Markov Chains and Link Analysis

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Spring 2015

Markov Chains

- Random Processes
- Markov Processes and Markov Chains
- Ergodic Chains
- Reversible Chains

- Web as A Graph
- The PageRank
- Personalized PageRank

Markov Chains

Random Processes

- Markov Processes and Markov Chains
- Ergodic Chains
- Reversible Chains

- Web as A Graph
- The PageRank
- Personalized PageRank

Definition (Random Process)

Given a probability space (Ω, \mathcal{F}, P) , a **random process** (or **stochastic process**), denoted by $\{X^{(t)} : t \in \mathcal{T}\}$, is a collection of random variables defined over (Ω, \mathcal{F}, P) and indexed by elements t of a set \mathcal{T} .

- Typically, we think $t = 1, 2, \cdots$ as time
 - t could also be space or position on a DNA string, etc.
- The values of $X^{(t)}$ are called the *states*
- $X^{(t)}$ is a function of both the outcome ω and time t
 - Fixing the outcome $\omega \in \Omega$, $X^{(t)}$ is a deterministic function of t
 - Fixing t, $X^{(t)}$ is a random variable
- The distribution of $X^{(t)}$, called state distribution, changes with t

- A random process is said to be *discrete* or *continuous in time* depending on whether T is discrete (finite or infinitely countable) or continuous
- A random process is *discrete* or *continuous in state* depending on whether X is discrete or continuous
- Random processes vs graphical models (e.g., Bayesian networks and Markov random fields)?

- A random process is said to be *discrete* or *continuous in time* depending on whether T is discrete (finite or infinitely countable) or continuous
- A random process is *discrete* or *continuous in state* depending on whether X is discrete or continuous
- Random processes vs graphical models (e.g., Bayesian networks and Markov random fields)?
 - A Bayesian network degenerates into a discrete-state-and-time random process when its random variables are indexed by time

- So far, we assume that instances in a dataset are i.i.d.
 - This simplifies the calculation of the likelihood $P[\mathfrak{X}|\theta]$
- However, in practice instances may come in order and successive instances may be dependent
 - E.g.,. letters in a word, phonemes in speech utterance, page visits in the Web, etc.
- The sequence can be characterized as being generated by a parametric random process
 - We want to estimate the parameter of a random process and then make predictions

Markov Chains

Random Processes

Markov Processes and Markov Chains

- Ergodic Chains
- Reversible Chains

2 Link Analysis

- Web as A Graph
- The PageRank
- Personalized PageRank

7 / 28

- A random process is called the *Markov process* if it satisfies the *Markov property*: $P(X^{(t_0+t_1)} \leq x | X^{(t_0)} = x_0, X^{(t)} = x_t, -\infty < t < t_0) =$ $P(X^{(t_0+t_1)} \leq x | X^{(t_0)} = x_0)$
 - We can think t_0 and t_1 be the present and future time respectively
 - This is a mathematical version of the saying "today is the first day of the rest of your life"

Markov Chains (1/2)

- A Markov process which is discrete in both time and state is called the first-order *Markov Chain*
- Let S_1, \dots, S_K be the K distinct states and $t = 1, 2, \dots$, the word "first-order" means:

$$P(X_{t+1} = S_j | X_t = S_i, X_{t-1} = S_k, \cdots) = P(X_{t+1} = S_j | X_t = S_i)$$

• Denote the unconditional state probability at time t by a row vector $\pi^{(t)} = [\pi_0^{(t)}, \cdots, \pi_K^{(t)}]$, where $\pi_i^{(t)} = P(X^{(t)} = S_i)$ and $\sum_{i=1}^K \pi_i^{(t)} = 1$

- We say a Markov chain is *time homogeneous* iff $P\left(X^{(t+1)} = S_j | X^{(t)} = S_i\right) = P\left(X^{(t+m+1)} = S_j | X^{(t+m)} = S_i\right)$
 - That is, the transition probability a_{ij} = P (X^(t+1) = S_j|X^(t) = S_i) from state *i* to *j* does not change with time t
 ∑^N_{i=1} a_{i,i} = 1 for any *i*
- A time homogeneous Markov chain has a fixed *transition matrix* **A**, whose each row sum to 1

- Given an initial state probability $\pi^{(1)}$, we have $\pi^{(2)} = \pi^{(1)} A$, $\pi^{(3)} = \pi^{(2)} A$, and so on...
- $\pi^{(t)} = \pi^{(t-1)} A = \pi^{(1)} A^{t-1}$ for $t \ge 2$
 - $\pi_i^{(t)}$ is the sum of transition probabilities multiplied along all paths of length t-1 from initial states j to i and weighted by the initial state probabilities $\pi_i^{(1)}$
- In practice, we are often interested in the steady state probability $\pi = \lim_{t \to \infty} \pi^{(t)}$
 - \circ π indicates how much chance we see a particular state in the long run
- However, the steady state probability may not exist

