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Clustering

We now consider the unsupervised datasets X= {x(t)}Nt=1 where labels
r(t) are missing

Learning the a posteriori knowledge from unlabeled data is called the
unsupervised learning

Clustering is one unsupervised learning technique used to identify the
groups G1, · · · ,GK in each which instances are similar (or close) to
each other

K could be either prede�ned (a hyperparameter) or not (a parameter)

Output: Z := {z(t)}t, where

Hard labeling: z(t) ∈ {0,1}K and z(t)
i = 1 i� the instance t belongs to

group i
Soft labeling: z(t) ∈ RK and z(t)

i denotes the degree (e.g., probability)
the instance t belongs to group i
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Applications

Pattern recognition: groups may be meaningful

E.g., product/user cluster in market analysis

Compression: instances in the same group can be represented by a
prototype

Data labeling: groups are good hints for labels

Data reprocessing for classi�cation/regression: attributes of instances
can be augmented by group information; or we can identify groups in
each class to estimate P[x|Ci] and P[Ci] more precisely

And so on...
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Clustering vs. Dimensionality Reduction

In dimensionality reduction, we �nd correlations between attributes
and �group� (i.e., select/extract) attributes

In clustering, we �nd similarities between instances and group
instances
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K-Means Clustering (1/2)

Suppose each group Gi is parametrized by a prototype mi, the mean
of all instances in this group

Hard labeling: z(t)
i = 1 i� x(t) is the closest to mi; i.e.,∥∥x(t)−mi

∥∥= minj
∥∥x(t)−mj

∥∥
The objective of K-means clustering is to �nd mi such that the total

reconstruction error rec({mi}
K
i=1;X) =

∑N
t=1
∑K

i=1 z(t)
i

∥∥x(t)−mi
∥∥2

is
minimized
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K-Means Clustering (2/2)

Input: X← {x(t)}Nt=1, K
Output: The prototypes mi, 1 6 i 6 K

Initialize each mi to a random example x(t);
repeat

foreach x(t) ∈ X do

z(t)
i ←

{
1 if

∥∥x(t)−mi
∥∥= minj

∥∥x(t)−mj
∥∥

0 otherwise
;

end

foreach mi do

mi←
∑N

t=1 z(t)
i x(t)/

∑N
t=1 z(t)

i ;
end

until all mi converge;
Algorithm 1: The K-means algorithm.
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Example
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Applications (1/2)

One famous application of the K-means clustering is vector
quantization, which aims to �nd a discrete set of vectors {mi}

K
i=1

representative of the whole, possibly continuous, set of data points

E.g., in color quantization, we seeks the best 256 colors of an 24
bits/pixel (16 million) color image
Once we get these 256 colors, for each pixel we only need to store the
8 bits color index

We can quantize the 16 million colors uniformly into 256, but some of
these 256 colors may be wasted when there is no nearby color appears
in the image

We want nonuniform quantization where mi sit at the most dense areas
of the whole dataset

The K-means clustering minimizes

rec({mi}
K
i=1;X) =

∑N
t=1
∑K

i=1 z(t)
i

∥∥x(t)−mi
∥∥2

and �nds prototypes at
the center of the dense regions
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Applications (2/2)

Another example is the use of codebooks in telecommunication
systems

Each point in the dataset is a vector storing the sample of a voice signal
We want to quantize samples into K representative vectors
If we store these K vectors in each device, the signal can be sent by
indexes (of lgK bits each) only

mi
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Figure : Given x, the encoder sends the index i of the nearest codeword mi and
the decoder receives x ′ = mi. The error is ‖x−x ′‖2.
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Limitations (1/2)

The main disadvantage of the K-means clustering is that it is a local
search procedure

The �nal prototypes mi may not be the optimal ones, and highly
depend on the initial mi
Can you give an example dataset based on which the K-means returns
bad clusters? [Homework]

Generally, the initial mi should a) locate at regions where instances
occur; b) be far away from each other

The K-means++ proposes one possible initialization step:

1 Choose an instance uniformly at random to be m1
2 For each x(t), compute d(x(t)), the distance between x(t) and the

nearest mi that has already been determined
3 Assign another instance to mi+1, but this time an instance x is chosen

with probability
d(x)2∑N

t=1 d(x(t))2

4 Repeat Steps 2 and 3 until K initial prototypes are determined
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Limitations (2/2)

Another shortcoming of the K-means is that clusters are assumed to
be spherical and with equal size

Due to that the Euclidean distance is used when updating the cluster

assignment z(t)
i for each instance

In practice, clusters may have di�erent sizes

Next, we see how the above assumption can be relaxed using the
probability framework we are already familiar
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Mixture Models

