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Introduction

In graphical models, we model a problem using a graph where

Each node represents a random variable
Each link expresses a probabilistic relationship between two nodes

Directed link: conditional dependency (forming a Bayesian network)
Undirected: correlation (forming a Markov random �eld, or Markov

network)

Graphical models o�er the following advantages:

Visualization of the probabilistic models and motivating new models
Insight into the probabilistic properties (e.g., conditional independence
between any two groups of nodes)
Complex computation (required to perform inference/learning) that
can be carried along the graph
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De�nitions (1/3)

Consider the joint probability P(A= a,B = b,C = c) (or P(A,B,C )
for short) of three random variables A, B , and C

It can be factorized into, for example, P(A|B,C )P(B |C )P(C )

Holds for any distribution

We can draw the factorization as a graph:

Each node is a random variable
A link denotes conditional dependency

The graph must be a Directed Acyclic Graph (DAG) [Proof: by
induction on the number of nodes]

Shan-Hung Wu (CS, NTHU) Graphical Models NetDB-ML, Spring 2015 6 / 65



De�nitions (2/3)

Given P(X1,X2, · · · ,XM) of M random variables, we have

Some factorization, e.g.,
P(X1,X2, · · · ,XM) = P(X1|X2, · · · ,XM) · · ·P(XM)
A fully connected graph

It is the missing links that convey interesting information

A missing link from D to C implies independence between D and C

P(C |D) = P(C ), denoted by {C }⊥⊥ {D} or {C }⊥⊥ {D} | ∅

A missing link from C to A implies conditional independence
between C and A given B and D

P(A|B,C ,D) = P(A|B,D), denoted by {A}⊥⊥ {C } | {B,D}

Shan-Hung Wu (CS, NTHU) Graphical Models NetDB-ML, Spring 2015 7 / 65



De�nitions (3/3)

A graph visualizes a factorization:

P(X1,X2, · · · ,XM) =

M∏
i=1

P(Xi |parent(Xi )),

where parent(Xi ) is the values of the parent nodes of Xi

One graph for each factorization

Given a set of variables, we may construct di�erent graphs based on
di�erent factorizations
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Extensions (1/2)

Values of some random variables may be observed in our problem

E.g., we may only care about P(B,C , · · · |A) given an observed variable
A= a

Denoted as solid nodes in the graph

There can be deterministic variables

E.g., we may assume parameters (e.g., µ and Σ in classi�cation, and w

in regression) and hyperparameters (e.g., α and β in regression) to
simplify calculation of a speci�c term in the factorization
Denoted by small dots in the graph

Repeating subgraphs can be collapsed into a plate marked by
multiplicity
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Extensions (2/2)

Observed variable X = x vs deterministic variable α?

Even X is observed, P(X = x) 6= 1 if X has a nontrivial distribution

Can be in the consequent of a conditional probability

P(α) is unde�ned

Can only be a parameter in a conditional probability
α cannot have parents
Must be observed
If α parametrizes P(Y ) (denoted by P(Y ) = P(Y ;α)), then
P(X |Y ;α) = P(X |Y )

Note, however, that P(X ;α= c) 6= P(X ;α= c ′)
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Independence and Conditional Independence

{A}⊥⊥ {B} | {C } denotes conditional independence

P(A|B,C ) = P(A|C )
Or equivalently, P(A,B |C ) = P(A|B,C )P(B |C ) = P(A|C )P(B |C )

Many tasks are solved by the aid of conditional independence between
nodes

But checking conditional independence involving more than three
nodes is usually cumbersome

A graph visualizes the conditional independence and provides an easy
way for checking

Given three sets of nodes P, Q, and R, you should be able to tell
whether P ⊥⊥ Q | R by directly looking at the graph

Shan-Hung Wu (CS, NTHU) Graphical Models NetDB-ML, Spring 2015 12 / 65



Canonical Cases (1/3)

Consider a tail-to-tail path at C

If C is not observed

{A}⊥⊥ {B} | ∅?

