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© Clustering
e Why Clustering?
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Clustering

o We now consider the unsupervised datasets X = {x"'}¥_ where labels
r() are missing
o Learning the a posteriori knowledge from unlabeled data is called the
unsupervised learning
o Clustering is one unsupervised learning technique used to identify the
groups Gi,---,Gg in each which instances are similar (or close) to
each other

e K could be either predefined (a hyperparameter) or not (a parameter)
e Output: Z:={z(V};, where

o Hard labeling: z{") €{0,1}X and zi(t) =1 iff the instance ¢ belongs to
group i

o Soft labeling: z!") € RX and zim denotes the degree (e.g., probability)
the instance ¢ belongs to group i
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Applications

@ Pattern recognition: groups may be meaningful
e E.g., product/user cluster in market analysis
@ Compression: instances in the same group can be represented by a
prototype
e Data labeling: groups are good hints for labels

e Data reprocessing for classification/regression: attributes of instances
can be augmented by group information; or we can identify groups in
each class to estimate P[x|C;] and P[C;] more precisely

@ And so on...
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Clustering vs. Dimensionality Reduction

@ In dimensionality reduction, we find correlations between attributes
and “group” (i.e., select/extract) attributes

@ In clustering, we find similarities between instances and group
instances
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Outline

© Clustering

@ k-Means Clustering
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K-Means Clustering (1/2)

@ Suppose each group G; is parametrized by a prototype m;, the mean
of all instances in this group

e Hard labeling: Z,-(t) =1 iff x¥) is the closest to m;; i.e.,
0 ] = min )]

@ The objective of K-means clustering is to find m; such that the total
reconstruction error rec({m)<_ ;) =N 5K 2 ||x() —min is
minimized
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K-Means Clustering (2/2)

Input: X « {x{® N K
Output: The prototypes m;, 1 <i< K

Initialize each m; to a random example x(*)

repeat
foreach x") € X do
(1) 1 if Hx —m; H = min; Hx —m; H
G < { 0 otherwise l ' '
end

foreach m; do
‘ m; < Zivzlzi(t)x(t)/zyzlzi(t)
end

until all m; converge;
Algorithm 1: The K-means algorithm.
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Applications (1/2)

@ One famous application of the K-means clustering is vector
quantization, which aims to find a discrete set of vectors {mi}lel
representative of the whole, possibly continuous, set of data points

e E.g., in color quantization, we seeks the best 256 colors of an 24
bits/pixel (16 million) color image

e Once we get these 256 colors, for each pixel we only need to store the
8 bits color index

@ We can quantize the 16 million colors uniformly into 256, but some of
these 256 colors may be wasted when there is no nearby color appears
in the image

o We want nonuniform quantization where m; sit at the most dense areas
of the whole dataset

@ The K-means clustering minimizes
2 :
rec({mf ;0) =Y | Zl{ilzlm me —m;||” and finds prototypes at
the center of the dense regions
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Applications (2/2)

@ Another example is the use of codebooks in telecommunication

systems
o Each point in the dataset is a vector storing the sample of a voice signal
o We want to quantize samples into K representative vectors
o If we store these K vectors in each device, the signal can be sent by
indexes (of IgK bits each) only

Encoder Decoder

@1 =1 D) oot @L : j*

Find closest

Figure : Given x, the encoder sends the index i of the nearest codeword m; and
. . 2
the decoder receives x’ =m;. The error is ||x —x'||".
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Limitations (1/2)

@ The main disadvantage of the K-means clustering is that it is a local
search procedure

o The final prototypes m; may not be the optimal ones, and highly
depend on the initial m;

o Can you give an example dataset based on which the K-means returns
bad clusters? [Homework]

o Generally, the initial m; should a) locate at regions where instances
occur; b) be far away from each other

@ The K-means++ proposes one possible initialization step:

@ Choose an instance uniformly at random to be m;

@ For each x| compute d(x(")), the distance between x(*) and the
nearest m; that has already been determined

© Assign another instance to m; 1, but this time an instance x is chosen

with probability RN COE

© Repeat Steps 2 and 3 until K initial prototypes are determined
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Limitations (2/2)

@ Another shortcoming of the K-means is that clusters are assumed to
be spherical and with equal size

o Due to that the Euclidean distance is used when updating the cluster
assignment zim for each instance

@ In practice, clusters may have different sizes

o Next, we see how the above assumption can be relaxed using the
probability framework we are already familiar
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© Clustering

@ Semiparametric Density Estimation
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Mixture Models

@ Basic assumption: the dataset X is a mixture of groups Gy,---, Gk

e E.g., in the hand-written digit recognition, X consists of images of “0,"
“1," "2," and so forth
o Even if X are images of the same digit (say “1") there are still typical
different ways to write the digit (with or without head)
o Soft labeling: Z ={z(") ¢ RX},