Basic assumption: the dataset X is a mixture of groups G1, · · · ,GK

E.g., in the hand-written digit recognition, X consists of images of �0,�
�1,� �2,� and so forth
Even if X are images of the same digit (say �1�) there are still typical
di�erent ways to write the digit (with or without head)

Soft labeling: Z= {z(t) ∈ RK}t

The mixture density of an instance x can be expressed as
p(x) =

∑K
i=1 p(x|Gi)P[Gi]

Model: a collection of groups, i.e., {Gi}
K
i=1

Parameters: G1, · · · , and GK

Objective: argG1,··· ,GK
max
∏N

t=1
∑K

i=1 p(x(t)|Gi)P[Gi]dx
A generative model this case
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Parametric vs. Nonparametric vs. Semiparametric

Parametric models: models that can be completely described by (a
small number of) parameters

Nonparametric models: those that cannot be described by parameters

Semiparametric models: those that can be partially described by
parameters

Each cluster is parametric
But the mixture of clusters, Z= {z(t)}t, is not (i.e., we do not assume
the mixture to follow some distribution)
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Semiparametric Clustering vs. Parametric
Classi�cation

Parametric classi�cation is a special case of mixture model where the
groups (i.e., classes) are known in advance:
P[x(t)] =

∑K
i=1 p(x(t)|Ci)P[Ci]dx

Assume p(x(t)|Ci)dx and P[Ci] follow Gaussian and Bernoulli
distributions parametrized by θi = (µi,Σi) and θ

′
i = pi respectively

Since we know which instance belongs to which class by r(t), we can
estimate θi and θ

′
i analytically by maximizing P[X|θi] and P[X|θ ′i ]:

p̂i =
Ni
N , where Ni =

∑N
t=1 r(t)

i

mi =
1
Ni

∑N
t=1 x(t)r(t)

i and Si =
1

Ni−1
∑N

t=1 r(t)
i (x(t)−mi)(x(t)−mi)

>

Unfortunately, in semiparametric clustering we don't know z(t)/r(t) so
we cannot solve p(x(t)|Ci)dx and P[Ci] analytically
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If No {θi,θ
′
i }

K
i=1, Make Them Up

How?

Borrowing the iterations from K-means

Start from a random guess of {θi,θ
′
i }

K
i=1 and then perform the

following two steps iteratively:

1 For each instance x(t), update its z(t) based on the current G1, · · · ,GK
parametrized by θ1, · · · ,θK

2 Update θ1, · · · ,θK based on the current z(t)

Stop until the groups do not change in Step 2 (or the changes of
groups are smaller than a threshold ε)
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Semiparametric Density Estimation (1/2)

Suppose in the mixture density p(x) =
∑K

i=1 p(x|Gi)P[Gi], each
p(x(t)|Gi) and P[Gi] are Gaussian and Bernoulli distributions
parametrized by θi = (µi,Σi) and θ

′
i = πi respectively

Denote the collection of estimators by Θ= (mi,Si,πi)
K
i=1

We guess initial Θ, and then:

1 Update mixture: z(t)
i = P[z(t)

i |x(t);Θ] =
p(x(t)|z(t)

i ;Θ)P[z(t)
i ;Θ]

p(x(t)
;Θ)

=

p(x(t)|z(t)
i ;Θ)πi∑K

j=1 p(x(t)|z(t)
j ;Θ)πj

=
det(Si)

−1/2exp[−(1/2)(x(t)−mi)
>S−1

i (x(t)−mi)]πi∑K
j=1 det(Sj)−1/2exp[−(1/2)(x(t)−mj)>S−1

j (x(t)−mj)]πj

Unlike in K-means, we assign soft labels to z(t)
i

2 Update Θ: knowing z(t)
i , we can update πi, mi, and Si by, e.g.,

maximizing the likelihood P[X|Θ]
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Semiparametric Density Estimation (2/2)

Input: X← {x(t)}Nt=1, K
Output: Θ= (mi,Si,πi)

K
i=1

Initialize Θ by performing several iterations of K-means;
repeat

foreach x(t) ∈ X do

z(t)
i ←

det(Si)
−1/2exp[−(1/2)(x(t)−mi)

>S−1
i (x(t)−mi)]πi∑K

j=1 det(Sj)−1/2exp[−(1/2)(x(t)−mj)>S−1
j (x(t)−mj)]πj

;

end

foreach πi, mi, and Si do

πi←
∑N

t=1 z(t)
i

N ;

mi←
∑N

t=1 x(t)z(t)
i∑N

t=1 z(t)
i

and Si←
∑N

t=1 z(t)
i (x(t)−mi)(x(t)−mi)

>∑N
t=1 z(t)

i

;

end

until Θ converges;
Algorithm 2: Semiparametric density estimation for Gaussian mixtures.
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Simpli�cations

