Clustering and Expectation Maximization

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Spring 2015

Shan-Hung Wu (CS, NTHU)

Clustering and EM

Net DB-ML, Spring 2015 1 / 68

Clustering

- Why Clustering?
- k-Means Clustering
- Semiparametric Density Estimation
- Hierarchical Clustering
- Spectral Clustering
- Practical Considerations

Expectation Maximization

- Latent Variables and Complete Likelihood
- EM Steps
- EM for Mixture Models
- EM for Mixtures of Gaussians

Clustering

• Why Clustering?

- k-Means Clustering
- Semiparametric Density Estimation
- Hierarchical Clustering
- Spectral Clustering
- Practical Considerations

2 Expectation Maximization

- Latent Variables and Complete Likelihood
- EM Steps
- EM for Mixture Models
- EM for Mixtures of Gaussians

Clustering

- We now consider the unsupervised datasets $\mathcal{X} = \{x^{(t)}\}_{t=1}^N$ where labels $r^{(t)}$ are missing
 - Learning the a posteriori knowledge from unlabeled data is called the *unsupervised learning*
- **Clustering** is one unsupervised learning technique used to identify the groups G_1, \dots, G_K in each which instances are similar (or close) to each other
 - K could be either predefined (a hyperparameter) or not (a parameter)
- Output: $\mathcal{Z} := \{z^{(t)}\}_t$, where
 - Hard labeling: $z^{(t)} \in \{0,1\}^K$ and $z^{(t)}_i = 1$ iff the instance t belongs to group i
 - Soft labeling: $z^{(t)} \in \mathbb{R}^{K}$ and $z_{i}^{(t)}$ denotes the degree (e.g., probability) the instance t belongs to group i

- Pattern recognition: groups may be meaningful
 - E.g., product/user cluster in market analysis
- Compression: instances in the same group can be represented by a prototype
- Data labeling: groups are good hints for labels
- Data reprocessing for classification/regression: attributes of instances can be augmented by group information; or we can identify groups in each class to estimate $P[\mathbf{x}|C_i]$ and $P[C_i]$ more precisely
- And so on...

- In dimensionality reduction, we find correlations between *attributes* and "group" (i.e., select/extract) attributes
- In clustering, we find similarities between *instances* and group instances

Clustering

• Why Clustering?

k-Means Clustering

- Semiparametric Density Estimation
- Hierarchical Clustering
- Spectral Clustering
- Practical Considerations

2 Expectation Maximization

- Latent Variables and Complete Likelihood
- EM Steps
- EM for Mixture Models
- EM for Mixtures of Gaussians

- Suppose each group G_i is parametrized by a prototype **m**_i, the mean of all instances in this group
- Hard labeling: $z_i^{(t)} = 1$ iff $\boldsymbol{x}^{(t)}$ is the closest to \boldsymbol{m}_i ; i.e., $\|\boldsymbol{x}^{(t)} \boldsymbol{m}_i\| = \min_j \|\boldsymbol{x}^{(t)} \boldsymbol{m}_j\|$
- The objective of *K*-means clustering is to find m_i such that the total reconstruction error $rec(\{m_i\}_{i=1}^K; \mathcal{X}) = \sum_{t=1}^N \sum_{i=1}^K z_i^{(t)} \|\mathbf{x}^{(t)} m_i\|^2$ is minimized

K-Means Clustering (2/2)

