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Introduction

@ In graphical models, we model a problem using a graph where

o Each node represents a random variable
o Each link expresses a probabilistic relationship between two nodes

o Directed link: conditional dependency (forming a Bayesian network)
o Undirected: correlation (forming a Markov random field, or Markov
network)

@ Graphical models offer the following advantages:

o Visualization of the probabilistic models and motivating new models

o Insight into the probabilistic properties (e.g., conditional independence
between any two groups of nodes)

o Complex computation (required to perform inference/learning) that
can be carried along the graph
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© Bayesian Networks
@ Definitions
o Conditional Independence and D-Separation
@ Modeling Problems as Graphs
@ Common Tasks

© Evaluating Continuous Marginals
© Bayesian Estimation

@ Evaluating Discrete Marginals
o Belief Propagation
@ Sampling

© Latent Dirichlet Allocation

@ Markov Random Fields**
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O ne

© Bayesian Networks
@ Definitions
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Definitions (1/3)

@ Consider the joint probability P(A=a,B=b,C=c) (or P(A B, C)
for short) of three random variables A, B, and C

@ It can be factorized into, for example, P(A|B, C)P(B|C)P(C)
o Holds for any distribution

@ We can draw the factorization as a graph:

o Each node is a random variable
o A link denotes conditional dependency

@ The graph must be a Directed Acyclic Graph (DAG) [Proof: by
induction on the number of nodes]
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Definitions (2/3)

@ Given P(Xy,Xo, -, Xuy) of M random variables, we have

e Some factorization, e.g.,
P(X1, Xz, , Xm) = P(X1|Xa, -+, Xm) -+ - P(Xm)
o A fully connected graph

@ It is the missing links that convey interesting information

o A missing link from D to C implies independence between D and C
e P(CID)=P(C), denoted by {C} LL {D} or {C} LL{D}| 0
o A missing link from C to A implies conditional independence
between C and A given B and D
e P(AB,C,D)=P(A|B,D), denoted by {A} LI {C}|{B, D}
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Definitions (3/3)

@ A graph visualizes a factorization:

M
P(X1,Xo, -+, Xum) = | [ P(Xilparent(X)),
i=1
where parent(X;) is the values of the parent nodes of X;
@ One graph for each factorization

o Given a set of variables, we may construct different graphs based on
different factorizations
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Extensions (1/2)

@ Values of some random variables may be observed in our problem
o E.g., we may only care about P(B, C,---|A) given an observed variable
A=a
o Denoted as solid nodes in the graph

@ There can be deterministic variables

e E.g., we may assume parameters (e.g., p and X in classification, and w
in regression) and hyperparameters (e.g., o and f in regression) to
simplify calculation of a specific term in the factorization

o Denoted by small dots in the graph

@ Repeating subgraphs can be collapsed into a plate marked by
multiplicity
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@ Observed variable X = x vs deterministic variable «?
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Extensions (2/2)

@ Observed variable X = x vs deterministic variable &?

@ Even X is observed, P(X = x) # 1 if X has a nontrivial distribution
o Can be in the consequent of a conditional probability

@ P(«) is undefined

Can only be a parameter in a conditional probability

o cannot have parents

Must be observed

If o« parametrizes P(Y') (denoted by P(Y) = P(Y;«)), then
P(X]Y;a) = P(X|Y)

o Note, however, that P(X;x=c) # P(X;x=c')
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O ne

© Bayesian Networks

o Conditional Independence and D-Separation
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Independence and Conditional Independence

o {A} LL {B}|{C} denotes conditional independence
o P(AB,C)=P(AIC)
o Or equivalently, P(A,B|C) = P(A|B,C)P(B|C) = P(AIC)P(B|C)
@ Many tasks are solved by the aid of conditional independence between
nodes
@ But checking conditional independence involving more than three
nodes is usually cumbersome
@ A graph visualizes the conditional independence and provides an easy
way for checking

o Given three sets of nodes P, Q, and R, you should be able to tell
whether P 1L @ | R by directly looking at the graph
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Canonical Cases (1/3)

o Consider a tail-to-tail path at C
@ If C is not observed
o {A} LL{B}|07?
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Canonical Cases (1/3)