As in parametric classi�cation, with small training dataset and large
dimensionality we can regularize our model by simplifying assumptions

When the priors P[Gi] = πi are all equal and Si = s2I, we have

z(t)
i =

exp[−(1/2s2)‖x(t)−mi‖]∑K
j=1 exp[−(1/2s2)‖x(t)−mj‖]

We thus see that the K-means clustering is just a special case of the
semiparametric density estimation applied to Gaussian mixtures, where

Attributes of instances are independent and with equal variance
All groups have equal priors
Labels are hardened
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Hierarchical Clustering (1/2)

So far, we assume that clusters are independent groups (although they
may overlap)

In some applications, we may want to �nd the hierarchy of clusters

Two common types of algorithms:

Agglomerative: Starting from N groups, each with single instance,
iteratively merging two most similar groups to form a larger one, until
there remains a single group
Divisive: Starting one group containing all instances, dividing large
groups into smaller ones, until there are N groups
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Hierarchical Clustering (2/2)

When deciding which groups should be merged (or split), a measure of
similarity, or equivalently distance d, is required

One common choice is the Minkowski distance:

d(x(r),x(s)) =
(∑d

i=1

∣∣∣x(r)
i − x(s)

i

∣∣∣p)1/p
for some p

But how to calculate the distance between two groups?

Single-link metric: d(Gi,Gj) = minx(r)∈Gi,x(s)∈Gj
d(x(r),x(s))

Complete-link metric: d(Gi,Gj) = maxx(r)∈Gi,x(s)∈Gj
d(x(r),x(s))
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Dendrograms

The result of hierarchical clustering can be shown as the dendrogram:

a

b

fe
d

c

a de cb f

1

3

2
h

Each internal node corresponds to a group

The height of the internal node denote the distance between groups

The dendrogram can be intersected at a user-speci�c level h to get the
clusters

In each cluster, instances in the input space are connected as a tree
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Single- or Complete-Link?

With the complete-link metric, all instance in a group have distance
less than h

Assumes that each cluster is spherical
Similar to k-means and semiparametric density estimation
Used only when this assumption is likely to be true

Single-link clusters may have diameter (i.e., the greatest length of the
shortest paths between instances) much larger than h

With the single-link metric, two instance are grouped together at level
h if

The distance between them is less than h; or
There exists a path between them such that any two consecutive

instances along the path have mutual distance less than h

Each �nal cluster may have an arbitrary shape
Suitable for clusters backed by respective underlying manifolds
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Global vs. Local Models

We have seen models that �nd clusters by assuming some structure
for each cluster

Global structure: each cluster represents a dense region of a known
shape

E.g., k-means, semiparametric density estimation, hierarchical
clustering with complete-link metric

Local similarity: each instance in a cluster is similar to its nearby
instances

E.g., hierarchical clustering with single-link metric
Local models can produce clusters of arbitrary shapes
Suitable to datasets where clusters are backed by respective underlying
manifolds
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More Local Models

In local models, any two instances in the same cluster are not
necessarily similar

This is both an advantage and disadvantage

Cons: they tends to �nd clusters of unbalanced sizes

Outliers form singleton clusters

How to make clusters balanced?

We consider only the the �at clustering in the next
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Balanced Cut of Local Similarity Graph (1)

Given a set of data points x(1), · · · ,x(N). Let S ∈ RN×N be the local
similarity matrix where si,j > 0 is the similarity between instance
between instances i and j if they are neighbors

Euclidean distance is clearly not a good choice

Local similarity measure?

ε-NN similarity: si,j inverse proportional to the Euclidean distance
between i and j if i is a ε-nearest neighbor of j or vice versa; otherwise 0

Gaussian similarity (soft ε-NN): si,j = exp(−‖x
(i)−x(j)‖2

σ2 ) for some
hyperparameter σ

Shan-Hung Wu (CS, NTHU) Clustering and EM NetDB-ML, Spring 2015 31 / 68



Balanced Cut of Local Similarity Graph (1)

Given a set of data points x(1), · · · ,x(N). Let S ∈ RN×N be the local
similarity matrix where si,j > 0 is the similarity between instance
between instances i and j if they are neighbors

Euclidean distance is clearly not a good choice

Local similarity measure?