No
p(A,B) =

∫
p(A,B,C )dC =∫

p(A|C )p(B |C )p(C )dC , which does
not equal to p(A)p(B) for all
distributions

If C is observed

{A}⊥⊥ {B} | {C }? Yes

p(A,B |C ) = p(A,B,C)
p(C) =

p(A|C)p(B|C)p(C)
p(C) = p(A|C )p(B |C )

We say the path from A to B is
blocked by C if C is observed
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Canonical Cases (2/3)

Consider a head-to-tail path at C

If C is not observed

{A}⊥⊥ {B} | ∅?

No

If C is observed

{A}⊥⊥ {B} | {C }? Yes

p(A,B |C ) = p(A,B,C)
p(C) =

p(B|C)p(C |A)p(A)
p(C) = p(B |C )p(A|C )

The path from A to B is blocked
by C if C is observed
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Canonical Cases (3/3)

Consider a head-to-head path at C

If C is not observed

{A}⊥⊥ {B} | ∅?

Yes

p(A,B) =
∫
p(A,B,C )dC =∫

p(C |A,B)p(A)p(B)dC=
p(A)p(B)

∫
p(C |A,B)dC = p(A)p(B)

The path from A to B is blocked by
C if C is not observed

If C is observed

{A}⊥⊥ {B} | {C }? No

Actually, if C has descendents, A and
B become dependent if any of the
descendents is observed [Homework]
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D-Separation (1/2)

Given three sets of non-intersecting random variables P , Q, and R , we
say P is d-separated (�d� means �direct�) from Q given R , denoted as
P ⊥⊥ Q | R , i� all paths from P to Q are blocked

A path (of arbitrary length) is blocked if either

There are two links meet head-to-tail or tail-to-tail at a node, and that
node is in R, or
There are two links meet head-to-head at a node, and neither the
node, nor its descendents, is in R

Deterministic parameters play no role in d-separation

A parameter α must be observed and have no parent
Path passing through α must be tail-to-tail, so is blocked
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D-Separation (2/2)

{A}⊥⊥ {C } | ∅?

Yes

{B}⊥⊥ {D} | {C }? Yes

{B}⊥⊥ {D,F } | {C ,E }? Yes

{D}⊥⊥ {E } | {C ,G }? No
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Modeling a Problem

How to model a problem as a graph right (or, how determine the right
factorization)?

1 Identify nodes
2 For each node X , draw links from others Y1,Y2, · · · to X based on your

assumptions of dependency
3 Make sure

The network is connected
You did not add too many links that prevents the graph from being a
DAG

You should not invert the direction of a link just because you know
how to use Bayes' rule
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Example: Classi�cation

Model parametersρ= {ρi }
K
i=1, µ= {µi }

K
i=1,

and Σ= {Σi }
K
i=1 are deterministic variables

Here we assume a generative model where
an observation (x) is the cause of some
reasons (r) that may not be observable

Training:
(ρ,µ,Σ)MAP = argρ,µ,Σmaxp(ρ,µ,Σ|X)

Prediction: y ′ = argy maxP(y |x ′;ρ,µ,Σ)
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Example: Linear Regression (1/2)

Why don't we draw links from r (t)/r ′ to
x(t)/x ′?

Regression is not a generative model

We don't know how to evaluate
P(x ′|r ′, · · ·) given our assumptions

Training: wMAP = argw maxp(w |X,α,β)

Recall that we may assume
p(w) ∼ N(0,α−1I )

Prediction: y ′ = argy maxp(y |x ′,w ,β)
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Example: Linear Regression (2/2)

w is a random variable in Bayesian
estimation for r ′

Prediction:
y ′ = argy maxp(y |x ′,X,α,β) =
argy max

∫
p(y ,w |x ′,X)dw

There is no separate training phase
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Example: Clustering