o Consider a tail-to-tail path at C
@ If C is not observed

o {A} LL{B}|0? No
o p(AB)=[p(A B, C)dC =

J p(AIC)p(BIC)p(C)dC, which does
not equal to p(A)p(B) for all
distributions

o If C is observed

° e o {A} LL{B}I{C}?
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Canonical Cases (1/3)

o Consider a tail-to-tail path at C
e If C is not observed
o {A} 1LL{B}|0? No
o p(A,B)=[p(A B, C)dC =
J p(AIC)p(BIC)p(C)dC, which does
not equal to p(A)p(B) for all
distributions

o If C is observed

° e o {A} LL{B}|{C}? Yes
o p(A BIC) = PEEC —

2LACECPLE) — p(AIC)p(BIC)

o We say the path from Ato B is
blocked by C if C is observed
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Canonical Cases (2/3)

o Consider a head-to-tail path at C
o If C is not observed
o {A} LL{B}|0?
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Canonical Cases (2/3)

o Consider a head-to-tail path at C
o If C is not observed
o {A} 1L {B}|0? No

e If C is observed

o (A} LL(B}|{C}?
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Canonical Cases (2/3)

o Consider a head-to-tail path at C
o If C is not observed
o {A} 1L {B}|0? No

@ If C is observed
o (A} LL{B}|{C}? Yes
o p(A BIC) =520 —

PEICEFRELAL = p(BIC)p(AIC)

o The path from A to B is blocked
by C if C is observed
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Canonical Cases (3/3)

@ Consider a head-to-head path at C
@ If C is not observed
o {A} LL{B}|07?
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Canonical Cases (3/3)

@ Consider a head-to-head path at C
@ If C is not observed

o {A} LL{B}|0? Yes
o p(A,B) = [p(A,B,C)dC =

J'p(CIA,B)p(A)p(B)dC=
p(A)p(B) [ p(C|A,B)dC = p(A)p(B)
o The path from A to B is blocked by

C if C is not observed

e @ If C is observed
o {A} LL{B}I{C}?
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Canonical Cases (3/3)

@ Consider a head-to-head path at C
@ If C is not observed

o {A} LL{B}|0? Yes
o p(A,B) = [p(A,B,C)dC =

J'p(CIA,B)p(A)p(B)dC=
p(A)p(B) [ p(C|A,B)dC = p(A)p(B)
o The path from A to B is blocked by

C if C is not observed

e @ If C is observed
o {A} LL{B}|{C}? No

o Actually, if C has descendents, A and
B become dependent if any of the
descendents is observed [Homework]
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D-Separation (1/2)

@ Given three sets of non-intersecting random variables P, @, and R, we
say P is d-separated (“d” means “direct”) from Q given R, denoted as
P 1L Q| R, iff all paths from P to Q are blocked

@ A path (of arbitrary length) is blocked if either

o There are two links meet head-to-tail or tail-to-tail at a node, and that
node is in R, or

o There are two links meet head-to-head at a node, and neither the
node, nor its descendents, is in R

@ Deterministic parameters play no role in d-separation

o A parameter o« must be observed and have no parent
o Path passing through o must be tail-to-tail, so is blocked
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D-Separation (2/2)

e Q o (A} LL{C}| 07
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D-Separation (2/2)

e Q o {A} LL{C}| 07 Yes
o {B} LL{D}[{C}?
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D-Separation (2/2)

e Q o {A} LL{C}| 07 Yes
o {B} LL {D}|{C}? Yes
o {B} LL{D,F}I{C,E}?
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D-Separation (2/2)

e Q o {A} LL{C}|0? Yes
o (B} LL{D}|{C}? Yes
o {B} LL{D,F}|{C.E}? Yes
e G o (D} LL{E}|{C.G)?
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D-Separation (2/2)

e Q o {A} LL{C}|0? Yes
o (B} LL{D}|{C}? Yes
o {B} LL{D,F}|{C.E}? Yes
e G o {D} LL{E}|{C,G)? No
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© Bayesian Networks

@ Modeling Problems as Graphs
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Modeling a Problem

@ How to model a problem as a graph right (or, how determine the right
factorization)?
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Modeling a Problem

@ How to model a problem as a graph right (or, how determine the right
factorization)?
© Identify nodes