ε-NN similarity: si,j inverse proportional to the Euclidean distance
between i and j if i is a ε-nearest neighbor of j or vice versa; otherwise 0

Gaussian similarity (soft ε-NN): si,j = exp(−‖x
(i)−x(j)‖2

σ2 ) for some
hyperparameter σ

Shan-Hung Wu (CS, NTHU) Clustering and EM NetDB-ML, Spring 2015 31 / 68



Balanced Cut of Local Similarity Graph (2)

Consider the graph G = (V,E) where V
denotes the set of instances and E denotes
the set of non-zero local similarity scores

Given a set of nodes A⊂ V, de�ne
Cut(A) :=

∑
i∈A,j/∈A si,j

We want to �nd a k-partition A1, · · · ,AK of V
that solve the problem:

arg min
A1,··· ,AK⊂V

RatioCut (A1, · · · ,AK) :=
1
2

K∑
i=1

Cut(Ai)

|Ai|

Cross-partition links are edges are
minimized
|A1|, · · · , |AK | are balanced
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Relaxation

Unfortunately, although the min-cut problems can be solved e�ciently,
the balanced min-cut problems are NP-hard

Spectral clustering solves a relaxation of the above problem

Finds the eigenvectors of a graph Laplacian matrix induced from the
local similarity graph
E�cient
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Graph Laplacian

Given a (local) similarity matrix S, the graph Laplacian matrix is
de�ned as

L = D−S,

where D is an N×N diagonal matrix with di =
∑N

j=1 si,j on the
diagonal

For any vector f ∈ RN , we have f>Lf = 1
2

∑N
i,j=1 si,j

(
fi − fj

)2

[Homework]

L is symmetric and positive semi-de�nite

The smallest eigenvalue of L is 0, and the constant one vector 1 ∈ RN

must be (one of) the corresponding eigenvector
L has N non-negative eigenvalues 0 = λ1 6 · · ·6 λN .
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Spectral Clustering

Idea: map each x(t) ∈ RN to z(t) ∈ Rm in some low dimensional space
such that z(i) and z(j) are similar if they belong to the same cluster

Then apply a traditional clustering algorithm (e.g., k-means) to obtain
the �nal cluster

Based on f>Lf = 1
2

∑N
i,j=1 si,j

(
fi − fj

)2
, we can �rst solve

argminF=[f (1),··· ,f (m)]∈RN×m tr(F>LF) =
∑m

i=1 f (i)>Lf (i),

subject to F>F = I

and then let z(t)be the t-th row of F
f i and f j are orthogonal so that they provide complementary
perspectives
Each f i is normalized so that the clusters are balanced (to be explained
later)
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Spectrum of L (1)

From the Rayleigh-Ritz theorem, f (1), · · · , f (m) are the eigenvectors
corresponding to the smallest eigenvalues of L

Theorem

Let G = (V,E) be an undirected graph with non-negative weights. Then

the multiplicity K of the eigenvalue 0 of L equals the number of connected

components A1, · · · ,AK ⊂ V in the graph. The eigenspace of eigenvalue 0 is

spanned by the indicator vectors 1A1 , · · · ,1AK ∈ RN of those components.
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Spectrum of L (2)

Proof.

Assume that f is an eigenvector with eigenvalue 0. We know that

0 = f>Lf =
∑N

i,j=1 si,j
(
fi − fj

)2
. As si,j is non-negative, the sum can only

vanish if all terms vanish. Thus, if two vertices vi and vj are connected
(i.e., si,j > 0), then fi = fj. When K = 1, f needs to be constant one vector
and L has eigenvalue 0 with multiplicity 1. When K > 1, without loss of
generality we assume that the vertices are ordered according to the
connected components they belong to. Then S has a block diagonal form,
and the same is true for L:

L =

 L1
. . .

LK

 .

Since the spectrum of L is given by the union of the spectra of Li, and the
corresponding eigenvectors of L are the eigenvectors of Li, �lled with 0 at
the positions of the other blocks.
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Spectrum of L (3)

Based on the above theorem, we should make sure that #connected
components < m when constructing the local similarity graph

Otherwise, some cluster may contain one connected component, and
some may contain multiple

In practice, we usually construct a fully-connected graph

The eigenvector of 0 is 1

Other than 1, what f makes f>Lf = 1
2

∑N
i,j=1 si,j

(
fi − fj

)2
small?

Those f 's with value levels
Coordinates corresponding to the same Gi have the same value
(forming a level)
The gap between di�erent levels corresponds to the min-cuts
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Spectrum of L (4)

Besides, ‖f‖= 1 makes gap correspond to the balanced min-cuts

For example, suppose K = 2. Let

fi =


√

|	G|

|V||G|
, if x(i) ∈ G

−
√

|G|

|V||	G|
, otherwise

.