Markov Chains

- Random Processes
- Markov Processes and Markov Chains
- Ergodic Chains
- Reversible Chains

- Web as A Graph
- The PageRank
- Personalized PageRank

Definition (Ergodic Markov Chain)

A Markov chain is said to be *ergodic* if there exists a positive integer T such that for all pairs of states *i*, *j* in the Markov chain, if it is started at time 0 in state *i* then for all t > T, the probability of being in state *j* at time *t* is greater than 0.

- An ergodic Markov chain cannot have
 - Absorbing state: once entering this state, there is no way to get out
 - Transient state: starting from this state, there is a positive probability that the chain will never return
 - Periodic state: the number of steps required to return to this state are always multiples of some integer larger than 1
- An ergodic chain constitutes of a single set of positive recurrent states
 - Positive recurrent state: starting from this state, the probability of eventual return is 1 and the expected number of steps required is finite (a positive integer)

Ergodic Markov Chains (2/2)

• Most real world chains are ergodic if we can define proper transition probability between any two states

Figure : A non-ergodic Markov chain. Transition probabilities equal to 1 are marked explicitly. States 1 is an absorbing state; states 2 and 3 are transient states; states 7, 8, 9, and 10 are periodic states; states 4, 5, and 6 are positive recurrent states.

Shan-Hung Wu (CS, NTHU)

Theorem

For any ergodic Markov chain, there is a unique steady state probability vector $\boldsymbol{\pi}$ such that if $\eta(i, t)$ is the number of visits to state *i* in *t* steps, then $\lim_{t\to\infty} \frac{\eta(i,t)}{t} = \pi_i$.

- If a Markov chain is ergodic, the steady state π exists, and its value is independent with the initial state
- But how to find π?

Theorem

For any ergodic Markov chain, there is a unique steady state probability vector $\boldsymbol{\pi}$ such that if $\eta(i, t)$ is the number of visits to state *i* in *t* steps, then $\lim_{t\to\infty} \frac{\eta(i,t)}{t} = \pi_i$.

- If a Markov chain is ergodic, the steady state π exists, and its value is independent with the initial state
- But how to find π?
 - Since $\pi A = \pi$, π is the (left) eigenvector of A corresponding to the eigenvalue 1
 - Or we can multiply $\pi^{(1)}$ enough times by $m{A}$ to get an approximation
- The steady state probability π also implies the (probability of the) final stop of a *random walk*
 - Insensitive to the initial state where the walk begins

Markov Chains

- Random Processes
- Markov Processes and Markov Chains
- Ergodic Chains
- Reversible Chains

- Web as A Graph
- The PageRank
- Personalized PageRank

Definition (Reversible Markov Chain)

A Markov chain is said to be *reversible* if there exists a probability distribution over states, π , such that the *detailed balanced equation*

$$\pi_i P\left(X^{(t+1)} = S_j | X^{(t)} = S_i\right) = \pi_j P\left(X^{(t+1)} = S_i | X^{(t)} = S_j\right)$$

holds for all times t and states i and j.

• If the Markov chain has finite states and is time-homogeneous, we have $\pi_i A_{i,j} = \pi_j A_{j,i}$

17 / 28

- Summing the detailed balanced equations over all states gives $\sum_{i} \pi_i A_{i,j} = \sum_{i} \pi_j A_{j,i} = \pi_j \sum_{i} A_{j,i} = \pi_j$
 - Valid for all j, which implies $\pi A = \pi$
- So, for reversible Markov chains, π is always the steady state probability vector
- If, the chain begins with the steady state distribution (i.e., $\pi_i^{(1)} = P(X^{(1)} = S_i) = \pi_i$), then we have $\pi_i^{(t)} = P(X^{(t)} = S_i) = \pi_i$ for all t, and the detailed balanced equation be written as $P(X^{(t+1)} = S_j, X^{(t)} = S_i) = P(X^{(t+1)} = S_i, X^{(t)} = S_j)$

Markov Chains

- Random Processes
- Markov Processes and Markov Chains
- Ergodic Chains
- Reversible Chains

- Web as A Graph
- The PageRank
- Personalized PageRank

Web as A Graph

- Nodes (vertexes): web pages
- Links: hyperlinks (e.g., A computer service company)
 - Directed
 - Annotated by anchor text
- How can this structure help in, for example, searching a web page?