@ The mixture density of an instance x can be expressed as
px) = X1, p(xIG))PIG]

o Model: a collection of groups, i.e., {G}K

e Parameters: Gy, ---, and Gg

o Objective: argGl’.,,’GKmax]_[f/:lZfilp(x(’)IG,-)P[G,-]dx
@ A generative model this case
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Parametric vs. Nonparametric vs. Semiparametric

e Parametric models: models that can be completely described by (a
small number of) parameters

o Nonparametric models: those that cannot be described by parameters

@ Semiparametric models: those that can be partially described by
parameters
o Each cluster is parametric

o But the mixture of clusters, Z ={z(V},, is not (i.e., we do not assume
the mixture to follow some distribution)
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Semiparametric Clustering vs. Parametric

Classification

o Parametric classification is a special case of mixture model where the
groups (i.e., cIasses) are known in advance:
P = 3£ p(x|C))PICldx

o Assume p(x(|C;)dx and P[C;] follow Gaussian and Bernoulli
distributions parametrized by 0; = (p;, Z;) and 0/ = p; respectively

@ Since we know which instance belongs to which class by r(*), we can
estimate 0; and 0/ anaIyticaIIy by maximizing P[X|0;] and P[X]6/]:

° p,f , Where N; = Z, 1 l
°omi=g Ly ,lx(’) r; ) and S = 1Zl V7 x(’) —m;)(x) —m;) T

e Unfortunately, in semiparametric cIusterlng we don't know z(! /r(") so
we cannot solve p(x)|C;)dx and P[C;] analytically
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If No {6;,6/}% |, Make Them Up

1=

o How?
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If No {6;,6/}% |, Make Them Up

171

@ How? Borrowing the iterations from K-means

@ Start from a random guess of {9,,9’}K , and then perform the
following two steps iteratively:

© For each instance x(), update its z() based on the current Gy,---,Gxg
parametrized by 01, --,0g
@ Update 0,,---,0x based on the current z(*)

@ Stop until the groups do not change in Step 2 (or the changes of
groups are smaller than a threshold ¢)
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Semiparametric Density Estimation (1/2)

@ Suppose in the mixture density p(x) = Zf(:lp(le,-)P[G,-], each
p(x(’)IG,-) and P[G;] are Gaussian and Bernoulli distributions
parametrized by 6, = (n;, Z;) and 0] = 71; respectively

@ Denote the collection of estimators by © = (mi,S,-,Tc,-)lel

@ We guess initial ©, and then:

= pW PR 01

- p(x(1);0)

P @) der(S;) " Pexpl—(1/2) (¢ —m) TS (20 —my))
T pa0 ey Eiider(S;) " epl—(1/2) () —my) T8, () —m;)]
(1)

i

© Update mixture: 2 :P[Zl.(‘)|x(f);@

i

@ Unlike in K-means, we assign soft labels to z

@ Update O: knowing zm, we can update 7;, m;, and S; by, e.g.,

i

maximizing the likelihood P[X|©]
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Semiparametric Density Estimation (2/2)

Input: X+ {x(9) N K
Output: © = (m;,S;, )X,

Initialize © by performing several iterations of K-means;

repeat
foreach x() € X do
Z'(t) det(S;) "/ 2exp[— (1/2)(x! m,)TS (x ()fml-)]m
i Y det(S)) 1 2expl—(1/2) (x()—my) TS, (x0) —my) 17y’
end
foreach 7;, m;, and S; do
T — Z:N:ﬂm
m; z Tipe and ;- Zian (x;;mi),)(xm_mi)T;
1=1%; 1=1%i
end

until © converges;

Algorithm 2: Semiparametric density estimation for Gaussian mixtures.
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Simplifications

@ As in parametric classification, with small training dataset and large
dimensionality we can regularize our model by simplifying assumptions

@ When the priors P[G;] = m; are all equal and S; = s*I, we have
Z~(t) _ exp[f(l/Zsz)Hx(’)fm,-H]
l Z;ilexp[f(l/Zsz)Hx(’)fm,'H]

@ We thus see that the K-means clustering is just a special case of the
semiparametric density estimation applied to Gaussian mixtures, where

o Attributes of instances are independent and with equal variance
o All groups have equal priors
o Labels are hardened
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Outline

© Clustering

@ Hierarchical Clustering
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Hierarchical Clustering (1/2)

@ So far, we assume that clusters are independent groups (although they
may overlap)

@ In some applications, we may want to find the hierarchy of clusters
@ Two common types of algorithms:

o Agglomerative: Starting from N groups, each with single instance,
iteratively merging two most similar groups to form a larger one, until
there remains a single group

e Divisive: Starting one group containing all instances, dividing large
groups into smaller ones, until there are N groups
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Hierarchical Clustering (2/2)

@ When deciding which groups should be merged (or split), a measure of
similarity, or equivalently distance d, is required

o One common choice is the Minkowski distance:
d(x(r),x(s)) _ (Z?:] r) 7xi(s)

@ But how to calculate the distance between two groups?