π= {πi }
K
i=1, µ= {µi }

K
i=1, Σ= {Σi }

K
i=1

Target: ({z(t)}t ,π,µ,Σ)MAP =
arg{z(t)}t ,π,µ,Σmaxp({z(t)}t ,π,µ,Σ|X)

p({z(t)}t ,π,µ,Σ|X) =
p(π,µ,Σ|{z(t)}t ,X)p({z

(t)}t |X)
∝ p(π,µ,Σ|{z(t)}t ,X)p(X|{z

(t)}t)p({z
(t)}t)

Can be simpli�ed to
p(π,µ,Σ|{z(t)}t ,X)p(X|{z

(t)}t) is we have
no preference on a particular {z(t)}t set
The problem is, we cannot evaluate
p(X|{z(t)}t) without knowing π, µ, and Σ

E-step: treat π, µ, and Σ as parameters and
estimate {z(t)}t

M-step: treat {z(t)}t as parameter and
estimate π, µ, and Σ

Shan-Hung Wu (CS, NTHU) Graphical Models NetDB-ML, Spring 2015 23 / 65



Outline

1 Bayesian Networks

De�nitions
Conditional Independence and D-Separation
Modeling Problems as Graphs
Common Tasks

2 Evaluating Continuous Marginals

3 Bayesian Estimation

4 Evaluating Discrete Marginals

Belief Propagation
Sampling

5 Latent Dirichlet Allocation

6 Markov Random Fields**

Shan-Hung Wu (CS, NTHU) Graphical Models NetDB-ML, Spring 2015 24 / 65



Common Tasks

Tasks given a graph, evidence E , and optionally parameters:

Inference: solve argzmaxP(Z = z |E )

E.g., training a classi�er/regressor, making predictions, clustering, etc.
Based on ML/MAP estimators, or full Bayesian estimation

More?

Evaluating the marginals P(Z |E ) in some complicate models

E.g., Latent Dirichlet Allocation (LDA), etc.

Learning the structure of a graph**

E.g., association rules, other advanced topics
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Conjugate Prior of the Likelihood (1)

In many cases, we want to write down P(Z |E ) in closed form

By Bayes' rule, we have P(Z |E ) =
P(E |Z)P(Z)

P(E)

If we assume some distribution of the likelihood P(E |Z ), then we face
a problem: how to pick the distribution of the prior P(Z ) such that
the posterior P(Z |E ) is tractable?

It is known that for certain likelihood distribution, some prior
distribution will lead to the posterior distribution that is in the same
family as prior distribution

Prior of such distribution is called the conjugate prior of the likelihood
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Linear Gaussian Model

For each node Xi , we assume p(Xi |parent(Xi )) follows some
(parametrized) distribution

A common choice is to form a linear Gaussian model, where each
node Xi resembles a linear combination of its parents Y ∈ parent(Xi )

p(xi |y1, · · · ,yp) =N(xi |
∑p

j=1
wi ,jyj +bi ,σ

2

i ), or

p(x i |y1, · · · ,yp) =N(x i |
∑p

j=1
W i ,jy j +bi ,Σi )

And p(y1, · · · ,yp) is Gaussian

For two nodes X and Y , if p(Xi |Y ) and p(Y ) follow the linear
Gaussian model, then p(Y |Xi ) and p(Xi ) are both normal distribution

p(Xi ) is called the conjugate prior of the likelihood p(Y |Xi ) of Xi
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Bayesian Estimation for Linear Regression (1/3)

Assuming hyperparameters α and β, we have∫
p(y ,w |x ′,X,α,β)dw =∫
p(y |x ′,w ,X,α,β)p(w |x ′,X,α,β)dw=∫
p(y |x ′,w ,X,β)p(w |x ′,X,α,β)dw=∫
p(y |x ′,w ,β)p(w |X,α,β)dw

{y }⊥⊥ {X} | {x ′,w ,β}

{w }⊥⊥ {x ′} | {X,α,β}
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Bayesian Estimation for Linear Regression (2/3)

y ′ = argy max
∫
p(y |x ′,w ,β)p(w |X,α,β)dw

p(y |x ′,w ,β) =N(y |w>x ′,β−1)
p(w |X,α,β) = p({r (t)}t |{x

(t)}t ,w ,α,β)p(w |{x(t)}t ,α,β)=
p({r (t)}t |{x

(t)}t ,w ,β)p(w |α)
Let r = [r (1), · · · , r (N)]> and X = [x(1), · · · ,x(N)]> ∈ RN×d , we have

p({r(t)}t |{x
(t)}t ,w ,β) = p(r |X ,w ,β) =N(r |Xw ,β−1I )

p(w |α) =N(w |0,α−1I )