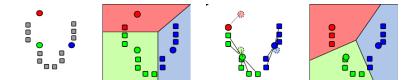
Input: $\mathcal{X} \leftarrow \{\mathbf{x}^{(t)}\}_{t=1}^{N}, K$ Output: The prototypes $m_i, 1 \leq i \leq K$

```
Initialize each m_i to a random example x^{(t)};
repeat
```

foreach
$$\mathbf{x}^{(t)} \in \mathcal{X}$$
 do
 $\begin{vmatrix} z_i^{(t)} \leftarrow \begin{cases} 1 & \text{if } \|\mathbf{x}^{(t)} - \mathbf{m}_i\| = \min_j \|\mathbf{x}^{(t)} - \mathbf{m}_j\| \\ 0 & \text{otherwise} \end{cases}$
end
foreach \mathbf{m}_i do
 $\mid \mathbf{m}_i \leftarrow \sum_{t=1}^N z_i^{(t)} \mathbf{x}^{(t)} / \sum_{t=1}^N z_i^{(t)};$
end
therefore a state of the state o

until all *m*_i converge; Algorithm 1: The *K*-means algorithm.

Example



Applications (1/2)

- One famous application of the *K*-means clustering is *vector quantization*, which aims to find a discrete set of vectors $\{m_i\}_{i=1}^K$ representative of the whole, possibly continuous, set of data points
 - E.g., in *color quantization*, we seeks the best 256 colors of an 24 bits/pixel (16 million) color image
 - Once we get these 256 colors, for each pixel we only need to store the 8 bits color index
- We can quantize the 16 million colors uniformly into 256, but some of these 256 colors may be wasted when there is no nearby color appears in the image
 - We want nonuniform quantization where m_i sit at the most dense areas of the whole dataset
- The K-means clustering minimizes $rec(\{\boldsymbol{m}_i\}_{i=1}^K; \mathcal{X}) = \sum_{t=1}^N \sum_{i=1}^K z_i^{(t)} ||\boldsymbol{x}^{(t)} - \boldsymbol{m}_i||^2$ and finds prototypes at the center of the dense regions

11 / 68

Applications (2/2)

- Another example is the use of *codebooks* in telecommunication systems
 - Each point in the dataset is a vector storing the sample of a voice signal
 - We want to quantize samples into K representative vectors
 - If we store these K vectors in each device, the signal can be sent by indexes (of lgK bits each) only

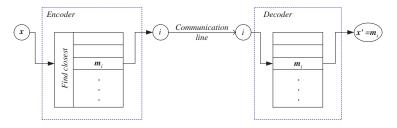


Figure : Given x, the encoder sends the index i of the nearest **codeword** m_i and the decoder receives $x' = m_i$. The error is $||x - x'||^2$.

Limitations (1/2)

- The main disadvantage of the K-means clustering is that it is a local search procedure
 - The final prototypes m_i may not be the optimal ones, and highly depend on the initial m_i
 - Can you give an example dataset based on which the *K*-means returns bad clusters? [Homework]
- Generally, the initial *m_i* should a) locate at regions where instances occur; b) be far away from each other
- The *K*-means++ proposes one possible initialization step:
 - Choose an instance uniformly at random to be m_1
 - **2** For each $x^{(t)}$, compute $d(x^{(t)})$, the distance between $x^{(t)}$ and the nearest m_i that has already been determined
 - 3 Assign another instance to m_{i+1} , but this time an instance x is chosen with probability $\frac{d(x)^2}{\sum_{i=1}^{N} d(x^{(i)})^2}$

Repeat Steps 2 and 3 until K initial prototypes are determined

- Another shortcoming of the K-means is that clusters are assumed to be spherical and with equal size
 - Due to that the Euclidean distance is used when updating the cluster assignment $z_i^{(t)}$ for each instance
- In practice, clusters may have different sizes
 - Next, we see how the above assumption can be relaxed using the probability framework we are already familiar

Clustering

- Why Clustering?
- k-Means Clustering

• Semiparametric Density Estimation

- Hierarchical Clustering
- Spectral Clustering
- Practical Considerations

2 Expectation Maximization

- Latent Variables and Complete Likelihood
- EM Steps
- EM for Mixture Models
- EM for Mixtures of Gaussians