@ For each node X, draw links from others Y7, Y5, - to X based on your

assumptions of dependency
© Make sure

@ The network is connected
@ You did not add too many links that prevents the graph from being a
DAG

@ You should not invert the direction of a link just because you know
how to use Bayes' rule
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Example: Classification

@ Model parametersp:{p,-},K:l, u:{p,,-},K:l,
and £ ={Z;}¥ | are deterministic variables

@ Here we assume a generative model where
an observation (x) is the cause of some
reasons (r) that may not be observable

@ Training:
(P 1, E)map = arg, s maxp(p, p, Z[X)
o Prediction: y’ =arg, maxP(y|x’;p,u,X)

e (@@
&0 OO
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Example: Linear Regression (1/2)

e Why don’t we draw links from r(t)/r" to
N xt) /x'?

N | e
g

¥

>
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Example: Linear Regression (1/2)

e Why don’t we draw links from r(t)/r" to
N xt) /x'?

Q

@ Regression is not a generative model

e We don't know how to evaluate
P(x'|r’,--+) given our assumptions

@ Training: wpap = arg,, maxp(w|X, «, )

N | e
g

o Recall that we may assume

p(w)~N(0, 1)
£/>£> e Prediction: y’ =arg, maxp(y|x’, w,(3)

>
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Example: Linear Regression (2/2)

@ w is a random variable in Bayesian
estimation for r’

@ Prediction:
' = arg, maxplylx', X, . B) =
arg, max [ p(y, wix’, X)dw

@ There is no separate training phase
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Example: Clustering

o m={m}f,, u={ul,, Z={Z}K,
o Target: ({z!")), 7, 1, Z)pap =
argrz )y, = maXP({Z(t)}t,T[, u, X|X)

@ p({z(t)}tr Ttv l“lv Z‘:X:) =
p(7e, u, Zl{z ), X)p({z(}]X)

@ o plm, , Z{z 0}, X)p ({2} ) pl(2(0),)
@ o Can be simplified to
p(re,u, Zi{z D}, X)p(X{z},) is we have
no preference on a particular {z(*)}; set
@ e The problem is, we cannot evaluate
N \® p(Xl{z*)},) without knowing 7, u, and Z
@ E-step: treat 7t, i, and X as parameters and
estimate {z(t)},

o M-step: treat {z(!)}; as parameter and
estimate 7t, 4, and £
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Outline

© Bayesian Networks

@ Common Tasks
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@ Tasks given a graph, evidence E, and optionally parameters:
@ Inference: solve arg, maxP(Z = z|E)

e E.g., training a classifier /regressor, making predictions, clustering, etc.
o Based on ML/MAP estimators, or full Bayesian estimation

@ More?
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@ Tasks given a graph, evidence E, and optionally parameters:

@ Inference: solve arg, maxP(Z = z|E)
e E.g., training a classifier /regressor, making predictions, clustering, etc.
o Based on ML/MAP estimators, or full Bayesian estimation

@ More?

@ Evaluating the marginals P(Z|E) in some complicate models
o E.g., Latent Dirichlet Allocation (LDA), etc.

@ Learning the structure of a graph**

o E.g., association rules, other advanced topics
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Outline

© Evaluating Continuous Marginals
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Conjugate Prior of the Likelihood (1)

@ In many cases, we want to write down P(Z|E) in closed form

o By Bayes’ rule, we have P(Z|E) = %

o If we assume some distribution of the likelihood P(E|Z), then we face
a problem: how to pick the distribution of the prior P(Z) such that
the posterior P(Z|E) is tractable?

@ It is known that for certain likelihood distribution, some prior
distribution will lead to the posterior distribution that is in the same
family as prior distribution

o Prior of such distribution is called the conjugate prior of the likelihood
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Linear Gaussian Model

@ For each node X;, we assume p(X;|parent(X;)) follows some
(parametrized) distribution
@ A common choice is to form a linear Gaussian model, where each
node X; resembles a linear combination of its parents Y € parent(X;)
o p(xilyr, -+, yp) = N0xil Z7_ wijy; + b, o?), or

p(xilyy. -+, y,) =N(xil 35 Wijy;+b;, ;)
o And p(yy,---.y,) is Gaussian

@ For two nodes X and Y, if p(X;|Y) and p(Y) follow the linear
Gaussian model, then p(Y|X;) and p(X;) are both normal distribution

e p(X;) is called the conjugate prior of the likelihood p(Y|X;) of X;
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Outline