Notice that p(r |X ,w ,β) and p(w |α) form a linear Gaussian model

w is the parent of r and the mean of p(r |X ,w ,β) is a linear
combination of w

Therefore, p(w |X,α,β) = p(w |r ,X ,α,β) =N(w |βΣX>r ,Σ), where
Σ= (αI +βX>X )−1
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Bayesian Estimation for Linear Regression (3/3)

y ′ = argy max
∫
p(y |x ′,w ,β)p(w |X,α,β)dw , where

p(y |x ′,w ,β) =N(y |(x ′)>w ,β−1) and
p(w |X,α,β) =N(w |βΣX>r ,Σ)

Again, p(y |x ′,w ,β) and p(w |X,α,β) form a linear Gaussian model

w is the parent of y and the mean of p(y |x ′,w ,β) is a linear
combination of w

We have∫
p(y |x ′,w ,β)p(w |X,α,β)dw =N(y |β(x ′)>ΣX>r , 1

β +(x ′)>Σ−1x ′)

Finally, y ′ = β(x ′)>ΣX>r = (βΣX>r)>x ′, where
Σ= (αI +βX>X )−1
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Why Bayesian Estimation?

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

Figure : The prediction made by Bayesian estimation regressor is the red line;
where the predictions made by MAP- (or ML-) estimated regressor could be any
line in the shaded area.
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Space Complexity

For each node Xi , we need to
evaluate/store all possible values of
P(Xi |parent(Xi ))

Suppose each node has K states and
there are totally M nodes, what's the
space complexity?

Chain: (K −1)+(M−1)K (K −1) =
O(MK 2)
Fully connected graph:∑

i (K −1)K |parent(Xi )| = KM −1=
O(KM)
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Reducing Space Complexity

How?

Tying: sharing parameters between combinations of parent values

E.g., modeling the dependency between
binary variables as noisy OR gates

Inhibitors are independent with each other
and happens with probabilities qi

P(Xi = 1|Y = 1,Z = 0) = 1−qY

P(Xi = 1|Y = 1,Z = 1) = 1−qY qZ

P(Xi |parent(Xi )) =
1−
∏

Y∈parent(Xi),Y=1 qY

Space complexity? O(M2) ( (O(M)) for
each node)
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Evaluating Marginals of All Nodes

Sometimes, we want to evaluate the marginals of all nodes (given
some evidence)

Belief propagation allows some components of these marginals to be
shared and evaluated just once

Reduces time complexity signi�cantly
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Evaluating P(Xi)'s in a Chain (1/2)

Problem: to evaluate P(Xi ) of every node Xi in a chain:

We can evaluate P(Xi ) one-by-one

No problem if nodes are continuous and
p(Xi ) =

∫
Xj ,j 6=i

p(X1, · · · ,Xi , · · · ,XM) can be written as a closed form

(e.g., by assuming a linear Gaussian model)

Time consuming for discrete variables though, since P(Xi ) =∑
{Xj :,j 6=i}P(X1)P(X2|X1), · · · ,P(Xi |Xi−1),P(Xi+1|Xi ), · · · ,P(XM |XM−1)

Assuming that each node has K states, we have time complexity:
O(KM−1) for each node, O(MKM−1) in total
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Evaluating P(Xi)s in a Chain (2/2)

Speed up?

Observer that when computing P(Xi ) and P(Xj), i 6= j , most
conditional probabilities P(Xk+1|Xk), 16 k 6M−1, are computed
twice

It is plausible that we can �reuse� these conditional probabilities to
reduce time complexity

How?