X!

p\ 1/p
: ) for some p
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Hierarchical Clustering (2/2)

@ When deciding which groups should be merged (or split), a measure of
similarity, or equivalently distance d, is required

e One common choice is the Minkowski distance:
e 60 = (L o -
@ But how to calculate the distance between two groups?
d(x),x6))
d(x),x())

X!

p\ 1/p
: ) for some p

o Single-link metric: d(G;,G;) = minx(r)EGl‘,x(S)EGj

o Complete-link metric: d(G;, G;) = Max, (1) cq, x5 e
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@ The result of hierarchical clustering can be shown as the dendrogram:

a 3L
c | -
e f
d ‘] ﬁ

a b e ¢ d f

SN

@ Each internal node corresponds to a group
@ The height of the internal node denote the distance between groups

@ The dendrogram can be intersected at a user-specific level & to get the
clusters

@ In each cluster, instances in the input space are connected as a tree
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Single- or Complete-Link?
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Single- or Complete-Link?

o With the complete-link metric, all instance in a group have distance
less than &

o Assumes that each cluster is spherical

o Similar to k-means and semiparametric density estimation
o Used only when this assumption is likely to be true

@ Single-link clusters may have diameter (i.e., the greatest length of the
shortest paths between instances) much larger than h
o With the single-link metric, two instance are grouped together at level
hif
@ The distance between them is less than A; or
@ There exists a path between them such that any two consecutive
instances along the path have mutual distance less than &
o Each final cluster may have an arbitrary shape
o Suitable for clusters backed by respective underlying manifolds
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Outline

© Clustering

@ Spectral Clustering

Hung Wu (CS, NTHU) Clustering and EM NetDB-ML, Spring 2015 28 / 68



Global vs. Local Models

@ We have seen models that find clusters by assuming some structure
for each cluster

o Global structure: each cluster represents a dense region of a known
shape

o E.g., k-means, semiparametric density estimation, hierarchical
clustering with complete-link metric

@ Local similarity: each instance in a cluster is similar to its nearby

instances

o E.g., hierarchical clustering with single-link metric
o Local models can produce clusters of arbitrary shapes
o Suitable to datasets where clusters are backed by respective underlying

V2227
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More Local Models

@ In local models, any two instances in the same cluster are not
necessarily similar

o This is both an advantage and disadvantage

@ Cons: they tends to find clusters of unbalanced sizes

QQQQ227227

e Outliers form singleton clusters

@ How to make clusters balanced?
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More Local Models

@ In local models, any two instances in the same cluster are not
necessarily similar

o This is both an advantage and disadvantage

@ Cons: they tends to find clusters of unbalanced sizes

QQQQ227227

e Outliers form singleton clusters

@ How to make clusters balanced?

@ We consider only the the flat clustering in the next
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Balanced Cut of Local Similarity Graph (1)

@ Given a set of data points xW o xWN) et § € RVXN be the local
similarity matrix where s;; > 0 is the similarity between instance
between instances i and j if they are neighbors

e Euclidean distance is clearly not a good choice

@ Local similarity measure?
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Balanced Cut of Local Similarity Graph (1)

@ Given a set of data points xW o xWN) et § € RVXN be the local
similarity matrix where s;; > 0 is the similarity between instance
between instances i and j if they are neighbors

e Euclidean distance is clearly not a good choice

@ Local similarity measure?

o e-NN similarity: s;; inverse proportional to the Euclidean distance

between i and j if i is a e-nearest neighbor of j or vice versa; otherwise 0

) —x 0|
e

o Gaussian similarity (soft e-NN): s;; = exp( ) for some

hyperparameter o
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Balanced Cut of Local Similarity Graph (2)

o Consider the graph G = (V,E) where V

. Data points
denotes the set of instances .and. E denotes T T
the set of non-zero local similarity scores oA *%
° leen a set of nodes A C V, define » @;&g '
*
.. *
o We want to find a k—partltlon Al Agof Voo« & %@W’}gﬁ*
that solve the problem: = o 1 2
kNN graph, k =5
K X,
arg min  RatioCut(Aq,--- A = Z ! *»‘i “ *M*é*
Ay, Ak CV 2 -1 g % gj‘
- . . -1 sﬁ(
° Cr.oss—.par('junon links are edges are RS %*% **
minimize % ¥
e |Aq],---,]Ak]| are balanced -3 *x.’% B% e
=1 0 1 2
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Relaxation

@ Unfortunately, although the min-cut problems can be solved efficiently,
the balanced min-cut problems are NP-hard

e Spectral clustering solves a relaxation of the above problem

o Finds the eigenvectors of a graph Laplacian matrix induced from the
local similarity graph
o Efficient
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Graph Laplacian

@ Given a (local) similarity matrix S, the graph Laplacian matrix is

defined as
L=D-S§,
where D is an N X N diagonal matrix with d; = Zjvzl sij on the
diagonal
@ For any vector f € RN, we have f'Lf = %Z?{i:lsu (f,-—jj)z
[Homework]

@ L is symmetric and positive semi-definite

o The smallest eigenvalue of L is 0, and the constant one vector 1 € RY
must be (one of) the corresponding eigenvector
o L has N non-negative eigenvalues 0 = A} < -+ < Ay.
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Spectral Clustering

o Idea: map each x() € RY to z{") € R™ in some low dimensional space
such that z{?) and zU) are similar if they belong to the same cluster

e Then apply a traditional clustering algorithm (e.g., k-means) to obtain
the final cluster