© Bayesian Estimation
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Bayesian Estimation for Linear Regression (1/3)

N

Shan-Hung Wu (CS, NTHU)

@ Assuming hyperparameters o« and 3, we have
[ply, wix", X, «,B)dw =
Jplylx" w, X, o, B)p(wlix', X, o, B)dw=
Jpylx',w, X, B)p(wix’, X, o, B)dw=
Jplylx’ w,B)p(w|X, o, B)dw
o {y} LL{X}{x', w,pB}
o {w} LL{x"}{X, e, B}
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Bayesian Estimation for Linear Regression (2/3)

o y' = arg,max | plylx’,w, B)p(wlX, o, B)dw

o plylx’,w,B)=N(ylw'x" p~1)
o p(wlX, o, B) = p({rF}l{x B}, w, o, B)p(wl{x D}, o, B)=

pUr® L x®}, w, B)p(wln)
o Let r=[rW) ... rIMT gnd X =[x, ... x(MT c RVXd e have

o p({rWyelix®}e, w,B) = p(rlX, w,B) = N(rlXw,p~11)
o p(wlx) =N(wl|0, " 11)
o Notice that p(r|X,w,3) and p(w|x) form a linear Gaussian model

@ w is the parent of r and the mean of p(r|X,w,B) is a linear
combination of w

o Therefore, p(w|X, ., B) = p(wlr, X, x,B) =N(w|BZX "r, L), where
I=(al+pXTX)!
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Bayesian Estimation for Linear Regression (3/3)

o y'=arg, max [ p(ylx’,w,B)p(w|X,«, B)dw, where
plylx’,w,B) =N(yl(x")Tw,p ) and
p(w|X, 00, B) =N(w|pZX"r,X)
o Again, p(y|x’,w,B) and p(w|X, x, 3) form a linear Gaussian model

o w is the parent of y and the mean of p(y|x’, w,B) is a linear
combination of w

o We have
Iplylx’,w,B)p(wlX, & B)dw = N(ylIp(x") TEXTr, &+ (x') T£7'x')
e Finally, y’ =B(x")TZXTr=(BZX "r)"x’, where
I=(al+BX"X)T
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Why Bayesian Estimation?

Figure : The prediction made by Bayesian estimation regressor is the red line;
where the predictions made by MAP- (or ML-) estimated regressor could be any
line in the shaded area.
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@ Evaluating Discrete Marginals
o Belief Propagation
@ Sampling
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Space Complexity

P(C)=05

P(S|C)=01
PS|~C)=05

P(W|R, S)=095
P(W|R~S)=0.90

P(W|~R, S)=0.90
P(W|~R~S)=0.10

PR|C)=08
P(R|~C)=0.1

@ For each node X;, we need to
evaluate/store all possible values of
P(Xilparent(X;))

@ Suppose each node has K states and
there are totally M nodes, what's the
space complexity?

Shan-Hung Wu (CS, NTHU)
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Space Complexity

@ For each node X;, we need to
evaluate/store all possible values of

P(Xilparent(X;))

PRIC) =08 @ Suppose each node has K states and
he|-0=ol there are totally M nodes, what's the
space complexity?

o Chain: (K—1)+(M—-1)K(K—-1)=

P(W|R,S)=095 O(MKz)

PES|C)=01
P(S|~C)=05

PO | R =050 o Fully connected graph:
P(W|~R~S)=0.10 Zi(K_l)K|parent(X,')| —KM_1=

O(KM)
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Reducing Space Complexity

o How?
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Reducing Space Complexity

o How?

@ Tying: sharing parameters between combinations of parent values

e E.g., modeling the dependency between
binary variables as noisy OR gates

@ Inhibitors are independent with each other
and happens with probabilities g;

e P(X;=1Y=1,Z=0)=1—qy
] P(X,':l|Y:1,Z:1) Zlfquz
o P(Xj|parent(X;)) =
1 =TTy eparent(x;), y=19Y
@ Space complexity?
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Reducing Space Complexity

o How?