One way is to precompute all P(Xk+1|Xk)s, 16 k 6M−1, and then
look up these results to obtain P(Xi )s
Still exponential to M in time complexity
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Belief Propagation along a Chain (1/3)

Notice that P(Xi ) =
∑

X1,XM
P(X1,Xi ,XM) =∑

X1,XM
P(X1,XM |Xi )P(Xi ) =

∑
X1,XM

P(X1|Xi )P(XM |Xi )P(Xi )=∑
X1,XM

P(Xi |X1)P(X1)
P(Xi)

P(XM |Xi )P(Xi ) =
∑

X1,XM
α(X1)π(Xi )λ(Xi )

π(Xi ) = P(Xi |X1) if i > 1, and π(X1) = P(X1)

λ(Xi ) = P(XM |Xi ) if i <M, and λ(XM ) = 1
α(X1) = P(X1) = π(X1) is independent with Xi

In addition, π(Xi ) = P(Xi |X1) =
∑

Xi−1
P(Xi ,Xi−1|X1) =∑

Xi−1
P(Xi |Xi−1,X1)P(Xi−1|X1)=

∑
Xi−1

P(Xi |Xi−1)P(Xi−1|X1) =∑
Xi−1

P(Xi |Xi−1)π(Xi−1)

λ(Xi ) = P(XM |Xi ) =
∑

Xi+1
P(XM |Xi+1,Xi )P(Xi+1|Xi )=∑

Xi+1
P(XM |Xi+1)P(Xi+1|Xi ) =

∑
Xi+1

P(Xi+1|Xi )λ(Xi+1)
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Belief Propagation along a Chain (2/3)

P(Xi ) =
∑

X1,XM
α(X1,XM)π(Xi )λ(Xi )

π(Xi+1) =
∑

Xi
P(Xi+1|Xi )π(Xi ) for 16 i 6M−1

λ(Xi−1) =
∑

Xi
P(Xi |Xi−1)λ(Xi ) for 26 i 6M

Starting from X1 till XM−1, each node Xi can forward all π(Xi+1)s
downward along to chain upon receiving π(Xi )s from its parent
Starting from XM till X2, each node Xi forwards all its λ(Xi−1)s
upward along to chain upon upon receiving λ(Xi )s from its child
After receiving both π(Xi )s and λ(Xi )s from its parent and child
respectively, each node Xi can compute P(Xi )

Note that α(X1)s can be broadcasted to all nodes by X1 parallel to the
above propagations
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Belief Propagation along a Chain (3/3)

The task of evaluating all P(Xi )s is now divided into local
computation of πs and λs and exchange of these local results

We call the inference using this message-passing style as belief
propagation

Time complexity?

O(MK2+K2) for each node (O(MK2) for message exchange and
O(K2) for computing P(Xi ))
O(MK2+MK2) in total, provided that each node Xi stores its
intermediate messages (i.e., π(Xi )s and λ(Xi )s)

Space complexity?

O(K2) on each node Xi (for P(Xi+1|Xi )s, P(Xi |Xi−1)s, π(Xi )s, and
λ(Xi )s)
O(MK2) totally
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Evidences (1/2)

What if we are given an evidence E?

Without loss of generality, let's consider a chain from X1 to XM ′ , where
{X1,XM ′ }⊆ E , as below:

Problem: to evaluate P(Xi ) for 26 i 6M ′−1

P(Xi |E ) = P(Xi |X1,XM ′) =
P(Xi ,X1,XM ′)
P(X1,XM ′)

= α(X1,XM ′)π(Xi )λ(Xi )

[Proof]

π(Xi ) = P(Xi |X1) if i > 1, and π(X1) = P(X1)
λ(Xi ) = P(XM ′ |Xi ) if i <M ′, and λ(XM ′) = 1

α(X1,XM ′) =
P(X1)

P(X1,XM ′)
=

P(X1)
P(XM ′ |X1)P(X1)

= 1

π(XM ′)
= 1

λ(X1)
is

independent with Xi
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Evidences (2/2)

Belief propagation is still applicable except that there is only one
π(XM ′) and one λ(X1)

α(X1,XM ′) can be broadcasted to all nodes by XM ′−1 once it
computes π(XM ′) (or by X2 once it computes λ(X1))

Time/space complexity?