We have

tr(f>Lf) = RatioCut
(
G, 	G

)
,

furthermore, f>1 = 0 and ‖f‖= 1 [Homework]
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m = K is enough due to orthogonality
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Spectral Clustering Algorithms

Input: Similarity matrix S, number of clusters K
Output: Clusters A1, · · · ,AK

Compute the Laplacian L.;
Compute the �rst K eigenvectors u1, · · · ,uK of L. Let U ∈ RN×K be
the matrix containing the vectors u1, · · · ,uK as columns.;
For i = 1, · · · ,N, let yi ∈ RK be the vector corresponding to the i-th
row of U.;
Cluster the points (yi)i=1,··· ,N with the K-means algorithm;

Algorithm 3: The spectral clustering algorithm.
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Pros and Cons

Pros:

Local model, balanced
E�cient event for large datasets (as S is sparse)
No issue of getting stuck in local minimum (e.g., as in k-means due to
bad initializations)

Cons:

Performance sensitive to the quality of the local similarity graph
Relaxation is loose: no guarantee that the �nal clusters correspond to
the balanced min-cuts

Which local similarity is better?

Empirically, ε-NN graph is less vulnerable to the imperfect choice of
parameters (ε, σ)
Graph is sparse
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Evaluating the Clusters

How to evaluate the clusters we found?

If labels are not available during evaluation:

intercluster separation
intracluster cohesion

=
∑

i,j(mi−mj)
2∑

i
1

|Gi|
∑

x∈Gi
(x−mi)2 (the higher the better)

If labels (i.e., {r(t)}Nt=1, r(t) ∈ RK) are available during the evaluation:

entropy(Gi) = −
∑K

j=1 Pi[r
(t)
j = 1] lgPi[r

(t)
j = 1], where Pi[r

(t)
j = 1]

denotes the portions of instances in Gi which belong to class j

Here we de�ne lg0 = 0

entropytotal(X) =
∑K

i=1
|Gi|
N entropy(Gi) (the lower the better)

Indirect evaluation: if clustering is used to help perform another task,
then we can measure the performance of that task instead

E.g., click-through rate of the recommended item in a website (where
clustering is used to group similar items/users)
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Deciding the Number of Clusters K

In the previous semiparametric methods, K is determined in advance

We can decide K using the cross validation technique
Plot the reconstruction error against K and pick the �elbow�

In hierarchical clustering, K is decided along with h

h should be set to cut the �big jump�

K can be either a parameter or a hyperparameter

There are extensions for semiparametric methods that adapt K during
the iteration

E.g.?

at each iteration, we can drop groups that are too small and/or
split groups that are too large
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Why Iterative Methods Work?

We have seen the iterative methods for clustering

K-means
Semiparametric density estimation

But we haven't answered the following questions:

Why does the iteration end?
Why is the clusters found in Step 2 better than the ones found in the
previous iteration?
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Latent Variables and Complete Likelihood (1/2)

Problem de�nition: given a dataset X= {x(t)}Nt=1, suppose

p(x) =
∑K

i=1 p(x|Gi)P[Gi] and denote Θ= (θi,πi)
K
i=1 where θi

parametrizes p(x|Gi) and πi = P[Gi], we want to �nd Θ such that the
log likelihood lnP[X|Θ] is maximized

lnP[X|Θ] =
∑N

t=1 ln
∑K

i=1 p(x(t)|θi)πidx
Unfortunately, since we don't know which instance belongs to which
group, we cannot solve this this objective analytically

Now suppose there is a set Z= {z(t)}Nt=1 of latent variables, the
complete likelihood can be written as: lnP[X,Z|Θ]

z(t)
i = 1 if x(t) belongs to group i; 0 otherwise
If we have Z, we can solve this objective as we did in the parametric
classi�cation
Unfortunately, we don't know Z

So let's create it and maximize EZ[lnP[X|Θ]]
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Latent Variables and Complete Likelihood (2/2)

Observe that
lnP[X,Z|Θ] = lnP[Z|X,Θ]+ lnP[X|Θ]

We have
EZ[lnP[X|Θ]] = L(q,Θ)+KL(q||P) for
any distribution q of Z

L(q,Θ) =
∑

Z q(Z) ln
(

P[X,Z|Θ]
q(Z)

)
KL(q||P) = −

∑
Z q(Z) ln

(
P[Z|X,Θ]

q(Z)

)
Both L(q,Θ) and KL(q||P) are
functional of q

Since KL(q||P) is the relative entropy
(or Kullback-Leibler divergence)
and is always greater than 0 [Proof: by
Jensen's inequality or lnx 6 x−1], we
have the �gure at right:

ln p(X|θ)L(q, θ)

KL(q||p)
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Iterative Methods: A Functional Perspective (1/3)

To maximize EZ[lnP[X|Θ]], we can employ an iterative method based
on EZ[lnP[X|Θ]] = L(q,Θ)+KL(q||P)

Since q is unknown, we make up q
We don't have to make up Z this time because we try out all possible
Z in L(q,Θ) and KL(q||P)

Start from a random guess about Θ, iterate the following steps:

1 Update q based on current Θ such that the blue line is up-aligned with
the red

2 Update Θ based on current q to raises the red line

Stop until Θ converges

Why another version?

