain $(2 / 2)$

- Speed up?

Evaluating $P\left(X_{i}\right)$ s in a Chain $(2 / 2)$

- Speed up?
- Observer that when computing $P\left(X_{i}\right)$ and $P\left(X_{j}\right), i \neq j$, most conditional probabilities $P\left(X_{k+1} \mid X_{k}\right), 1 \leqslant k \leqslant M-1$, are computed twice
- It is plausible that we can "reuse" these conditional probabilities to reduce time complexity
- How?

Evaluating $P\left(X_{i}\right)$ s in a Chain $(2 / 2)$

- Speed up?
- Observer that when computing $P\left(X_{i}\right)$ and $P\left(X_{j}\right), i \neq j$, most conditional probabilities $P\left(X_{k+1} \mid X_{k}\right), 1 \leqslant k \leqslant M-1$, are computed twice
- It is plausible that we can "reuse" these conditional probabilities to reduce time complexity
- How?
- One way is to precompute all $P\left(X_{k+1} \mid X_{k}\right) \mathrm{s}, 1 \leqslant k \leqslant M-1$, and then look up these results to obtain $P\left(X_{i}\right)$ s
- Still exponential to M in time complexity

Belief Propagation along a Chain $(1 / 3)$

- Notice that $P\left(X_{i}\right)=\sum_{X_{1}, X_{M}} P\left(X_{1}, X_{i}, X_{M}\right)=$

$$
\begin{gathered}
\sum X_{1}, X_{M} P\left(X_{1}, X_{M} \mid X_{i}\right) P\left(X_{i}\right)=\sum X_{1}, X_{M} P\left(X_{1} \mid X_{i}\right) P\left(X_{M} \mid X_{i}\right) P\left(X_{i}\right)= \\
\sum X_{1}, X_{M} \frac{P\left(X_{i} \mid X_{1}\right) P\left(X_{1}\right)}{P\left(X_{i}\right)} P\left(X_{M} \mid X_{i}\right) P\left(X_{i}\right)=\sum X_{1}, X_{M} \alpha\left(X_{1}\right) \pi\left(X_{i}\right) \lambda\left(X_{i}\right) \\
\bullet \pi\left(X_{i}\right)=P\left(X_{i} \mid X_{1}\right) \text { if } i>1, \text { and } \pi\left(X_{1}\right)=P\left(X_{1}\right) \\
\bullet \lambda\left(X_{i}\right)=P\left(X_{M} \mid X_{i}\right) \text { if } i<M \text {, and } \lambda\left(X_{M}\right)=1 \\
\bullet \alpha\left(X_{1}\right)=P\left(X_{1}\right)=\pi\left(X_{1}\right) \text { is independent with } X_{i}
\end{gathered}
$$

- In addition, $\pi\left(X_{i}\right)=P\left(X_{i} \mid X_{1}\right)=\sum_{X_{i-1}} P\left(X_{i}, X_{i-1} \mid X_{1}\right)=$

$$
\begin{aligned}
& \sum x_{i-1} P\left(X_{i} \mid X_{i-1}, X_{1}\right) P\left(X_{i-1} \mid X_{1}\right)=\sum^{i-1} x_{i-1} P\left(X_{i} \mid X_{i-1}\right) P\left(X_{i-1} \mid X_{1}\right)= \\
& \sum x_{i-1} P\left(X_{i} \mid X_{i-1}\right) \pi\left(X_{i-1}\right)
\end{aligned}
$$

- $\lambda\left(X_{i}\right)=P\left(X_{M} \mid X_{i}\right)=\sum_{x_{i+1}} P\left(X_{M} \mid X_{i+1}, X_{i}\right) P\left(X_{i+1} \mid X_{i}\right)=$

$$
\sum_{X_{i+1}} P\left(X_{M} \mid X_{i+1}\right) P\left(X_{i+1} \mid X_{i}\right)=\sum_{x_{i+1}} P\left(X_{i+1} \mid X_{i}\right) \lambda\left(X_{i+1}\right)
$$

Belief Propagation along a Chain (2/3)