Still O(M ′K 2) in both time and space

If either X1 or XM ′ is unobserved, we have either K λ(X1) or K
π(XM ′) messages respectively

Shan-Hung Wu (CS, NTHU) Graphical Models NetDB-ML, Spring 2015 45 / 65



Evidences (2/2)

Belief propagation is still applicable except that there is only one
π(XM ′) and one λ(X1)

α(X1,XM ′) can be broadcasted to all nodes by XM ′−1 once it
computes π(XM ′) (or by X2 once it computes λ(X1))

Time/space complexity? Still O(M ′K 2) in both time and space

If either X1 or XM ′ is unobserved, we have either K λ(X1) or K
π(XM ′) messages respectively

Shan-Hung Wu (CS, NTHU) Graphical Models NetDB-ML, Spring 2015 45 / 65



Outline

1 Bayesian Networks

De�nitions
Conditional Independence and D-Separation
Modeling Problems as Graphs
Common Tasks

2 Evaluating Continuous Marginals

3 Bayesian Estimation

4 Evaluating Discrete Marginals

Belief Propagation
Sampling

5 Latent Dirichlet Allocation

6 Markov Random Fields**

Shan-Hung Wu (CS, NTHU) Graphical Models NetDB-ML, Spring 2015 46 / 65



Why Sampling?

To evaluate discrete P(X |E ) in a Bayesian network, we produce n
samples of it and have the estimate:

P(X = x |E = e) =
1

n
(# samples having X = x given E = e)

More generally, to evaluate the expected value of some function f

de�ned over X and E :

E [f |E = e] =
∑
x

f (x ,e)P (X = x |E = e)

we can produce n samples x(t), where X (t) ∼ P (X ), then estimate

E [f |E = e] =
1

n

n∑
t=1

f
(
x(t),e

)
.
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Ancestral Sampling

Given M random variables X1,X2, · · · ,XM , we want samples of these
variables following their joint distribution P(X1,X2, · · · ,XM)

How?

If we have a graph, we can draw sets of samples {x1,x2, · · · ,xM }

one-by-one, each by:

1 Sample nodes X 's having no parent by following the corresponding
P(X )

2 Repeat: sample each child node X whose parents are all sampled by
following P(X |parent(X )) with parents set to their sampled values

We call this ancestral sampling
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Evidence

If is a node without parent, simple �x the value to evidence

Now suppose P(A,B,C ) = P(A)P(B)P(C |A,B)

If C = c is observed, how to make sure the sample value c follows
P(C |A,B)?

Sample and discard inconsistent ones

Start over from roots

Very in-e�cient
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Gibbs Sampling (1/2)

Gibbs sampling is a Markov Chain Monte Carlo (MCMC) algorithm
for obtaining a sequence of observations which are approximately

from from the joint probability distribution of two or more random
variables), when direct sampling is di�cult

Monte Carlo vs. Las Vegas randomized algorithms?

Suppose we want to obtain M samples of X = {X1, · · · ,XN } from a
joint distribution P (X1, · · · ,XN)

Denote the t-th sample by x(t) =
{
x
(t)
1 , . . . ,x

(t)
N

}
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Gibbs Sampling (2/2)

Input: M, a Bayesian network of X1, · · · ,XN , and W burn-in samples
to discard

Output: x(t)'s for t = 1, · · · ,M
Initiate x(0);
for t← 1 to W +M do

for i ← 1 to N do

x
(t)
i ← a value sampled from

P
(
Xi |X

(t)
1 , . . . ,X

(t)
i−1,X

(t−1)
i+1 , . . . ,X

(t−1)
N

) ;

end

if t >W then Output x
(t)
i ;

end
Algorithm 1: Gibbs sampling algorithm.

Why does it work?