Mixture Models

- ullet Basic assumption: the dataset ${\mathfrak X}$ is a mixture of groups G_1, \cdots, G_K
 - E.g., in the hand-written digit recognition, ${\mathfrak X}$ consists of images of "0," "1," "2," and so forth
 - Even if X are images of the same digit (say "1") there are still typical different ways to write the digit (with or without head)
- Soft labeling: $\mathcal{Z} = \{ \boldsymbol{z}^{(t)} \in \mathbb{R}^K \}_t$
- The *mixture density* of an instance x can be expressed as $p(x) = \sum_{i=1}^{K} p(x|G_i) P[G_i]$
- Model: a collection of groups, i.e., $\{G_i\}_{i=1}^K$
- Parameters: $G_1, \dots, and G_K$
- Objective: $\arg_{G_1, \dots, G_K} \max \prod_{t=1}^N \sum_{i=1}^K p(\boldsymbol{x}^{(t)}|G_i) P[G_i] d\boldsymbol{x}$
- A generative model this case

Parametric vs. Nonparametric vs. Semiparametric

- Parametric models: models that can be completely described by (a small number of) parameters
- Nonparametric models: those that cannot be described by parameters
- Semiparametric models: those that can be partially described by parameters
 - Each cluster is parametric
 - But the mixture of clusters, $\mathcal{Z} = \{z^{(t)}\}_t$, is not (i.e., we do not assume the mixture to follow some distribution)

17 / 68

Semiparametric Clustering vs. Parametric Classification

- Parametric classification is a special case of mixture model where the groups (i.e., classes) are known in advance: $P[\mathbf{x}^{(t)}] = \sum_{i=1}^{K} p(\mathbf{x}^{(t)}|C_i) P[C_i] d\mathbf{x}$
- Assume p(x^(t)|C_i)dx and P[C_i] follow Gaussian and Bernoulli distributions parametrized by θ_i = (μ_i, Σ_i) and θ'_i = p_i respectively
- Since we know which instance belongs to which class by $r^{(t)}$, we can estimate θ_i and θ'_i analytically by maximizing $P[\mathcal{X}|\theta_i]$ and $P[\mathcal{X}|\theta'_i]$:

•
$$\widehat{p}_i = \frac{N_i}{N}$$
, where $N_i = \sum_{t=1}^{N} r_i^{(t)}$
• $m_i = \frac{1}{N_i} \sum_{t=1}^{N} x^{(t)} r_i^{(t)}$ and $S_i = \frac{1}{N_i - 1} \sum_{t=1}^{N} r_i^{(t)} (x^{(t)} - m_i) (x^{(t)} - m_i)^\top$

• Unfortunately, in semiparametric clustering we don't know $z^{(t)}/r^{(t)}$ so we cannot solve $p(x^{(t)}|C_i)dx$ and $P[C_i]$ analytically

18 / 68

If No $\{\theta_i, \theta_i'\}_{i=1}^K$, Make Them Up

• How?

- How? Borrowing the iterations from K-means
- Start from a random guess of $\{\theta_i, \theta_i'\}_{i=1}^K$ and then perform the following two steps iteratively:
 - For each instance $\mathbf{x}^{(t)}$, update its $\mathbf{z}^{(t)}$ based on the current G_1, \dots, G_K parametrized by $\theta_1, \dots, \theta_K$
 - 2 Update $\theta_1, \cdots, \theta_K$ based on the current $z^{(t)}$
- Stop until the groups do not change in Step 2 (or the changes of groups are smaller than a threshold ε)

Semiparametric Density Estimation (1/2)