- $P\left(X_{i}\right)=\sum_{X_{1}, X_{M}} \alpha\left(X_{1}, X_{M}\right) \pi\left(X_{i}\right) \lambda\left(X_{i}\right)$
- $\pi\left(X_{i+1}\right)=\sum_{x_{i}} P\left(X_{i+1} \mid X_{i}\right) \pi\left(X_{i}\right)$ for $1 \leqslant i \leqslant M-1$
- $\lambda\left(X_{i-1}\right)=\sum_{x_{i}} P\left(X_{i} \mid X_{i-1}\right) \lambda\left(X_{i}\right)$ for $2 \leqslant i \leqslant M$

- Starting from X_{1} till X_{M-1}, each node X_{i} can forward all $\pi\left(X_{i+1}\right) \mathrm{s}$ downward along to chain upon receiving $\pi\left(X_{i}\right)$ s from its parent
- Starting from X_{M} till X_{2}, each node X_{i} forwards all its $\lambda\left(X_{i-1}\right) \mathrm{s}$ upward along to chain upon upon receiving $\lambda\left(X_{i}\right)$ s from its child
- After receiving both $\pi\left(X_{i}\right)$ s and $\lambda\left(X_{i}\right)$ s from its parent and child respectively, each node X_{i} can compute $P\left(X_{i}\right)$
- Note that $\alpha\left(X_{1}\right)$ s can be broadcasted to all nodes by X_{1} parallel to the above propagations

Belief Propagation along a Chain (3/3)

- The task of evaluating all $P\left(X_{i}\right) \mathrm{s}$ is now divided into local computation of $\pi \mathrm{s}$ and $\lambda \mathrm{s}$ and exchange of these local results
- We call the inference using this message-passing style as belief propagation
- Time complexity?

Belief Propagation along a Chain (3/3)

- The task of evaluating all $P\left(X_{i}\right)$ s is now divided into local computation of πs and λs and exchange of these local results
- We call the inference using this message-passing style as belief propagation
- Time complexity?
- $O\left(M K^{2}+K^{2}\right)$ for each node $\left(O\left(M K^{2}\right)\right.$ for message exchange and $O\left(K^{2}\right)$ for computing $\left.P\left(X_{i}\right)\right)$
- $O\left(M K^{2}+M K^{2}\right)$ in total, provided that each node X_{i} stores its intermediate messages (i.e., $\pi\left(X_{i}\right) \mathrm{s}$ and $\lambda\left(X_{i}\right) \mathrm{s}$)
- Space complexity?

Belief Propagation along a Chain (3/3)

- The task of evaluating all $P\left(X_{i}\right)$ s is now divided into local computation of $\pi \mathrm{s}$ and $\lambda \mathrm{s}$ and exchange of these local results
- We call the inference using this message-passing style as belief propagation
- Time complexity?
- $O\left(M K^{2}+K^{2}\right)$ for each node $\left(O\left(M K^{2}\right)\right.$ for message exchange and $O\left(K^{2}\right)$ for computing $\left.P\left(X_{i}\right)\right)$
- $O\left(M K^{2}+M K^{2}\right)$ in total, provided that each node X_{i} stores its intermediate messages (i.e., $\pi\left(X_{i}\right) \mathrm{s}$ and $\left.\lambda\left(X_{i}\right) \mathrm{s}\right)$
- Space complexity?
- $O\left(K^{2}\right)$ on each node X_{i} (for $P\left(X_{i+1} \mid X_{i}\right) \mathrm{s}, P\left(X_{i} \mid X_{i-1}\right) \mathrm{s}, \pi\left(X_{i}\right) \mathrm{s}$, and $\left.\lambda\left(X_{i}\right) \mathrm{s}\right)$
- $O\left(M K^{2}\right)$ totally

Evidences (1/2)

- What if we are given an evidence E ?
- Without loss of generality, let's consider a chain from X_{1} to $X_{M^{\prime}}$, where $\left\{X_{1}, X_{M^{\prime}}\right\} \subseteq E$, as below:

- Problem: to evaluate $P\left(X_{i}\right)$ for $2 \leqslant i \leqslant M^{\prime}-1$
- $P\left(X_{i} \mid E\right)=P\left(X_{i} \mid X_{1}, X_{M^{\prime}}\right)=\frac{P\left(X_{i}, X_{1}, X_{M^{\prime}}\right)}{P\left(X_{1}, X_{M^{\prime}}\right)}=\alpha\left(X_{1}, X_{M^{\prime}}\right) \pi\left(X_{i}\right) \lambda\left(X_{i}\right)$ [Proof]
- $\pi\left(X_{i}\right)=P\left(X_{i} \mid X_{1}\right)$ if $i>1$, and $\pi\left(X_{1}\right)=P\left(X_{1}\right)$
- $\lambda\left(X_{i}\right)=P\left(X_{M^{\prime}} \mid X_{i}\right)$ if $i<M^{\prime}$, and $\lambda\left(X_{M^{\prime}}\right)=1$
- $\alpha\left(X_{1}, X_{M^{\prime}}\right)=\frac{P\left(X_{1}\right)}{P\left(X_{1}, X_{M^{\prime}}\right)}=\frac{P\left(X_{1}\right)}{P\left(X_{M^{\prime}} \mid X_{1}\right) P\left(X_{1}\right)}=\frac{1}{\pi\left(X_{M^{\prime}}\right)}=\frac{1}{\lambda\left(X_{1}\right)}$ is independent with X_{i}

Evidences (2/2)

- Belief propagation is still applicable except that there is only one $\pi\left(X_{M^{\prime}}\right)$ and one $\lambda\left(X_{1}\right)$
- $\alpha\left(X_{1}, X_{M^{\prime}}\right)$ can be broadcasted to all nodes by $X_{M^{\prime}-1}$ once it computes $\pi\left(X_{M^{\prime}}\right)$ (or by X_{2} once it computes $\lambda\left(X_{1}\right)$)
- Time/space complexity?

Evidences (2/2)

- Belief propagation is still applicable except that there is only one $\pi\left(X_{M^{\prime}}\right)$ and one $\lambda\left(X_{1}\right)$
- $\alpha\left(X_{1}, X_{M^{\prime}}\right)$ can be broadcasted to all nodes by $X_{M^{\prime}-1}$ once it computes $\pi\left(X_{M^{\prime}}\right)$ (or by X_{2} once it computes $\lambda\left(X_{1}\right)$)
- Time/space complexity? Still $O\left(M^{\prime} K^{2}\right)$ in both time and space
- If either X_{1} or $X_{M^{\prime}}$ is unobserved, we have either $K \lambda\left(X_{1}\right)$ or K $\pi\left(X_{M^{\prime}}\right)$ messages respectively

Outline

(1) Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks
(2) Evaluating Continuous Marginals
(3) Bayesian Estimation

4) Evaluating Discrete Marginals

- Belief Propagation
- Sampling
(5) Latent Dirichlet Allocation
(6) Markov Random Fields**

Why Sampling?

- To evaluate discrete $P(X \mid E)$ in a Bayesian network, we produce n samples of it and have the estimate:

$$
P(X=x \mid E=e)=\frac{1}{n}(\# \text { samples having } X=x \text { given } E=e)
$$

- More generally, to evaluate the expected value of some function f defined over X and E :

$$
\mathrm{E}[f \mid E=e]=\sum_{x} f(x, e) P(X=x \mid E=e)
$$

we can produce n samples $x^{(t)}$, where $X^{(t)} \sim P(X)$, then estimate

$$
\mathrm{E}[f \mid E=e]=\frac{1}{n} \sum_{t=1}^{n} f\left(x^{(t)}, e\right)
$$

Ancestral Sampling

- Given M random variables $X_{1}, X_{2}, \cdots, X_{M}$, we want samples of these variables following their joint distribution $P\left(X_{1}, X_{2}, \cdots, X_{M}\right)$
- How?

Ancestral Sampling

- Given M random variables $X_{1}, X_{2}, \cdots, X_{M}$, we want samples of these variables following their joint distribution $P\left(X_{1}, X_{2}, \cdots, X_{M}\right)$
- How?
- If we have a graph, we can draw sets of samples $\left\{x_{1}, x_{2}, \cdots, x_{M}\right\}$ one-by-one, each by:
(1) Sample nodes X 's having no parent by following the corresponding $P(X)$
(2) Repeat: sample each child node X whose parents are all sampled by following $P(X \mid \operatorname{parent}(X))$ with parents set to their sampled values
- We call this ancestral sampling

Evidence

- If is a node without parent, simple fix the value to evidence
- Now suppose $P(A, B, C)=P(A) P(B) P(C \mid A, B)$

- If $C=c$ is observed, how to make sure the sample value c follows $P(C \mid A, B)$?