@ Tying: sharing parameters between combinations of parent values

e E.g., modeling the dependency between
binary variables as noisy OR gates

@ Inhibitors are independent with each other
and happens with probabilities g;

o P(X;=1Y=1,Z=0)=1—gqy

e P(X;=1lY=1,Z=1)=1—¢gvyqz

o P(Xj|parent(X;)) =
1 =TTy eparent(x;), y=19Y

@ Space complexity? O(M?) ( (O(M)) for
each node)
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@ Evaluating Discrete Marginals
o Belief Propagation
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Evaluating Marginals of All Nodes

@ Sometimes, we want to evaluate the marginals of all nodes (given
some evidence)

e Belief propagation allows some components of these marginals to be
shared and evaluated just once

o Reduces time complexity significantly
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Evaluating P(X;)’s in a Chain (1/2)

@ Problem: to evaluate P(X;) of every node X; in a chain:

m(X2) mx) - AX) AX-1)

@ We can evaluate P(X;) one-by-one
° No problem if nodes are continuous and
IX P <, X;, -+, Xm) can be written as a closed form
(e g, by assuming a ||near Gaussian model)
@ Time consuming for discrete variables though, since P(X;) =
2_(x;:jziy PXOP(XelX), - P(Xil Xi—1), P(Xia|Xi), -, P(Xm I Xip—1)

o Assuming that each node has K states, we have time complexity:
O(K™~1) for each node, O(MK™~—1) in total
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Evaluating P(X;)s in a Chain (2/2)

@ Speed up?
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Evaluating P

@ Speed up?

o Observer that when computing P(X;) and P(X;), i #j, most
conditional probabilities P( Xy 1|Xk), 1 <k < M—1, are computed
twice

o It is plausible that we can “reuse” these conditional probabilities to
reduce time complexity

o How?
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Evaluating P

@ Speed up?

o Observer that when computing P(X;) and P(X;), i #j, most
conditional probabilities P( Xy 1|Xk), 1 <k < M—1, are computed
twice

o It is plausible that we can “reuse” these conditional probabilities to
reduce time complexity

o How?

o One way is to precompute all P(Xi1/Xk)s, 1 <k < M—1, and then
look up these results to obtain P(X;)s
o Still exponential to M in time complexity
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Belief Propagation along a Chain (1/3)

@ Notice that P(X Zx X P(X1, X,,XM)
2 x . xu PX1, X/\/I|X le XM P(X1|X;)P (XM|X‘) (Xi)=
2 Xy Xu P l)?)g,) (X/V’|X =2 x;. Xy XXV TUXDA(X])

o 7(X;)=P(X;|Xy) if i>1, and t(Xy) = P(Xy)
o A(X;)=P(XplX;) if i<M, and A(Xpy) =1
o «(X1)=P(X1)=m(X1) is independent with X;
o In addition, 7t(X;) = X\Xl ZX P(X;, X;—11X1) =
2 x;_, P(XilXi—1, X1) P(Xi—1]X1)= Zx _, PIXilXi—1) P(Xi—alX1) =
Zx _, PIXiIXi—1) (X - 1)
o A(Xi) =P(XmlXi) = Lx, , P(XmlXit1, X) (Xit1lXi)=
Zx i1 XM|XI+1) ( l+1|X ZX:'+1 I+1|X) ( I+1)
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Belief Propagation along a Chain (2/3)

le xM Xl XM) (X ))\(Xi)
o 7(Xit+1) Zx (Xir1lXi)m(X;) for 1 <i< M—1
o A(X =2 x. P(XilX;i—1)A(X;) for 2<i< M

m(Xz) mX)  AX) AXi)

e Starting from X till X1, each node X; can forward all 7t(X;;1)s
downward along to chain upon receiving 7t(X;)s from its parent

e Starting from Xy, till X3, each node X; forwards all its A(X;_1)s
upward along to chain upon upon receiving A(X;)s from its child

o After receiving both 7t(X;)s and A(X;)s from its parent and child
respectively, each node X; can compute P(X;)

o Note that «(Xy)s can be broadcasted to all nodes by Xj parallel to the
above propagations
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Belief Propagation along a Chain (3/3)