We are sure that EZ[lnP[X|Θ]] (i.e., read line) can be raised at each
iteration (although up to a local optimal)
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Iterative Methods: A Functional Perspective (2/3)

Denote by Θold the parameters found
in the previous iteration

In Step 1, if we update q such that
q(Z) = P[Z|X,Θold]

KL(q||P) = −
∑

Z q(Z) ln1 = 0
lnP[X|Θold] = L(q,Θold)+0

Note the value of EZ[lnP[X|Θold]]
won't change as we vary q

So this step basically raises L(q,Θold)
such that the blue line is up-aligned
with the red

ln p(X|θold)L(q, θold)

KL(q||p) = 0
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Iterative Methods: A Functional Perspective (3/3)

Fixing q, for any Θ we have
EZ[lnP[X|Θ]] = L(q,Θ)+KL(q||P) =∑

Z P[Z|X,Θold] ln
(

P[X,Z|Θ]
P[Z|X,Θold]

)
−∑

Z P[Z|X,Θold] ln
(

P[Z|X,Θ]
P[Z|X,Θold]

)
In Step 2, we �nd Θnew maximizing
L(q,Θ) (blue line)

KL(q||P) =

−
∑

Z P[Z|X,Θold] ln
(

P[Z|X,Θnew]
P[Z|X,Θold]

)
> 0

EZ[lnP[X|Θnew]]> EZ[lnP[X|Θold]]

So this step basically raises the red
line, meanwhile leaving the blue behind

Repeating Steps 1 and 2 lifts
EZ[lnP[X|Θ]] till some local optimum

ln p(X|θnew)L(q, θnew)

KL(q||p)
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Expectation Maximization (1/2)

Note that in step 1, we don't need to write down q explicitly

We just need to evaluate terms in EZ[lnP[X|Θ]] (a function of Θ to be
maximized in step 2) that are related to q

Fixing q(Z) = P[Z|X,Θold], we have

L(q,Θ) =
∑

Z P[Z|X,Θold] ln
(

P[X,Z|Θ]
P[Z|X,Θold]

)
=
∑

Z P[Z|X,Θold] ln(P[X,Z|Θ])−
∑

Z P[Z|X,Θold] ln
(
P[Z|X,Θold]

)
= EZ[ln(P[X,Z|Θ]) |X,Θold]+ constant

The second term is an entropy of Z and is independent of Θ

Steps 1 and 2 can be re�ned to be:

Expectation step (E-step): Formulate
Q(Θ;Θold) = EZ[ln(P[X,Z|Θ]) |X,Θold] and evaluate the terms related
to P[Z|X,Θold]
Maximization step (M-step): Solve Θnew = argΘmaxQ(Θ;Θold)
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Expectation Maximization (2/2)

The Expectation Maximization (EM) algorithm is a general
technique to �nd the maximum likelihood solutions for probabilistic
models having latent variables

Typically, latent variables are discrete, and there is one latent variable
per observed instance

Input: X← {x(t)}Nt=1
Output: Θnew, a local optimizer of EZ[P[X|Θ]]

Choose an initial Θnew;
repeat

Θold←Θnew;
Formulate Q(Θ;Θold) = EZ[ln(P[X,Z|Θ]) |X,Θold] and evaluate
the terms related to P[Z|X,Θold]; // E-step

Θnew← argΘmaxQ(Θ;Θold)new; // M-step

until Θnew converges;
Algorithm 4: The general EM algorithm.
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I.I.D. Instances

Assume that (x(t),z(t)) are i.i.d. samples drawn from some distribution

By de�nition, P[X,Z] = ΠN
t=1P[x(t),z(t)]

Denote e1 = [1,0 · · · ,0]>,e2 = [0,1 · · · ,0]>, · · · ,eK = [0,0 · · · ,1]> ∈ RK

We have P[X] = ΣZP[X,Z] = ΣZΠ
N
t=1P[x(t),z(t)] =

ΣeK
z(1)=e1

· · ·ΣeK
z(N)=e1

ΠN
t=1P[x(t),z(t)] = ΠN

t=1Σ
eK
z(t)=e1

P[x(t),z(t)]=

ΠN
t=1P[x(t)]

So,

P[Z|X,Θold] =
P[X,Z|Θold]

P[X|Θold]
=
ΠN

t=1P[x(t),z(t)|Θold]

ΠN
t=1P[x(t)|Θold]

= ΠN
t=1P[z(t)|x(t),Θold]
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Formulating Q(Θ;Θold) (1/3)