Evidence

- If is a node without parent, simple fix the value to evidence
- Now suppose $P(A, B, C)=P(A) P(B) P(C \mid A, B)$

- If $C=c$ is observed, how to make sure the sample value c follows $P(C \mid A, B)$?
- Sample and discard inconsistent ones
- Start over from roots
- Very in-efficient

Gibbs Sampling (1/2)

- Gibbs sampling is a Markov Chain Monte Carlo (MCMC) algorithm for obtaining a sequence of observations which are approximately from from the joint probability distribution of two or more random variables), when direct sampling is difficult
- Monte Carlo vs. Las Vegas randomized algorithms?
- Suppose we want to obtain M samples of $\boldsymbol{X}=\left\{X_{1}, \cdots, X_{N}\right\}$ from a joint distribution $P\left(X_{1}, \cdots, X_{N}\right)$
- Denote the t-th sample by $\boldsymbol{x}^{(t)}=\left\{x_{1}^{(t)}, \ldots, x_{N}^{(t)}\right\}$

Gibbs Sampling (2/2)

Input: M, a Bayesian network of X_{1}, \cdots, X_{N}, and W burn-in samples to discard
Output: $\boldsymbol{x}^{(t)}$'s for $t=1, \cdots, M$
Initiate $\boldsymbol{x}^{(0)}$;
for $t \leftarrow 1$ to $W+M$ do
for $i \leftarrow 1$ to N do
$x_{i}^{(t)} \leftarrow$ a value sampled from

$$
P\left(X_{i} \mid X_{1}^{(t)}, \ldots, X_{i-1}^{(t)}, X_{i+1}^{(t-1)}, \ldots, X_{N}^{(t-1)}\right)
$$

end
if $t>W$ then Output $x_{i}^{(t)}$;
end
Algorithm 1: Gibbs sampling algorithm.

Gibbs Sampling (2/2)

Input: M, a Bayesian network of X_{1}, \cdots, X_{N}, and W burn-in samples to discard
Output: $\boldsymbol{x}^{(t)}$'s for $t=1, \cdots, M$
Initiate $\boldsymbol{x}^{(0)}$;
for $t \leftarrow 1$ to $W+M$ do
for $i \leftarrow 1$ to N do
$x_{i}^{(t)} \leftarrow$
a value sampled from
$P\left(X_{i} \mid X_{1}^{(t)}, \ldots, X_{i-1}^{(t)}, X_{i+1}^{(t-1)}, \ldots, X_{N}^{(t-1)}\right) ;$
end
if $t>W$ then Output $x_{i}^{(t)}$;
end
Algorithm 2: Gibbs sampling algorithm.

- Why does it work?
- Why discard early (burn-in) samples?

Markov Chain for Inference of $P(\boldsymbol{X})$

- Set the state space \mathcal{S} of a Markov chain to the range of \boldsymbol{X} (\mathcal{S} may be astronomically large)
- Find a tpm (transition prob. matrix) \boldsymbol{P} such that $P(\boldsymbol{X}) \sim \pi_{P}$, the steady state distribution
- Then, we can have samples by simply running a random walk:
(1) Pick $\boldsymbol{x}^{(0)}$ somehow;
(2) For $t=1, \ldots, W+N$, sample $\boldsymbol{x}^{(t)}$ from $P\left(\boldsymbol{X}^{(t)} \mid \boldsymbol{X}^{(t-1)}=\boldsymbol{x}^{(t-1)}\right)$;
(3) Discard the first W burn-in samples, and output remaining samples;

Why Does the Gibbs Sampling Work?

- The tpm of the Gibbs sampler for $P(\boldsymbol{X})$ where $\boldsymbol{X}=\left\{X_{1}, \ldots, X_{N}\right\}$ is $\boldsymbol{P}=\prod_{i=1}^{N} \boldsymbol{P}^{(i)}$, where

$$
\boldsymbol{P}_{\boldsymbol{x}^{\prime}, \boldsymbol{x}}^{(i)}= \begin{cases}0 & \text { if } \boldsymbol{x}_{-i}^{\prime} \neq \boldsymbol{x}_{-i} \\ P\left(X_{i}=x_{i}^{\prime} \mid \boldsymbol{X}_{-i}=\boldsymbol{x}_{-i}\right) & \text { if } \boldsymbol{x}_{-i}^{\prime}=\boldsymbol{x}_{-i}\end{cases}
$$