2 .
e Based on fTLf = %Z%leu (f,—]j) , we can first solve

argminF:[f(l)'...f(m)]eRNxmtr(FTLF) =y T,
subject to FTF =1

and then let z(Vbe the #-th row of F

o f; and f; are orthogonal so that they provide complementary
perspectives

e Each f; is normalized so that the clusters are balanced (to be explained
later)
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Spectrum of L (1)

@ From the Rayleigh-Ritz theorem,f(l),m ,f(’") are the eigenvectors
corresponding to the smallest eigenvalues of L

Let G=(V,E) be an undirected graph with non-negative weights. Then
the multiplicity K of the eigenvalue O of L equals the number of connected
components Ay,---,Ax CV in the graph. The eigenspace of eigenvalue 0 is
spanned by the indicator vectors 14,,--+,14, € RN of those components.
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Spectrum of L (2)

Proof.

Assume that f is an eigenvector with eigenvalue 0. We know that
0=f"Lf = Z%‘:l Sij (f,f]j)2 As s;; is non-negative, the sum can only
vanish if all terms vanish. Thus, if two vertices v; and v; are connected
(i.e., 5ij>0), then fi =f;. When K =1, f needs to be constant one vector
and L has eigenvalue 0 with multiplicity 1. When K > 1, without loss of
generality we assume that the vertices are ordered according to the
connected components they belong to. Then S has a block diagonal form,
and the same is true for L:

L,

Lk

Since the spectrum of L is given by the union of the spectra of L;, and the
corresponding eigenvectors of L are the eigenvectors of L;, filled with 0 at
the positions of the other blocks. O

4
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Spectrum of L (3)

@ Based on the above theorem, we should make sure that #connected
components < m when constructing the local similarity graph

o Otherwise, some cluster may contain one connected component, and
some may contain multiple

@ In practice, we usually construct a fully-connected graph
o The eigenvector of 0 is 1
o Other than 1, what f makes f T Lf = %Z?fi:ls,-J (ﬁ—ﬁ)z small?

o Those f's with value levels

o Coordinates corresponding to the same G; have the same value
(forming a level)

o The gap between different levels corresponds to the min-cuts
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Spectrum of L (4)

@ Besides, ||f|| =1 makes gap correspond to the balanced min-cuts

@ For example, suppose K =2. Let

Vi, ifxleg
fi= —,/ﬁ otherwise
IVIIG|’

We have
tr(fTLf) = RatioCut (G, (_}') .

furthermore, f 71 =0 and ||f|| = 1 [Homework]
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is enough due to orthogonality

Histogram of the sample

>

-

{
1
cD ! 2 4“ El

Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
. 0.08 ® _ [ o1 os! |
£ 006 Soa| | 02 0.4 0.4
£ 004 * € \ -03 02 °
s S | -0.4 X 0.2
2 0.02 Lt * 2 Tos o5
! P, S L _ AP S E N S LU
1234567891 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
0.04] [ o 0 0,
£ € 01
“E‘,°~°3' "E‘ o1 \ -005 -0.05 005
£ 002/ E of
2 g oos 0.1 0.1 01
€ 001/ € g g g o1
= v > [\
R S el [ U
1234567891 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
s se**’ £ ™ \ / g 05
@ 08 & -0.1451 XTI 0.1 0.1
Dos =
5_ 04 E -0.1451 | of 0 0 o
€ € | \
S 02 * S -0.1451 o1 \ -0.1 01 h
€ okt € - — N J -05. i
12345678910 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
< — N -~
g _ s \ N y
S ost . & oomr| 005\ 0.05 005} 08
35 -] 0.6
€ o1 & -0.0707] 0 0 ° 04
5 0.05 . 5 -0.05' -0.05 0.2
E et g-o.owr 4 \J ol
1234567891 2 4 6 8 2 4 2 4 6 8 2 4 6 8 4 6 8

ung Wu (CS, NTH



Spectral Clustering Algorithms

Input: Similarity matrix S, number of clusters K
Qutput: Clusters Ay,--- ,Ag

Compute the Laplacian L.;
Compute the first K eigenvectors uy,--- ,ux of L. Let U € RVXK he

the matrix containing the vectors uy,--- ,ug as columns.;
Fori=1,---,N, lety, € RX be the vector corresponding to the i-th
row of U.;

Cluster the points (yi)i:L.,,,N with the K-means algorithm;
Algorithm 3: The spectral clustering algorithm.
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@ Pros:

o Local model, balanced
o Efficient event for large datasets (as S is sparse)

o No issue of getting stuck in local minimum (e.g., as in k-means due to
bad initializations)

o Cons:

o Performance sensitive to the quality of the local similarity graph
o Relaxation is loose: no guarantee that the final clusters correspond to
the balanced min-cuts

@ Which local similarity is better?