Why discard early (burn-in) samples?
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Input: M, a Bayesian network of X1, · · · ,XN , and W burn-in samples
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Output: x(t)'s for t = 1, · · · ,M
Initiate x(0);
for t← 1 to W +M do

for i ← 1 to N do

x
(t)
i ← a value sampled from

P
(
Xi |X

(t)
1 , . . . ,X

(t)
i−1,X

(t−1)
i+1 , . . . ,X

(t−1)
N

) ;

end

if t >W then Output x
(t)
i ;

end
Algorithm 2: Gibbs sampling algorithm.

Why does it work?

Why discard early (burn-in) samples?
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Markov Chain for Inference of P (X )

Set the state space S of a Markov chain to the range of X (S may be
astronomically large)

Find a tpm (transition prob. matrix) P such that P (X ) ∼ πP , the
steady state distribution

Then, we can have samples by simply running a random walk:

1 Pick x(0) somehow;
2 For t = 1, . . . ,W +N, sample x(t) from P

(
X (t)|X (t−1) = x(t−1)

)
;

3 Discard the �rst W burn-in samples, and output remaining samples;
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Why Does the Gibbs Sampling Work?

The tpm of the Gibbs sampler for P (X ) where X = {X1, . . . ,XN } is
P =
∏N

i=1P
(i), where

P
(i)
x ′,x =

{
0 if x ′−i 6= x−i

P (Xi = x ′i |X−i = x−i ) if x ′−i = x−i

and the subscript −i denotes all but the i-th element

Informally, the Gibbs sampler cycles through each of the variables Xi ,
replacing the current value xi with a sample from P (Xi |X−i = x−i )

If x is a sample from P (X ), then so is x ′, since x ′ di�ers from x only
by replacing xi with a sample from P (Xi |X−i = x−i )

Since P(i) maps samples from P (X ) to samples from P (X ), so does
P. Thus, P (X ) is a stationary distribution for P

There is another explanation using detailed balance equations [Proof]
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Topic Model

Topic modeling is a method for analyzing large quantities of unlabeled
data.

For our purposes, a topic is a probability distribution over a collection
of words and a topic model is a formal statistical relationship between a
group of observed and latent (unknown) random variables that speci�es
a probabilistic procedure to generate the topics�a generative model.

The central goal of a topic is to provide a �thematic summary� of a
collection of documents.
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An Example

Given 2 documents D1,D2 with words

D1 = {cat, dog, bird, �sh}

D2 = {car, bike, bus}
We can discover the �topics� (pet, vehicle, ...).
A document may have one or more topics in practice.
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Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is the most common topic model
currently in use, allowing documents to have a mixture of topics.

LDA provides a generative model that describes how the documents in
a corpus were created.
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Notation and Terminology

A word is the basic unit of discrete data, de�ned to be an item from a
vocabulary

{
w1, . . . ,wV

}
.

A document Di is a sequence of N words denoted by
wi = (wi ,1,wi ,2, . . . ,wi ,N), where wi ,n is the nth word in the sequence.

A corpus is a collection of M documents denoted by
D = {w1,w2, . . . ,wM }.
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The Generative Process

Assume we know K topic distributions for our corpus, meaning K

categoricals containing V elements each.

1 Choose the topic distribution θi ∼ Dir(α) for each
document Di where i ∈ {1, . . . ,M} (θi is a
categorical of length K ).

2 Choose the word distribution φk ∼ Dirichlet(β) for
each topic where k ∈ {1, . . . ,K } (φk is a vector of
length V ).

β is a V -dimension vector of positive reals.

a For each of the words wi ,n where n ∈ {1, . . . ,N}:

1 Choose a topic zi ,n ∼ Categorical(θi ).
2 Choose a word wi ,n ∼ Categorical(φzi ,n

).
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Our Goal

Given α,β, and document Di with word sequence wi , what are the most probable
values for θi?

P (θi |wi ,α,β) =
∫∑

z i
P (θi ,z i ,φ|wi ,α,β)dφ

∝
∫∑

z i
P (wi |θi ,zi ,φ,β)P (θi ,zi ,φ|α)dφ

The close form of the posterior is intractable (due to the unknown z i )
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Gibbs Sampling for LDA (1/3)

In LDA, the distribution of the topics Z for words W is unknown and Z is
multivariate.