Next, we formulate Q(Θ;Θold) given
P[Z|X,Θold] = ΠN

t=1P[z(t)|x(t),Θold] (due to the i.i.d. instances), and
the assumption of mixture density:

Θ= (θi,πi)
K
i=1 where θi parametrizes p(x|Gi) and πi = P[Gi]

Denote by d(z(t)) the index of attribute of z(t) equal to 1

P[x(t),z(t)|Θ] = P[x(t)|z(t),Θ]P[z(t)|Θ] = P[x(t)|z(t),θd(z(t))]πd(z(t))

For brevity, we use the shorthand P[z(t)
i ] for P[z(t) = ei] (or

equivalently P[z(t)
i = 1])
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Formulating Q(Θ;Θold) (2/3)

Q(Θ;Θold) = EZ[ln(P[X,Z|Θ]) |X,Θold] =
∑

Z ln(P[X,Z|Θ])P[Z|X,Θold]

=
∑

Z

∑N
t=1 ln

(
P[x(t),z(t)|Θ]

)
ΠN

j=1P[z(j)|x(j),Θold]

=
∑

Z

∑N
t=1 ln

(
P[x(t)|z(t),θd(z(t))]πd(z(t))

)
ΠN

j=1P[z(j)|x(j),Θold]

=
∑

Z

∑N
t=1
∑eK

e=e1
δz(t),e ln

(
P[x(t)|e,θd(e)]πd(e)

)
ΠN

j=1P[z(j)|x(j),Θold] // δa,b = 1if a = b; 0otherwise
=
∑N

t=1
∑eK

e=e1
ln
(
P[x(t)|e,θd(e)]πd(e)

)∑
Z δz(t),eΠ

N
j=1P[z(j)|x(j),Θold]

=
∑N

t=1
∑eK

e=e1
ln
(
P[x(t)|e,θd(e)]πd(e)

)∑eK
z(1)=e1

· · ·
∑eK

z(N)=e1
δz(t),eΠ

N
j=1P[z(j)|x(j),Θold]

=
∑N

t=1
∑eK

e=e1
ln
(
P[x(t)|e,θd(e)]πd(e)

)∑eK
z(1)=e1

· · ·
∑eK

z(t−1)=e1∑eK
z(t+1)=e1

· · ·
∑eK

z(N)=e1
ΠN

j=1,j 6=tP[z
(j)|x(j),Θold]P[e|x(t),Θold]

=
∑N

t=1
∑eK

e=e1
ln
(
P[x(t)|e,θd(e)]πd(e)

)(∑eK
z(1)=e1

· · ·
∑eK

z(t−1)=e1∑eK
z(t+1)=e1

· · ·
∑eK

z(N)=e1
ΠN

j=1,j 6=tP[z
(j)|x(j),Θold]

)
P[e|x(t),Θold]
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∑N

t=1
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Formulating Q(Θ;Θold) (3/3)
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ln
(
P[x(t)|e,θd(e)]πd(e)

)(∑eK
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· · ·
∑eK
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∑eK

z(N)=e1
ΠN

j=1,j 6=tP[z
(j)|x(j),Θold]
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t=1
∑eK
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ln
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P[x(t)|e,θd(e)]πd(e)
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j=1,j 6=t
∑eK

z(j)=e1
P[z(j)|x(j),Θold]

)
P[e|x(t),Θold]
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∑N

t=1
∑eK

e=e1
ln
(
P[x(t)|e,θd(e)]πd(e)

)
P[e|x(t),Θold]

=
∑N

t=1
∑K

i=1 ln(πi)P[z(t)
i |x(t),Θold]+∑N

t=1
∑K

i=1 ln
(

P[x(t)|z(t)
i ,θi]

)
P[z(t)

i |x(t),Θold]
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Evaluating P[Z|X,Θold]

Given mixtures of i.i.d. samples, we have

Q(Θ;Θold) =
∑N

t=1
∑K

i=1 ln(πi)P[z(t)
i |x(t),Θold]+∑N

t=1
∑K

i=1 ln
(

P[x(t)|z(t)
i ,θi]

)
P[z(t)

i |x(t),Θold]

The problem evaluating P[Z|X,Θold] is thus reduced to evaluating

P[z(t)
i |x(t),Θold] for all 1 6 i 6 K and 1 6 t 6 N
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Evaluating P[z(t)
i |x(t)

,Θold]

Problem: given Θold, evaluate P[z(t)
i |x(t),Θold] for all 1 6 i 6 K and

1 6 t 6 N

From Bayes' theorem,

P[z(t)
i |x(t),Θold] =

P[x(t)|z(t)
i ,Θold]P[z(t)

i |Θold]∑K
j=1 P[x(t)|z(t)

j ,Θold]P[z(t)
j |Θold]