o Empirically, e-NN graph is less vulnerable to the imperfect choice of
parameters (e, o)
o Graph is sparse
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Outline

© Clustering

@ Practical Considerations
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Evaluating the Clusters

@ How to evaluate the clusters we found?
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Evaluating the Clusters

@ How to evaluate the clusters we found?
o If labels are not available during evaluation:

intercluster separation Y, (mi—m;)?
intracluster cohesion Y i 67 Lxeg, (x—mi)?
1

(the higher the better)

o If labels (i.e., {r'}Y_,, r') € RX) are available during the evaluation:

o entropy(Gy) =Y & Pilr”) = 111gP[r]") = 1], where Pi[r}" = 1]
denotes the portions of instances in G; which belong to class j
@ Here we define Ig0 =0

o entropypra(X) = Zlel ls;\,—i‘entropy(Gi) (the lower the better)

@ Indirect evaluation: if clustering is used to help perform another task,
then we can measure the performance of that task instead

e E.g., click-through rate of the recommended item in a website (where
clustering is used to group similar items/users)
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Deciding the Number of Clusters K

@ In the previous semiparametric methods, K is determined in advance

o We can decide K using the cross validation technique
o Plot the reconstruction error against K and pick the “elbow”

@ In hierarchical clustering, K is decided along with A
o h should be set to cut the “big jump”

@ K can be either a parameter or a hyperparameter

@ There are extensions for semiparametric methods that adapt K during
the iteration

o Eg?
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Deciding the Number of Clusters K

@ In the previous semiparametric methods, K is determined in advance

o We can decide K using the cross validation technique
o Plot the reconstruction error against K and pick the “elbow”

@ In hierarchical clustering, K is decided along with A
o h should be set to cut the “big jump”

@ K can be either a parameter or a hyperparameter

@ There are extensions for semiparametric methods that adapt K during
the iteration

o E.g.?7 at each iteration, we can drop groups that are too small and/or
split groups that are too large
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© Expectation Maximization
@ Latent Variables and Complete Likelihood
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Why Iterative Methods Work?

@ We have seen the iterative methods for clustering
o K-means
o Semiparametric density estimation

@ But we haven't answered the following questions:

o Why does the iteration end?

o Why is the clusters found in Step 2 better than the ones found in the
previous iteration?
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Latent Variables and Complete Likelihood (1/2)

@ Problem definition: given a dataset X :{x(’)}f’:l, suppose
p(x) =3 K p(x|G,)PIG/] and denote ® = (6;,7;)K | where 6;
parametrizes p(x|G;) and 7; = P[G;], we want to find © such that the
log likelihood In P[X|®] is maximized

o PO =YY InY X, px6,)madx
e Unfortunately, since we don’t know which instance belongs to which
group, we cannot solve this this objective analytically

o Now suppose there is a set Z ={z*) ?’:1 of latent variables, the
complete likelihood can be written as: InP[X, Z|©]

° zl.(') =1 if x(*) belongs to group i; 0 otherwise

o If we have Z, we can solve this objective as we did in the parametric
classification

o Unfortunately, we don't know Z

o So let's create it and maximize E [In P[X|B]]
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Latent Variables and Complete Likelihood (2/2)

@ Observe that
InP[X, Z|®] = InP[Z|X, V0] +1n P[X|O]

o We have
Ez[InP[X|B]] = L(q,©) + KL(q||P) for

any distribution g of Z
° L(q,0) =Y ,q(% ( xzel) Kl
o KL(glP) ==Y »q(Z% ( ?(chf)@})
@ Both L(g,®) and KL(g||P) are £(q,9) Inp(X|6)
functional of ¢

@ Since KL(q||P) is the relative entropy
(or Kullback-Leibler divergence)
and is always greater than O [Proof: by
Jensen’s inequality or Inx <x—1], we
have the figure at right:
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Iterative Methods: A Functional Perspective (1/3)

@ To maximize Ez [InP[X|®]], we can employ an iterative method based
on Ez[InP[X|@]] = L(q,0) + KL(q||P)

e Since g is unknown, we make up ¢
o We don't have to make up Z this time because we try out all possible
Z in L(q,0) and KL(q||P)

@ Start from a random guess about O, iterate the following steps:

© Update g based on current ® such that the blue line is up-aligned with
the red
@ Update O based on current ¢ to raises the red line

@ Stop until © converges
e Why another version?

o We are sure that Ez[In P[X|©]] (i.e., read line) can be raised at each
iteration (although up to a local optimal)
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Iterative Methods: A Functional Perspective (2/3)

@ Denote by @ the parameters found
in the previous iteration

@ In Step 1, if we update g such that (dllp) =
q(2) = P[Z|X,0°4] {

o KL(qlIP)=—) 5 q(Z)In1=0
e InP[X|@%] =L(q, @01d)+0

o Note the value of Ex [InP[X|©°4]] fla o
won't change as we vary ¢

Inp(X[6°)