Hence, the Gibbs sampling procedure boils down to estimate

P (Zi ,n = t |z−i ,n,w) .

Here, θ,φ are integrated out. If we know the exact Zi for each document
Di , it's trivial to estimate θi and φi .

We have

P (Zi ,n = t |z−i ,n,w,α,β)
∝ P (Zi ,n = t,wi ,n|z−i ,n,w−i ,n,α,β)
= P (wi ,n|Zi ,n = t,z−i ,n,w−i ,n,β)P (Zi ,n = t |z−i ,n,w−i ,n,α)
= P (wi ,n|Zi ,n = t,z−i ,n,w−i ,n,β)P (Zi ,n = t |z−i ,n,α)
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Gibbs Sampling for LDA (2/3)

For the �rst term, we have

P (wi ,n |Zi ,n = t,z−i ,n,w−i ,n,β)
=
∫
P (wi ,n |Zi ,n = t,φt)P (φt |z−i ,n,w−i ,n,β)dφt

P (φt |z−i ,n,w−i ,n,β) =
P (w−i ,n |φt ,z−i ,n)P (φt |β)

P (w−i ,n |z−i ,n,β)

∼ Dirichlet
(
β+N

−i ,n(w)
t

)
Here, N

−i ,n(w)
t is a V -dimension vector and N

−i ,n(w)
t,v is the number of instances

of the v -th word in the vocabulary assigned to topic t in document Di , excluding
the instance wi ,n. Recall that the Dirichlet is the conjugate prior for the
multinomial. Thus, the posterior is also Dirichlet.

Using the property of Dirichlet-multinomial distribution, we have

P (wi ,n |Zi ,n = t,z−i ,n,w−i ,n,β)

=
Γ
(∑

v

(
βv+N

−i ,n(w)
t,v

))
Γ
(
1+
∑

v

(
βv+N

−i ,n(w)
t,v

))
(

Γ
(
N

−i ,n(w)
t,w

i ,n
+βw

i ,n
+1

)
Γ
(
N

−i ,n(w)
t,w

i ,n
+βw

i ,n

)
)

=
N

−i ,n(w)
t,w

i ,n
+βw

i ,n∑
v

(
N

−i ,n(w)
t,v +βv

) .
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Gibbs Sampling for LDA (3/3)

Similarly, for the second term, we have

P (Zi ,n = t |z−i ,n,α) =

∫
P (Zi ,n = t |θi )P (θi |z−i ,n,α)dθi

P (θi |z−i ,n,α)∝ P (z−i ,n |θi )P (θi |α)

∼Dirichlet
(
α+N

−i ,n(z)
)

where N−i ,n(z) is a K -dimension vector and N
−i ,n(z)
k

is the number of words
assigned to topic k in document Di , excluding the instance zi ,n.

Then, we have

P (Zi ,n = t |z−i ,n,α) =
N
−i ,n(z)
t +αt∑

k

(
N
−i ,n(z)
k

+αk

) .
Thus,

P (Zi ,n = t |z−i ,n,w,α,β)∝
N
−i ,n(w)
t,wi ,n

+βwi ,n∑
v

(
N
−i ,n(w)
t,v +βv

) × N
−i ,n(z)
t +αt∑

k

(
N
−i ,n(z)
k

+αk

) .
Shan-Hung Wu (CS, NTHU) Graphical Models NetDB-ML, Spring 2015 63 / 65



Estimate φ and θ

To obtain φ and θ, we can simply calculate

φk,v =
n
(k)
v +βv∑V

j=1

(
n
(k)
j +βj

)
θi ,k =

n
(i)
k +αk∑K

t=1

(
n
(i)
t +αt

)
where n

(k)
j is the frequency of word w j in the vocabulary assigned to

topic k , and n
(i)
t is the number of words assigned to topic t in

document Di .
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