@ The task of evaluating all P(X;)s is now divided into local
computation of 7s and As and exchange of these local results
o We call the inference using this message-passing style as belief
propagation
o Time complexity?
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Belief Propagation along a Chain (3/3)

@ The task of evaluating all P(X;)s is now divided into local
computation of 7s and As and exchange of these local results

o We call the inference using this message-passing style as belief
propagation
o Time complexity?
o O(MK?+ K?) for each node (O(MK?) for message exchange and
O(K?) for computing P(X;))
o O(MK?+ MK?) in total, provided that each node X; stores its
intermediate messages (i.e., 7t(X;)s and A(X;)s)

o Space complexity?
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Belief Propagation along a Chain (3/3)

@ The task of evaluating all P(X;)s is now divided into local
computation of 7s and As and exchange of these local results

o We call the inference using this message-passing style as belief
propagation
o Time complexity?

o O(MK?+ K?) for each node (O(MK?) for message exchange and
O(K?) for computing P(X;))

o O(MK?+ MK?) in total, provided that each node X; stores its
intermediate messages (i.e., 7t(X;)s and A(X;)s)

o Space complexity?

o O(K?) on each node X; (for P(Xi+11X;)s, P(X;|X;_1)s, 7(X;)s, and
A(Xi)s)
o O(MK?) totally
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Evidences (1/2)

@ What if we are given an evidence E?

e Without loss of generality, let's consider a chain from X to Xy, where
{X1,Xpm'} C E, as below:

Xy X)X A1)
o Problem: to evaluate P(X;) for 2 <i< M’ —
P(X;. X1, Xy,
o P(X[E) = P(Xi|X1, Xu') = ,E(XiXMM)) = oc(xl,xM/)n(x,-wx,-)
[Proof]
Tt X,') = P(X,'|X1) if i > 1, and 7T(X1) = P(Xl)

(
AX) = P(Xpp | X;) i i< M7, and A(Xpy/) = 1
__P(X) P(X1) _ 1 1 -
(X1, X1) = B1x, X ] = PRy X0 I PXa] = 7Kg ] = AOXa] S
independent with X;
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Evidences (2/2)

Xz mX) - AX) AXn-1)

@ Belief propagation is still applicable except that there is only one
7t(Xpm) and one A(X7)

o o(Xy,Xp) can be broadcasted to all nodes by Xj,/_; once it
computes 71(Xp;r) (or by X5 once it computes A(X1))

@ Time/space complexity?
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Evidences (2/2)

Xz mX) - AX) AXn-1)

@ Belief propagation is still applicable except that there is only one
7t(Xpm) and one A(X7)

o o(Xy,Xp) can be broadcasted to all nodes by Xj,/_; once it
computes 71(Xp;r) (or by X5 once it computes A(X1))
e Time/space complexity? Still O(M’K?) in both time and space

o If either Xy or Xy is unobserved, we have either K A(X7) or K
7t(Xpr) messages respectively
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@ Evaluating Discrete Marginals

@ Sampling
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Why Sampling?

@ To evaluate discrete P(X|E) in a Bayesian network, we produce n
samples of it and have the estimate:

P(X =x|E =e) # samples having X = x given E =¢)

@ More generally, to evaluate the expected value of some function f
defined over X and E:

E[fE=el=) f(x,e)P(X=x|E=e¢)

we can produce n samples x() where X(t) ~ P (X), then estimate

EflE=el = Zf( e).
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Ancestral Sampling

@ Given M random variables X1, X5, -+, Xjs, we want samples of these
variables following their joint distribution P(X1, X5, -+, Xy)

o How?
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Ancestral Sampling

@ Given M random variables X1, X5, -+, Xjs, we want samples of these
variables following their joint distribution P(X1, X5, -+, Xy)

o How?
o If we have a graph, we can draw sets of samples {x1,x2, -+, xu}
one-by-one, each by:

@ Sample nodes X's having no parent by following the corresponding
P(X)

@ Repeat: sample each child node X whose parents are all sampled by
following P(X|parent(X)) with parents set to their sampled values