and the subscript -i denotes all but the i-th element

- Informally, the Gibbs sampler cycles through each of the variables X_{i}, replacing the current value x_{i} with a sample from $P\left(X_{i} \mid \boldsymbol{X}_{-i}=\boldsymbol{x}_{-i}\right)$
- If \boldsymbol{x} is a sample from $P(\boldsymbol{X})$, then so is \boldsymbol{x}^{\prime}, since \boldsymbol{x}^{\prime} differs from \boldsymbol{x} only by replacing x_{i} with a sample from $P\left(X_{i} \mid \boldsymbol{X}_{-i}=\boldsymbol{x}_{-i}\right)$
- Since $\boldsymbol{P}^{(i)}$ maps samples from $P(\boldsymbol{X})$ to samples from $P(\boldsymbol{X})$, so does \boldsymbol{P}. Thus, $P(\boldsymbol{X})$ is a stationary distribution for \boldsymbol{P}
- There is another explanation using detailed balance equations [Proof]

Outline

(1) Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks
(2) Evaluating Continuous Marginals
(3) Bayesian Estimation
(4) Evaluating Discrete Marginals
- Belief Propagation
- Sampling
(5) Latent Dirichlet Allocation
(6) Markov Random Fields**

Topic Model

- Topic modeling is a method for analyzing large quantities of unlabeled data.
- For our purposes, a topic is a probability distribution over a collection of words and a topic model is a formal statistical relationship between a group of observed and latent (unknown) random variables that specifies a probabilistic procedure to generate the topics-a generative model.
- The central goal of a topic is to provide a "thematic summary" of a collection of documents.

An Example

- Given 2 documents D_{1}, D_{2} with words
- $D_{1}=\{$ cat, dog, bird, fish $\}$
- $D_{2}=\{$ car, bike, bus $\}$
- We can discover the "topics" (pet, vehicle, ...).
- A document may have one or more topics in practice.

Latent Dirichlet Allocation

- Latent Dirichlet allocation (LDA) is the most common topic model currently in use, allowing documents to have a mixture of topics.
- LDA provides a generative model that describes how the documents in a corpus were created.

Notation and Terminology

- A word is the basic unit of discrete data, defined to be an item from a vocabulary $\left\{w^{1}, \ldots, w^{V}\right\}$.
- A document D_{i} is a sequence of N words denoted by $\mathbf{w}_{i}=\left(w_{i, 1}, w_{i, 2}, \ldots, w_{i, N}\right)$, where $w_{i, n}$ is the nth word in the sequence.
- A corpus is a collection of M documents denoted by

$$
D=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{M}\right\} .
$$

The Generative Process

- Assume we know K topic distributions for our corpus, meaning K categoricals containing V elements each.

(1) Choose the topic distribution $\theta_{i} \sim \operatorname{Dir}(\boldsymbol{\alpha})$ for each document D_{i} where $i \in\{1, \ldots, M\}\left(\theta_{i}\right.$ is a categorical of length K).
(2) Choose the word distribution $\boldsymbol{\phi}_{k} \sim \operatorname{Dirichlet}(\beta)$ for each topic where $k \in\{1, \ldots, K\}\left(\boldsymbol{\Phi}_{k}\right.$ is a vector of length V).
- β is a V-dimension vector of positive reals.
(0) For each of the words $w_{i, n}$ where $n \in\{1, \ldots, N\}$:
(1) Choose a topic $z_{i, n} \sim \operatorname{Categorical}\left(\theta_{i}\right)$.
(2) Choose a word $w_{i, n} \sim \operatorname{Categorical}\left(\boldsymbol{\phi}_{z_{i, n}}\right)$.

Our Goal

- Given α, β, and document D_{i} with word sequence \mathbf{w}_{i}, what are the most probable values for θ_{i} ?

Our Goal

- Given α, β, and document D_{i} with word sequence \mathbf{w}_{i}, what are the most probable values for θ_{i} ?

$$
\begin{aligned}
P\left(\theta_{i} \mid \mathbf{w}_{i}, \boldsymbol{\alpha}, \beta\right) & =\int \sum_{z_{i}} P\left(\theta_{i}, \mathbf{z}_{i}, \boldsymbol{\phi} \mid \mathbf{w}_{i}, \boldsymbol{\alpha}, \boldsymbol{\beta}\right) d \boldsymbol{\phi} \\
& \propto \int \sum_{z_{i}} P\left(\mathbf{w}_{i} \mid \theta_{i}, \mathbf{z}_{i}, \boldsymbol{\phi}, \boldsymbol{\beta}\right) P\left(\theta_{i}, \mathbf{z}_{i}, \boldsymbol{\phi} \mid \boldsymbol{\alpha}\right) d \boldsymbol{\phi}
\end{aligned}
$$