- Suppose in the mixture density $p(\mathbf{x}) = \sum_{i=1}^{K} p(\mathbf{x}|G_i)P[G_i]$, each $p(\mathbf{x}^{(t)}|G_i)$ and $P[G_i]$ are Gaussian and Bernoulli distributions parametrized by $\theta_i = (\mathbf{\mu}_i, \mathbf{\Sigma}_i)$ and $\theta'_i = \pi_i$ respectively
- Denote the collection of estimators by $\Theta = (\pmb{m}_i, \pmb{S}_i, \pi_i)_{i=1}^K$
- We guess initial Θ, and then:
 - $\begin{array}{l} \bullet \quad \mathsf{Update\ mixture:}\ z_i^{(t)} = P[z_i^{(t)} | \mathbf{x}^{(t)}; \Theta] = \frac{p(\mathbf{x}^{(t)} | z_i^{(t)}; \Theta) P[z_i^{(t)}; \Theta]}{p(\mathbf{x}^{(t)}; \Theta)} = \\ \frac{p(\mathbf{x}^{(t)} | z_i^{(t)}; \Theta) \pi_i}{\sum_{j=1}^{K} p(\mathbf{x}^{(t)} | z_j^{(t)}; \Theta) \pi_j} = \frac{det(S_i)^{-1/2} exp[-(1/2)(\mathbf{x}^{(t)} \mathbf{m}_i)^\top S_i^{-1}(\mathbf{x}^{(t)} \mathbf{m}_i)] \pi_i}{\sum_{j=1}^{K} det(S_j)^{-1/2} exp[-(1/2)(\mathbf{x}^{(t)} \mathbf{m}_j)^\top S_j^{-1}(\mathbf{x}^{(t)} \mathbf{m}_j)] \pi_j} \end{aligned}$

• Unlike in K-means, we assign **soft** labels to $z_i^{(t)}$

Opdate Θ: knowing z_i^(t), we can update π_i, m_i, and S_i by, e.g., maximizing the likelihood P[X|Θ]

20 / 68

Semiparametric Density Estimation (2/2)

Input: $\mathfrak{X} \leftarrow \{ \mathbf{x}^{(t)} \}_{t=1}^{N}, K$ Output: $\Theta = (\mathbf{m}_i, \mathbf{S}_i, \pi_i)_{i=1}^{K}$

Initialize Θ by performing several iterations of *K*-means; repeat

$$\begin{array}{l} \text{for each } \pmb{x}^{(t)} \in \mathcal{X} \text{ do} \\ \left| \begin{array}{c} z_{i}^{(t)} \leftarrow \frac{det(S_{i})^{-1/2}exp[-(1/2)(\pmb{x}^{(t)}-\pmb{m}_{i})^{\top}S_{i}^{-1}(\pmb{x}^{(t)}-\pmb{m}_{i})]\pi_{i}}{\sum_{j=1}^{K}det(S_{j})^{-1/2}exp[-(1/2)(\pmb{x}^{(t)}-\pmb{m}_{j})^{\top}S_{j}^{-1}(\pmb{x}^{(t)}-\pmb{m}_{j})]\pi_{j}}; \\ \text{end} \\ \text{for each } \pi_{i}, \ \pmb{m}_{i}, \ and \ \pmb{S}_{i} \text{ do} \\ \left| \begin{array}{c} \pi_{i} \leftarrow \frac{\sum_{t=1}^{N}z_{i}^{(t)}}{N}; \\ \pmb{m}_{i} \leftarrow \frac{\sum_{t=1}^{N}x^{(t)}z_{i}^{(t)}}{\sum_{t=1}^{N}z_{i}^{(t)}} \text{ and } \ \pmb{S}_{i} \leftarrow \frac{\sum_{t=1}^{N}z_{i}^{(t)}(\pmb{x}^{(t)}-\pmb{m}_{i})(\pmb{x}^{(t)}-\pmb{m}_{i})^{\top}}{\sum_{t=1}^{N}z_{i}^{(t)}}; \\ \text{end} \end{array} \right. \end{aligned} \right.$$

until Θ converges;

Algorithm 2: Semiparametric density estimation for Gaussian mixtures.