@ We call this ancestral sampling
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@ If is a node without parent, simple fix the value to evidence
@ Now suppose P(A,B,C)=P(A)P(B)P(C|A,B)

o If C =c is observed, how to make sure the sample value ¢ follows
P(CIA, B)?
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@ If is a node without parent, simple fix the value to evidence
@ Now suppose P(A,B,C)=P(A)P(B)P(C|A,B)

o If C =c is observed, how to make sure the sample value ¢ follows
P(C|A, B)?
@ Sample and discard inconsistent ones

e Start over from roots

@ Very in-efficient
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Gibbs Sampling (1/2)

Gibbs sampling is a Markov Chain Monte Carlo (MCMC) algorithm
for obtaining a sequence of observations which are approximately
from from the joint probability distribution of two or more random
variables), when direct sampling is difficult

o Monte Carlo vs. Las Vegas randomized algorithms?
@ Suppose we want to obtain M samples of X ={X,---, Xy} from a
joint distribution P (Xq, -+, Xn)

@ Denote the t-th sample by x(t) = {xl(t), ...,x,(vt)}
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Gibbs Sampling (2/2)

Input: M, a Bayesian network of X,---, Xy, and W burn-in samples
to discard
Output: x('sfort=1,--- M

Initiate x(0):
fort—1to W+Mdo

for i<~ 1to N do
(t)

. < avalue sampled from

P X XXX

X

end

if t > W then Output x,-(t);
end

Algorithm 1: Gibbs sampling algorithm.
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Gibbs Sampling (2/2)

Input: M, a Bayesian network of X,---, Xy, and W burn-in samples
to discard
Output: x('sfort=1,--- M

Initiate x(0):
fort—1to W+Mdo

for i<~ 1to N do
(t)

. < avalue sampled from

P X XXX

X

end

if t > W then Output x-(t);

i
end
Algorithm 2: Gibbs sampling algorithm.
@ Why does it work?

@ Why discard early (burn-in) samples?
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Markov Chain for Inference of P (X)

@ Set the state space 8 of a Markov chain to the range of X (8 may be
astronomically large)

e Find a tpm (transition prob. matrix) P such that P (X))~ 7tp, the
steady state distribution
@ Then, we can have samples by simply running a random walk:
© Pick x© somehow:
@ Fort=1,...,W+N, sample x(*) from P (x“)|x(H) :x“*l));
© Discard the first W burn-in samples, and output remaining samples;
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Why Does the Gibbs Sampling Work?

@ The tpm of the Gibbs sampler for P(X) where X ={Xi,..., Xy} is
P= H,N:1 P where

P(i,) _ 0 ifxlf,-#x_,'
XX P(X,':XI-/|X,,':X,,') ifX’_I-:X,,'

and the subscript —/ denotes all but the i-th element

@ Informally, the Gibbs sampler cycles through each of the variables X;,
replacing the current value x; with a sample from P (Xj|X _; =x_;)

o If x is a sample from P (X), then so is x’, since x’ differs from x only
by replacing x; with a sample from P (X;| X _; =x_;)

@ Since P maps samples from P (X) to samples from P (X), so does
P. Thus, P(X) is a stationary distribution for P

@ There is another explanation using detailed balance equations [Proof]
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© Latent Dirichlet Allocation
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Topic Model

@ Topic modeling is a method for analyzing large quantities of unlabeled
data.
o For our purposes, a topic is a probability distribution over a collection
of words and a topic model is a formal statistical relationship between a

group of observed and latent (unknown) random variables that specifies
a probabilistic procedure to generate the topics—a generative model.

@ The central goal of a topic is to provide a “thematic summary"” of a
collection of documents.
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An Example

@ Given 2 documents Dq, D> with words
o D; ={cat, dog, bird, fish}

o D, ={car, bike, bus}
@ We can discover the “topics” (pet, vehicle, ...).
@ A document may have one or more topics in practice.

Graphical Models NetDB-ML, Spring 2015
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Latent Dirichlet Allocation

e Latent Dirichlet allocation (LDA) is the most common topic model
currently in use, allowing documents to have a mixture of topics.

o LDA provides a generative model that describes how the documents in
a corpus were created.
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Notation and Terminology

@ A word is the basic unit of discrete data, defined to be an item from a
vocabulary {Wl,...,WV}.
o A document D; is a sequence of N words denoted by
w; = (w1, w;o,...,w;n), where w; , is the nth word in the sequence.