- The close form of the posterior is intractable (due to the unknown $\boldsymbol{z}_{\boldsymbol{i}}$)

Gibbs Sampling for LDA (1/3)

- In LDA, the distribution of the topics \mathbf{Z} for words \mathbf{W} is unknown and \mathbf{Z} is multivariate.
- Hence, the Gibbs sampling procedure boils down to estimate

$$
P\left(Z_{i, n}=t \mid \mathbf{z}_{-i, n}, \mathbf{w}\right)
$$

- Here, $\boldsymbol{\theta}, \boldsymbol{\phi}$ are integrated out. If we know the exact $\mathbf{Z}_{\boldsymbol{i}}$ for each document D_{i}, it's trivial to estimate $\boldsymbol{\theta}_{i}$ and $\boldsymbol{\phi}_{i}$.
- We have

$$
\begin{aligned}
P\left(Z_{i, n}=\right. & \left.t \mid \mathbf{z}_{-i, n}, \mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}\right) \\
& \propto P\left(Z_{i, n}=t, w_{i, n} \mid \mathbf{z}_{-i, n}, \mathbf{w}_{-i, n}, \boldsymbol{\alpha}, \boldsymbol{\beta}\right) \\
& =P\left(w_{i, n} \mid Z_{i, n}=t, \mathbf{z}_{-i, n}, \mathbf{w}_{-i, n}, \boldsymbol{\beta}\right) P\left(Z_{i, n}=t \mid \mathbf{z}_{-i, n}, \mathbf{w}_{-i, n}, \boldsymbol{\alpha}\right) \\
& =P\left(w_{i, n} \mid Z_{i, n}=t, \mathbf{z}_{-i, n}, \mathbf{w}_{-i, n}, \boldsymbol{\beta}\right) P\left(Z_{i, n}=t \mid \mathbf{z}_{-i, n}, \boldsymbol{\alpha}\right)
\end{aligned}
$$

Gibbs Sampling for LDA (2/3)

- For the first term, we have

$$
\begin{aligned}
& P\left(w_{i, n} \mid Z_{i, n}=t, \mathbf{z}_{-i, n}, \mathbf{w}_{-i, n}, \boldsymbol{\beta}\right) \\
&=\int P\left(w_{i, n} \mid Z_{i, n}\right.\left.=t, \boldsymbol{\phi}_{t}\right) P\left(\boldsymbol{\phi}_{t} \mid \mathbf{z}_{-i, n}, \mathbf{w}_{-i, n}, \boldsymbol{\beta}\right) d \boldsymbol{\phi}_{t} \\
& P\left(\boldsymbol{\phi}_{t} \mid \mathbf{z}_{-i, n}, \mathbf{w}_{-i, n}, \boldsymbol{\beta}\right)=\frac{P\left(\mathbf{w}_{-i, n} \mid \boldsymbol{\phi}_{t}, \mathbf{z}_{-i, n}\right) P\left(\boldsymbol{\phi}_{t} \mid \boldsymbol{\beta}\right)}{P\left(\mathbf{w}_{-i, n} \mid \mathbf{z}_{-i, n}, \boldsymbol{\beta}\right)} \\
& \sim \operatorname{Dirichlet}\left(\boldsymbol{\beta}+\mathbf{N}_{t}^{-i, n(w)}\right)
\end{aligned}
$$

- Here, $\mathbf{N}_{t}^{-i, n(w)}$ is a V-dimension vector and $\mathbf{N}_{t, v}^{-i, n(w)}$ is the number of instances of the v-th word in the vocabulary assigned to topic t in document D_{i}, excluding the instance $w_{i, n}$. Recall that the Dirichlet is the conjugate prior for the multinomial. Thus, the posterior is also Dirichlet.
- Using the property of Dirichlet-multinomial distribution, we have