@ So this step basically raises L(g, ®°/)
such that the blue line is up-aligned
with the red
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Iterative Methods: A Functional Perspective (3/3)

e Fixing ¢, for any © we have
E2[InP[X|@]] = L(q,©) + KL(q||P) =

P[X,2|©
55 PIZIX, 0°M]1n (5t ) -

P[Z|X,0] KL(q|lp)
%5 PIZIX, 0°M1in (5 i) [

S D s

@ In Step 2, we find @"" maximizing

L(q,0©) (blue line)

o KL(qllP) =

PIZ|X,©"
— ¥ PRIX, 0% In (GRS ) >0

o Ez[InP[X[©""]] > Ex [In P[X|©°]] Lla,0™) Inp(X[67)

@ So this step basically raises the red
line, meanwhile leaving the blue behind

@ Repeating Steps 1 and 2 lifts
E7[InP[X|O]] till some local optimum
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© Expectation Maximization

@ EM Steps
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Expectation Maximization (1/2)

@ Note that in step 1, we don’t need to write down g explicitly

o We just need to evaluate terms in E4[InP[X|®]] (a function of © to be
maximized in step 2) that are related to ¢

° Fixing q(Z) = P[Z|X,©°], we have
o X,21©
= ¥ PIIX, 0] In ( LRE0))
= ZZP 2|, 0] In (P[X, 2|0]) — Y_, P[Z|X, 0] In (P[Z|X, ©°])
= E [In(P[X, Z|O]) |X, ©°] + constant

o The second term is an entropy of Z and is independent of ©

@ Steps 1 and 2 can be refined to be:

o Expectation step (E-step): Formulate
Q(0;0%) = E4 [In(P[X, Z|0]) |X,®°] and evaluate the terms related
to P[Z|X,®1)

o Maximization step (M-step): Solve @™ = argg max Q(©; @)
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Expectation Maximization (2/2)

e The Expectation Maximization (EM) algorithm is a general
technique to find the maximum likelihood solutions for probabilistic
models having latent variables

o Typically, latent variables are discrete, and there is one latent variable
per observed instance

Input: X « {x( N
Output: ©™", a local optimizer of Ez[P[X|O]]

Choose an initial @"";
repeat
@old — @new;
Formulate Q(®; @) = E4 [In (P[X, 2|©]) |X, 0] and evaluate
the terms related to P[Z|X,0°“]; // E-step
@"" + argg max Q(@; @°M)"e; // M-step
until ®"* converges;
Algorithm 4: The general EM algorithm.

Shan-Hung Wu (CS, NTHU) Clustering and EM NetDB-ML, Spring 2015



© Expectation Maximization

o EM for Mixture Models
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1.1.D. Instances

Assume that (x(),z(1)) are i.i.d. samples drawn from some distribution
By definition, P[X, 2] =TIV Plx(®),z(1)]

Denote e; =[1,0---,0] " ,eo =[0,1---,0]",--- ,ex =[0,0--- , 1] € RX
We have P[X] =X P[X, 2] = ):Zﬂg\’zlp[x(t),z(t)] _

Z;K”:el .. ):;fm:elﬂg\’:lp[x(t) 0] = ﬂivzl):;(lg) :elp[x(t) zW0]=
ﬂf’zlP[xm]

e So,

x Z|@”ld} nN ‘@old
P[Z|X, @°1d] = e = an [ \@01‘1 ]-[N t)|x(t),@old]
1=
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Formulating Q(®; ®°) (1/3)

o Next, we formulate Q(©;0°) given
P[Z]X, @) =TIV, Pz [x("), @] (due to the i.i.d. instances), and
the assumption of mixture density:

e O= (e,»,n,»){;l where 0; parametrizes p(x|G;) and 7; = P[G|]
@ Denote by d(z!")) the index of attribute of z*) equal to 1
o Px zWj@] = Plx (Y @lP(V O] = Plx") |z(l),9d(z(r))]7fd(z(r))

@ For brevity, we use the shorthand P[zl-m] for Plz'V) =e;] (or
equivalently P[zim =1]
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Formulating Q(®; ®°) (2/3)

Q(0;0°) = E4[In (P[X, 2|0]) |X,0°“] = 5, In (P[X, Z|©]) P[Z|X, @]
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Formulating Q(®; ®°) (2/3)

Q(0;0°) = E4 [In (P[X, 2/0]) X, ©°4] = 3, In (P[X, 2|©]) P[Z|X,©°"]
=3 . 5N In(Px®,z0|E)) Yy, P ), ©7)
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Formulating Q(®; ®°) (2/3)

Q(0;0°) = E4 [In (P[X, 2/0]) X, ©°4] = 3, In (P[X, 2|©]) P[Z|X,©°"]
=3 . 5N In(Px®,z0|E)) Yy, P ), ©7)

=Y Y (P[x(t”Z(t) : ed(z(r))]ﬂd(zm)> Wj-VZIP[zU)IxU),G)Old]
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Formulating Q(®; ®°) (2/3)