• As in parametric classification, with small training dataset and large dimensionality we can regularize our model by simplifying assumptions

• When the priors
$$P[G_i] = \pi_i$$
 are all equal and $S_i = s^2 I$, we have $z_i^{(t)} = \frac{exp[-(1/2s^2) || \mathbf{x}^{(t)} - \mathbf{m}_i ||]}{\sum_{j=1}^{K} exp[-(1/2s^2) || \mathbf{x}^{(t)} - \mathbf{m}_j ||]}$

- We thus see that the K-means clustering is just a special case of the semiparametric density estimation applied to Gaussian mixtures, where
 - Attributes of instances are independent and with equal variance
 - All groups have equal priors
 - Labels are hardened

Clustering

- Why Clustering?
- k-Means Clustering
- Semiparametric Density Estimation

Hierarchical Clustering

- Spectral Clustering
- Practical Considerations

2 Expectation Maximization

- Latent Variables and Complete Likelihood
- EM Steps
- EM for Mixture Models
- EM for Mixtures of Gaussians

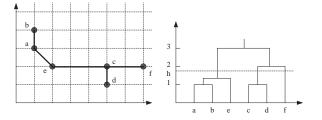
- So far, we assume that clusters are independent groups (although they may overlap)
- In some applications, we may want to find the hierarchy of clusters
- Two common types of algorithms:
 - **Agglomerative**: Starting from N groups, each with single instance, iteratively merging two most similar groups to form a larger one, until there remains a single group
 - **Divisive**: Starting one group containing all instances, dividing large groups into smaller ones, until there are N groups

- When deciding which groups should be merged (or split), a measure of similarity, or equivalently distance d, is required
 - One common choice is the Minkowski distance: $d(\mathbf{x}^{(r)}, \mathbf{x}^{(s)}) = \left(\sum_{i=1}^{d} \left|x_{i}^{(r)} - x_{i}^{(s)}\right|^{p}\right)^{1/p} \text{ for some } p$
- But how to calculate the distance between two groups?

- When deciding which groups should be merged (or split), a measure of similarity, or equivalently distance d, is required
 - One common choice is the Minkowski distance: $d(\mathbf{x}^{(r)}, \mathbf{x}^{(s)}) = \left(\sum_{i=1}^{d} \left|x_{i}^{(r)} - x_{i}^{(s)}\right|^{p}\right)^{1/p} \text{ for some } p$
- But how to calculate the distance between two groups?
 - Single-link metric: $d(G_i, G_j) = \min_{\mathbf{x}^{(r)} \in G_i, \mathbf{x}^{(s)} \in G_i} d(\mathbf{x}^{(r)}, \mathbf{x}^{(s)})$
 - **Complete-link** metric: $d(G_i, G_j) = \max_{\mathbf{x}^{(r)} \in G_i, \mathbf{x}^{(s)} \in G_j} d(\mathbf{x}^{(r)}, \mathbf{x}^{(s)})$

25 / 68

• The result of hierarchical clustering can be shown as the *dendrogram*:



- Each internal node corresponds to a group
- The height of the internal node denote the distance between groups
- The dendrogram can be intersected at a user-specific level h to get the clusters
- In each cluster, instances in the input space are connected as a tree

Single- or Complete-Link?

Shan-Hung Wu (CS, NTHU)

Single- or Complete-Link?

- With the complete-link metric, all instance in a group have distance less than *h*
 - Assumes that each cluster is spherical
 - Similar to k-means and semiparametric density estimation
 - Used only when this assumption is likely to be true
- Single-link clusters may have diameter (i.e., the greatest length of the shortest paths between instances) much larger than h
 - With the single-link metric, two instance are grouped together at level *h* if
 - The distance between them is less than h; or
 - There exists a path between them such that any two consecutive instances along the path have mutual distance less than h
 - Each final cluster may have an arbitrary shape
 - Suitable for clusters backed by respective underlying manifolds

Clustering

- Why Clustering?
- k-Means Clustering
- Semiparametric Density Estimation
- Hierarchical Clustering
- Spectral Clustering
- Practical Considerations