@ A corpus is a collection of M documents denoted by
D ={wy,wa,...,wy}.
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The Generative Process

@ Assume we know K topic distributions for our corpus, meaning K
categoricals containing V elements each.

@ Choose the topic distribution ©; ~ Dir(«) for each
document D; where i €{1,...,M} (0; is a
categorical of length K).

@ Choose the word distribution ¢, ~ Dirichlet (3) for
each topic where k € {1,..., K} (& is a vector of
length V).

e B is a V-dimension vector of positive reals.

IYo6

x=

B
?
o

@ For each of the words w; , where n€{1,..., N}:

@ Choose a topic z; , ~ Categorical(0;).
@ Choose a word w; p, ~ Categorical((bzl_v").
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@ Given «, 3, and document D; with word sequence w;, what are the most probable
values for 0;7
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@ Given «, 3, and document D; with word sequence w;, what are the most probable
values for 0;7

P(®jlw;, o, B) =[),. P(0; z;, dlw;,,B)dd
o [ 3 ;; P(wil®;,z;, &, B) P(6;,2;, pla) d

@ The close form of the posterior is intractable (due to the unknown z;)
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Gibbs Sampling for LDA (1/3)

@ In LDA, the distribution of the topics Z for words W is unknown and Z is
multivariate.

@ Hence, the Gibbs sampling procedure boils down to estimate
P(Zin=tz—inw).

@ Here, 0, ¢ are integrated out. If we know the exact Z; for each document
D;, it's trivial to estimate 0; and &;.

@ We have
P (Zi,n = t|z—i,nvw1 (x! B)
X P(Zi,n = t, Wl',l'l|zfl',l1vwfl',l11 a! ﬁ)
=PWjnlZin=1t,2_inW_inB)P(Zin=tz_inW_jnx)
=P(WinlZin=1t,2_;pW_jn B)P(Zin=tlz_in &)
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Gibbs Sampling for LDA (2/3)

@ For the first term, we have

P(Wi,n|Zi,n =t,Z2 jnW_jn, B)
= _[P(Wi,n‘zi,n = tvq)t) P(q)tlzfi,nvwfi,nv B)dq)t

P(Wfi,n|¢tvzfi,n)P(q)t‘B)
P(W,,',,,|Z,,",,,[3)

~ Dirichlet ((3 n N;""(W])

P(q)t'Zfi,nvwfi,nr B)=

@ Here, Nt_"n(w) is a V-dimension vector and Nt_"','"(w) is the number of instances

of the v-th word in the vocabulary assigned to topic t in document D;, excluding
the instance w; ,. Recall that the Dirichlet is the conjugate prior for the
multinomial. Thus, the posterior is also Dirichlet.

@ Using the property of Dirichlet-multinomial distribution, we have

P(Win‘Zin =t,z_jpW_j n B)

r(z (B et ™) ( (N B, )))_ N L) B,

P(+Zy (BN ™))\ (N ™ B L(N:J“me)'
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Gibbs Sampling for LDA (3/3)

@ Similarly, for the second term, we have

P(Zin=tiz_imo) = JP(z,-,n — 10;) P (01127 ) dO;

P (0jlz—i,n, &) o< P(z_j n0;) P (8ilex)
~ Dirichlet ((x+ N*"v"(Z))

where N=7"(2) is a K-dimension vector and N;""(z) is the number of words
assigned to topic k in document D;, excluding the instance z; ,.
@ Then, we have

Nt i,n(z) T

P(Zi,n = f‘z,;'n, 0‘) = : .
()

@ Thus,

Ne v ™) 1 B, } Ny 4

2y (N;\i'"(w) +f3v> 2k (N/:i'"(z) +0‘k> .

P(Zi,n - t‘Z,,’vn,W, (X, B) X
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Estimate ¢ and 0

@ To obtain ¢ and 6, we can simply calculate

d) - n\(/k)+ﬁv
kv — v (k)
2 -1\ B
(i)
n, 4+ &g
ik k

T ()

where n}k) is the frequency of word w/ in the vocabulary assigned to

topic k, and ngi) is the number of words assigned to topic t in
document D;.
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@ Markov Random Fields**
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