Q(©;0°4) = E4 [In(P[X, Z|O]) |X, @] = > »In(P[X, Z|O]) P[Z|X, @ld]
=> 5 Zf’zl In (P[x(t),z(t”@]) ]—[;V:]p[zm x (), @]
=Y Y ( (1)) ed(z(r))]ﬁd(zm)> Wj-V:lP[zU)IxU),G)Old]
=Y YLk o 8,11 ¢ In (Plxle, 04(¢)174(c))
ﬂj’-V: PlzU IxU ,®Old] /] 84 = lif a = b; Ootherwise
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Formulating Q(®; ®°) (2/3)

Q(0;0°) = E4[In (P[X, 2|0]) |X,0°4] = 5, In(P[X, Z|©]) P[Z|X, 1]
=Y o ¥ L (P z20@) T PV W), @)
=Y Y ( (1)) ed(z(r))]ﬁd(zm)> Wj-VZIP[zU)IxU),G)Old]
=Y YLk = 8,1 1 (Pl le, 04(¢)I704(c))
TIN PlzU IxU @"ld] // dap = 1if a = b; Ootherwise
—Zz IZe —e In (Plx™le, 0()]74(e)) X2 8, ﬂ;vzlp[z(i”x(f),@ﬂd]
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Formulating Q(®; ®°) (2/3)

Q(0;0°) = E4[In (P[X, 2|0]) |X,0°4] = 5, In(P[X, Z|©]) P[Z|X, 1]
=Y o ¥ L (P z20@) T PV W), @)
=Y Y ( (1)) ed(z(r))]ﬁd(zm)> ﬂj-VZIP[zU)IxU),G)"Id]
=Y YLk = 8,1 1 (Pl le, 04(¢)I704(c))
TIN PlzU IxU) ©°M] || 8, = lif a = b; Ootherwise
_Zt IZe e1 ( t)|e ede

] Tl (e

(e) )) Z 6z(tJ,eﬂ§V:1P[zU)|xU),@old]
_ Zt IZ ( )|e ed e)] d(e)) |
Zzﬁ):el "'ngzv):e] 6Z(’),eﬂjl‘V:1P[ x (), @]
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Formulating Q(

0; %) (2/3)

Q(©;0°4) = E4 [In (P[X, ZI@]) 126, @] =3, In(P[X, Z|©]) P[Z|X, 8]
=ZzZ§V 11n( Xz

—Zzzt 1111(

Dz

_ZZZt 1Z_e1_ z’)e
]-[N [ |x(] @old]

_Zt IZe =e ( x(t le, ed e)

= Zt:I Ze:el (Px(t)|e ed e)

(

)ﬂ;.vzlP[z(j) x (), @]

(’] l€,04())7a(e))
/] Sap = 1if a=b; Ootherwise
d(e) 8, T Pl |x ), @]

)
a(e))

Z;fN)fe] 6z eﬂle [ |xU @0l

Zﬁfl),ﬁ
_Zt IZe =e) ( [x(f)
Z;fwl):el o Z
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ﬂ] 1P [z x ), @] Ple|x (), @°H]

Clustering and EM NetDB-ML, Spring 2015



Formulating Q(®; ®°) (2/3)

Q(0;0°) = E4 [In (P[X, 2/0]) X, ©°4] = 3, In (P[X, 2|©]) P[Z|X,©°"]
=2 z Ziv 1In (P,z© )”;v:lp[zm ), @]
=y,5" I ( A1) ,))]nd(z[,])> MY, PR l), @)
=2 2 Zt 1ot e—e, 070 ¢ ( (") |e'9d(e)]ﬂd(e))
TIN Pz xW) @) 7/ 6a » = lif a = b; Ootherwise
_Zt IZe =e ( x(t |e ed e) d(e) 'eﬂjvzlp[z(i”x(i),@ﬂd]

=3 Yk, In(PlWle,0,0,]m e))
ziﬁw;--z* O, T Pl |x W), @]

z[N)fe] Z E ]

—Zz IZe —e ( PlxWle, Od(e ] T (e ))Zﬁﬁ)ze;-Z;h:gl
Zex '”Zef() ]—[] " ;Az ')|x(j),@old]P[e|x(t),®old]

Z(r+1)_el

= S T In (Pl e, 0, ]ﬂd(e))(Zﬁfi):el'--Zﬁ{i_l):el
Sl Ll T PRV, ©°4)) Ple ), €01
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Formulating Q(©®; ®°) (3/3)

= 0 e n (Pl e, By ) magey) (2K, T8,
S L T PRV, ©°4)) Ple ), €01
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Formulating Q(©®; ®°) (3/3)

= 0 e n (Pl e, By ) magey) (2K, T8,

Zif(rm ., "'ngNl:el ]‘[;_V:l'j#lp[z(i”x(i),@old])P[e|x(t),@old]
_Zt IZe el ( (t)|e ed ]nd( ))
Ty 26, PRV, ©°14]) Plelx(), 071
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Formulating Q(

- Zt IZe =e (
ngrﬂ) —e;

- Zt IZe el (
IJ#IZ

= Zivzl Ze:el (

Shan-Hung Wu (CS, NTHU)
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|e 6d ] d(e)) (Ziﬁ):el"'zzgﬂ)