=
P[x(t)|z(t)

i ,θold
i ]πold

i∑K
j=1 P[x(t)|z(t)

j ,θold
j ]πold

j

If we further assume that instances in each group are normally
distributed, then θold

i = (µold
i ,Σold

i ) and we can easily obtain

P[x(t)|z(t)
i ,θold

i ] based on the normal distribution

For brevity, we denote the evaluated P[z(t)
i |x(t),Θold] by h(t)

i

h(t)
i aligns with the soft label z(t)

i in semiparametric density estimation
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Solving argΘmaxQ(Θ;Θold)

Q(Θ;Θold) =
∑N

t=1
∑K

i=1 ln(πi)h(t)
i +
∑N

t=1
∑K

i=1 ln
(

P[x(t)|z(t)
i ,θi]

)
h(t)

i

Observe that the �rst term of Q(Θ;Θold) depends only on {πi}
K
i=1; and

the second depends only on {θi}
K
i=1

We can obtain Θnew by solving the two problems individually:

argπ1,··· ,πK
max
∑N

t=1
∑K

i=1 ln(πi)h(t)
i subject to

∑K
i=1πi = 1

argθ1,··· ,θK
max
∑N

t=1
∑K

i=1 ln
(

P[x(t)|z(t)
i ,θi]

)
h(t)

i
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Solving {π}Ki=1

Lagrangian:

L({x(t)}Nt=1, {πi}
K
i=1,α) =

∑N
t=1
∑K

i=1 ln(πi)h(t)
i −α

(∑K
i=1πi −1

)
Taking the partial derivatives of L with respect to α,π1, · · · ,πK and
setting them to zero we have

∑K
i=1πi = 1 and∑N

t=1
1
πi

h(t)
i −α= 0⇒

∑N
t=1 h(t)

i = πiα for i = 1, · · · ,K

Summing the equations with α above we have
∑K

i=1
∑N

t=1 h(t)
i =∑K

i=1πiα⇒ α=
∑N

t=1
∑K

i=1 h(t)
i =

∑N
t=1
∑K

i=1 P[z(t)
i |x(t),Θold] = N

Substituting N for α in each of the above equation we have

πi =
∑N

t=1 h(t)
i

N

This aligns with the πi in semiparametric density estimation
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Solving {θi}
K
i=1 (1/2)

Objective: argθ1,··· ,θK
max
∑N

t=1
∑K

i=1 ln
(

P[x(t)|z(t)
i ,θi]

)
h(t)

i

Since the groups in the mixtures are independent with each other, we
can solve θi = (µi,Σi) one by one

argθi
max
∑N

t=1 ln
(

P[x(t)|z(t)
i ,θi]

)
h(t)

i

With the Gaussian mixture, we have∑N
t=1 ln

(
P[x(t)|z(t)

i ,θi]
)

h(t)
i =−Nid

2 log(2π)− Ni
2 log(det(Σi))−

1
2

∑N
t=1 h(t)

i (x(t)−µi)
>Σ−1

i (x(t)−µi)= −Nid
2 log(2π)+

Ni
2 log(det(Σ−1

i ))− 1
2

∑N
t=1 h(t)

i tr
(
Σ−1

i (x(t)−µi)(x(t)−µi)
>), where

Ni =
∑N

t=1 h(t)
i
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Solving {θi}
K
i=1 (2/2)

Taking the partial derivatives of the above objective with respect to µi
and Σ−1

i and setting them to zero we have{ ∑N
t=1 h(t)

i (x(t)−µi)
>Σ−1

i = 0>
Ni
2 Σi −

1
2

∑N
t=1 h(t)

i (x(t)−µi)(x(t)−µi)
> = O

mi =
∑N

t=1 x(t)h(t)
i∑N

t=1 h(t)
i

Si =
∑N

t=1(x(t)−mi)(x(t)−mi)
>h(t)

i∑N
t=1 h(t)

i

Again, these results align with the mi and Si in semiparametric density
estimation
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Remarks

Both the K-means and semiparametric density estimation are EM
algorithms

The iteration ends and Θ converges to a local optimum

In particular, when assuming that the priors πi are all equal and
Σi = σ

2I, we have

h(t)
i =

exp[−(1/2(sold)2)‖x(t)−mold
i ‖]∑K

j=1 exp
[
−(1/2(sold)2)

∥∥∥x(t)−mold
j

∥∥∥]
The objective argθ1,··· ,θK

max
∑N

t=1
∑K

i=1 ln
(

P[x(t)|z(t)
i ,θi]

)
h(t)

i can be

rewritten as argm1,··· ,mK ,s min
∑N

t=1
∑K

i=1
‖x(t)−mi‖2

s2 h(t)
i

This is equivalent to minimizing the reconstruction error in the
K-means
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