Web as A Graph

- Nodes (vertexes): web pages
- Links: hyperlinks (e.g., A computer service company)
 - Directed
 - Annotated by anchor text
- How can this structure help in, for example, searching a web page?
 - When scoring a page for a term query, a search engine can additionally calculate the (cosine) similarity between the query terms and the the tokens in the anchor text pointing to that page
- Idea: descriptions to a website from others are usually more precise than those from site holders themselves
 - Evidence: despite that everyone knows IBM is a computer company, we seldom see the word "computer" in its homepage

Markov Chains

- Random Processes
- Markov Processes and Markov Chains
- Ergodic Chains
- Reversible Chains

- Web as A Graph
- The PageRank
- Personalized PageRank

The PageRank Algorithm (1/2)

- In addition to the anchor text, the structure of the graph also helps in scoring a page
- PageRank is a score derived from the structure of the graph
- The idea is to model the graph as a Markov chain
 - Pages as the states; hyperlinks as the transitions
- In the simplest form, the *random walk model* can be used to calculate the transition matrix **A**

• If a page p_i has two links to p_j and p_k , then $a_{i,j} = a_{i,k} = 1/2$

- The state probability $\pi_i^{(t)}$ denotes the probability that a random walking user stay at the page *i* at time *t*
- If the chain is ergodic, then the PageRank of page *i* can be simply the steady state probability π_i denoting the "popularity"

- What if a page has no outward link?
 - It becomes an absorbing state and prevents the chain from being ergodic
- Solution?

- What if a page has no outward link?
 - It becomes an absorbing state and prevents the chain from being ergodic
- Solution? Observe that users may teleport between pages (e.g., enter URLs directly in the browser)
- We can associate each $a_{i,i}$ with a teleport probability:
 - $a_{i,j} = 1/K$ if page *i* has no outward link;
 - $a_{i,j} = (1 \alpha)/o_i + \alpha/K$ otherwise, where o_i is number of outward links from page *i* and α is a user-specified parameter

Remarks

- PageRank is one of the commonly used scoring functions in major search engines today
 - Often contributes to a portion of the final score of a page
- Why is PageRank so popular?

Remarks

- PageRank is one of the commonly used scoring functions in major search engines today
 - Often contributes to a portion of the final score of a page
- Why is PageRank so popular?
- It is language independent
 - Exploits the link structure and provides an alternative view to the content-based scores (e.g., cosine similarity)
 - Agnostic to queries (i.e., the PageRank of page remains the same for all queries)
- It can be computed in a scalable manner
 - We can multiply $\pi^{(1)}$ enough times by $m{A}$ to get an approximation of the steady state π
 - Each multiplication task can be divided into parts and done in parallel (e.g., using the MapReduce framework)
- It is spam-resistant
 - You need to fake "inward links" from others' pages to increase the visibility of your site

Shan-Hung Wu (CS, NTHU)

24 / 28

Markov Chains

- Random Processes
- Markov Processes and Markov Chains
- Ergodic Chains
- Reversible Chains

- Web as A Graph
- The PageRank
- Personalized PageRank

- The PageRank is static to different users
- Can we personalize PageRank based a particular user's interests?

- The PageRank is static to different users
- Can we personalize PageRank based a particular user's interests?
- Recall the random walk model assumes that all links of a page are clicked with the equal probability
- We can instead estimate the $\pi^{(1)}$ and $m{A}$ by tracing the sequence of page visits from a user

- Given N sample sequences of length T, where $X^{(n,t)}$ is the state at time t in sequence n
- If we assume that π_i⁽¹⁾ and a_{i,j} are with Binomial distributions (or Multinomial distributions with constrains), we can easily obtain their ML estimators:

•
$$\hat{\pi}_{i}^{(1)} = \frac{\sum_{n=1}^{N} \zeta(X^{(n,1)} = S_{i})}{N}$$
, where $\zeta(x)$ equals 1 if x is true and 0 otherwise
• $\hat{a}_{i,j} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T-1} \zeta(X^{(n,t)} = S_{i} \text{ and } X^{(n,t+1)} = S_{j})}{\sum_{n=1}^{N} \sum_{t=1}^{T-1} \zeta(X^{(n,t)} = S_{i})}$ [Proof]

- To ensure an ergodic chain, we still assume the teleport probabilities
 - We can further estimate the teleport probabilities of a particular user

• Markov chains are the most simple type of Markov processes

• Lay out the fundamentals for other processes commonly used in machine learning:

	States are fully observable	States are partially observable
Transition is autonomous	Markov chains	Hidden Markov models
Transition is controlled	Markov decision processes	Partially observable Markov decision processes