$$
\begin{aligned}
& P\left(w_{i, n} \mid Z_{i, n}=t, \mathbf{z}_{-i, n}, \mathbf{w}_{-i, n}, \boldsymbol{\beta}\right) \\
& =\frac{\Gamma\left(\sum_{v}\left(\beta_{v}+\mathbf{N}_{t, v}^{-i, n(w)}\right)\right)}{\Gamma\left(1+\sum_{v}\left(\beta_{v}+\mathbf{N}_{t, v}^{-i, n(w)}\right)\right)}\left(\frac{\Gamma\left(\mathbf{N}_{t, t w_{i, n}}^{-i, n(w)}+\beta_{w_{i, n}}+1\right)}{\Gamma\left(\mathbf{N}_{t, w_{i, n}}^{-i, n}(\boldsymbol{w})+\beta_{w_{i, n}}\right)}\right)=\frac{\mathbf{N}_{t, w_{i, n}}^{-i, n(w)}+\beta_{w_{i, n}}}{\sum_{v}\left(\mathbf{N}_{t, v}^{-i, n(w)}+\beta_{v}\right)} .
\end{aligned}
$$

Gibbs Sampling for LDA (3/3)

- Similarly, for the second term, we have

$$
\begin{aligned}
& P\left(Z_{i, n}=t \mid \mathbf{z}_{-i, n}, \boldsymbol{\alpha}\right)=\int P\left(Z_{i, n}=t \mid \boldsymbol{\theta}_{i}\right) P\left(\boldsymbol{\theta}_{i} \mid \mathbf{z}_{-i, n}, \boldsymbol{\alpha}\right) d \theta_{i} \\
& P\left(\boldsymbol{\theta}_{\boldsymbol{i}} \mid \mathbf{z}_{-i, n}, \boldsymbol{\alpha}\right) \propto P\left(\mathbf{z}_{-i, n} \mid \boldsymbol{\theta}_{i}\right) P\left(\boldsymbol{\theta}_{\boldsymbol{i}} \mid \boldsymbol{\alpha}\right) \\
& \sim \operatorname{Dirichlet}\left(\boldsymbol{\alpha}+\mathbf{N}^{-i, n(z)}\right)
\end{aligned}
$$

where $\mathbf{N}^{-i, n(z)}$ is a K-dimension vector and $\mathbf{N}_{k}^{-i, n(z)}$ is the number of words assigned to topic k in document D_{i}, excluding the instance $z_{i, n}$.

- Then, we have

$$
P\left(Z_{i, n}=t \mid \mathbf{z}_{-i, n}, \alpha\right)=\frac{\mathbf{N}_{t}^{-i, n(z)}+\alpha_{t}}{\sum_{k}\left(\mathrm{~N}_{k}^{-i, n(z)}+\boldsymbol{\alpha}_{k}\right)}
$$

- Thus,

$$
P\left(Z_{i, n}=t \mid \mathbf{z}_{-i, n}, \mathbf{w}, \boldsymbol{\alpha}, \beta\right) \propto \frac{\mathbf{N}_{t, w_{i, n}}^{-i, n(w)}+\beta_{w_{i, n}}}{\sum_{v}\left(\mathbf{N}_{t, v}^{-i, n(w)}+\beta_{v}\right)} \times \frac{\mathbf{N}_{t}^{-i, n(z)}+\alpha_{t}}{\sum_{k}\left(\mathbf{N}_{k}^{-i, n(z)}+\alpha_{k}\right)}
$$

Estimate ϕ and θ

- To obtain ϕ and θ, we can simply calculate

$$
\begin{aligned}
\phi_{k, v} & =\frac{n_{v}^{(k)}+\beta_{v}}{\sum_{j=1}^{V}\left(n_{j}^{(k)}+\beta_{j}\right)} \\
\theta_{i, k} & =\frac{n_{k}^{(i)}+\alpha_{k}}{\sum_{t=1}^{K}\left(n_{t}^{(i)}+\alpha_{t}\right)}
\end{aligned}
$$

where $n_{j}^{(k)}$ is the frequency of word w^{j} in the vocabulary assigned to topic k, and $n_{t}^{(i)}$ is the number of words assigned to topic t in document D_{i}.

Outline

(1) Bayesian Networks

- Definitions
- Conditional Independence and D-Separation
- Modeling Problems as Graphs
- Common Tasks
(2) Evaluating Continuous Marginals
(3) Bayesian Estimation
(4) Evaluating Discrete Marginals
- Belief Propagation
- Sampling
(5) Latent Dirichlet Allocation
(6) Markov Random Fields**