€ex

2N —e

=e)

1 ﬂ}vzllﬁé,P[zU) U, @”ld]> PlelxV), @2/
x“le, ed ]“d( )

|x(/ @oldJ) P[elx(’) ) @old]

Ie, Sd (e) ]nd(e)) lelx (), @2/
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Formulating Q(

_Zt IZe =e ( |e
ngrﬂ) el"'z

0; @) (3/3)

Oa(e)] d(e)) (Z%)Zel”'zzﬁﬂ)

_Zt IZe el ( (t)|e ed ]nd( ))

IJ#IZ

|x(/ @oldJ) P[elx(’) , @old]

= Ziv IZ ( |e- ed (e) ]’nd(e)) e|x t),@old]

_Zt IZ lln (1) P

P @), @0+

S T (P

|z§”,el~]) Pl ", @)

=e)

ng} —e n;v:]’]?élp[z(l) |x(]) ’ ®Dld]> P[e|x(t) ’ GOId]

Shan-Hung Wu (CS, NTHU)

Clustering and EM NetDB-ML, Spring 2015

60 / 68



Evaluating P[Z|X, ©°4]

e Given mixtures of i.i.d. samples, we have
0(@;0%) =y Z, lln ) Plzy ), @01 +

PR Zi:lln< |Z,' : i]) ,-(t)|x('),@(’ld]

o The problem evaluating P[Z|X,©°] is thus reduced to evaluating
P[zi(t)|x(’),@"ld] forall 1<i<Kand 1<t<N
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© Expectation Maximization

@ EM for Mixtures of Gaussians
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Evaluating P[z,( x®, @0l

@ Problem: given @, evaluate P[ Ix ,0°4] for all 1 <i< K and

I1<t<N
e From Bayes' theorem,
1) |x(t) @old] |Z (1) @oldip |®"ld _ |Z eold] old
, Z | Plx t) @o/d |®01d ZIKZI z>|Z eold] old

o If we further assume that mstances in each group are normally
distributed, then 09/ = (9! Z”ld) and we can easily obtain

Plx®) IZFI),qud] based on the normal distribution
e For brewty, we denote the evaluated P[ |x ), @2l by him

° hi aligns with the soft label zl. Vin semiparametric density estimation
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Solving arggmaxQ(®; @°4)

0 9(0;0%) =y, T In(m) b+ T, T n (PO} 01) "

@ Observe that the first term of Q(®; @) depends only on {m}lel; and
the second depends only on {9,'}{(:1

@ We can obtain ©"¢" by solving the two problems individually:
° argmy,_,’m{mafo]:l >k 11n(7t,)h-t subject to Y K m=1
o argg, ..o max 3, TK In (Pl 0 n"
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Solving {Tt}{il

° Lagrangian'
LY 00 = X X ) b o (1)

@ Taking the partial derivatives of L with respect to «, 7y, -+, 7 and
setting them to zero we have Zf:lm =1 and

Shin —a=0= YV n" =mafori=1,- K

@ Summing the equations with oc above we have ZlK 127 1 l(t) =

Id
Siame=a=3 1 Y k=Y T 1P ), oM =
@ Substituting N for « in each of the above equation we have
N7 h_(t)
7-[[, — Zt7\1[ i

o This aligns with the 7t; in semiparametric density estimation
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Solving {Oi}{il (1/2)

o Objective: argg, .. g, maXZf;l Zlel In (P[x(’)|z,-(t),9i]) him

@ Since the groups in the mixtures are independent with each other, we
can solve 0; = (u;, ;) one by one

o argy, max Zﬁvzl In (P[x(’)|zl.(') , Gi]) hl.m

o With the Gaussian mixture, we have
Zt ;In (P |z ]) n = —Mlog(27'c) — %log(det(}:,-)) —

1

ZZr:lhi MJTZ () — )= Ndlog(27t)+
%mg(det(z,. ))—% ,Nzlh})tr(zil( () ) (el — ;) T), where
Ni = Zﬁv:l hi(t)
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@ Taking the partial derivatives of the above objective with respect to ;
and Zfl and setting them to zero we have
S ) —p)TE T =07
Ng, Ly Al (e — ) —p) T =0

(1)
_ ZN:Hth-
o mi= =Sy
tzlh,’
0§ Tl om) (el ) Ty
e N (1)
t:lhi

@ Again, these results align with the m; and S; in semiparametric density
estimation
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@ Both the K-means and semiparametric density estimation are EM
algorithms

o The iteration ends and © converges to a local optimum
@ In particular, when assuming that the priors 7t; are all equal and
¥, = 021, we have

o ) — exp[—(1/2(5°4)2) || (1) —m?ie]|]
i Z]K:Iexp[—(l/z(snld)z)Hx(t)_m;,ld H

o The objective arge, ... ok maxZivzl Zfilln (P[x(t)|zl-(’),9i]> hl_(t) can be

(O ||?
rewritten as argml,,,_ymesminZLl K, Mhim

e This is equivalent to minimizing the reconstruction error in the
K-means
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