2 Expectation Maximization

- Latent Variables and Complete Likelihood
- EM Steps
- EM for Mixture Models
- EM for Mixtures of Gaussians

Global vs. Local Models

- We have seen models that find clusters by assuming some structure for each cluster
- Global structure: each cluster represents a dense region of a known shape
 - E.g., *k*-means, semiparametric density estimation, hierarchical clustering with complete-link metric
- Local similarity: each instance in a cluster is similar to its nearby instances
 - E.g., hierarchical clustering with single-link metric
 - Local models can produce clusters of arbitrary shapes
 - Suitable to datasets where clusters are backed by respective underlying manifolds

り 2 7 7 7 7

- In local models, any two instances in the same cluster are *not* necessarily similar
 - This is both an advantage and disadvantage
- Cons: they tends to find clusters of unbalanced sizes

- Outliers form singleton clusters
- How to make clusters balanced?

- In local models, any two instances in the same cluster are not necessarily similar
 - This is both an advantage and disadvantage
- Cons: they tends to find clusters of unbalanced sizes

- Outliers form singleton clusters
- How to make clusters balanced?
- We consider only the the flat clustering in the next

Balanced Cut of Local Similarity Graph (1)

- Given a set of data points $x^{(1)}, \dots, x^{(N)}$. Let $S \in \mathbb{R}^{N \times N}$ be the local similarity matrix where $s_{i,j} \ge 0$ is the similarity between instance between instances *i* and *j* if they are neighbors
 - Euclidean distance is clearly not a good choice
- Local similarity measure?

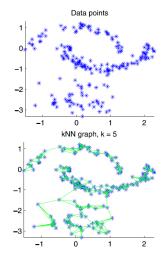
- Given a set of data points $x^{(1)}, \dots, x^{(N)}$. Let $S \in \mathbb{R}^{N \times N}$ be the local similarity matrix where $s_{i,j} \ge 0$ is the similarity between instance between instances *i* and *j* if they are neighbors
 - Euclidean distance is clearly not a good choice
- Local similarity measure?
 - ε-NN similarity: s_{i,j} inverse proportional to the Euclidean distance between i and j if i is a ε-nearest neighbor of j or vice versa; otherwise 0
 - Gaussian similarity (soft ϵ -NN): $s_{i,j} = \exp(-\frac{\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\|^2}{\sigma^2})$ for some hyperparameter σ

Balanced Cut of Local Similarity Graph (2)

- Consider the graph G = (V, E) where V denotes the set of instances and E denotes the set of non-zero local similarity scores
- Given a set of nodes $A \subset V$, define $Cut(A) := \sum_{i \in A, j \notin A} s_{i,j}$
- We want to find a *k*-partition A_1, \cdots, A_K of *V* that solve the problem:

$$\arg\min_{A_1,\cdots,A_K\subset V} RatioCut(A_1,\cdots,A_K) := \frac{1}{2}\sum_{i=1}^K \frac{Cut(A_i)}{|A_i|}$$

- Cross-partition links are edges are minimized
- $|A_1|, \cdots, |A_K|$ are balanced



- Unfortunately, although the min-cut problems can be solved efficiently, the balanced min-cut problems are NP-hard
- Spectral clustering solves a relaxation of the above problem
 - Finds the eigenvectors of a *graph Laplacian matrix* induced from the local similarity graph
 - Efficient

Graph Laplacian

• Given a (local) similarity matrix *S*, the *graph Laplacian matrix* is defined as

$$L=D-S$$

where D is an $N \times N$ diagonal matrix with $d_i = \sum_{j=1}^N s_{i,j}$ on the diagonal

- For any vector $f \in \mathbb{R}^N$, we have $f^\top L f = \frac{1}{2} \sum_{i,j=1}^N s_{i,j} (f_i f_j)^2$ [Homework]
- L is symmetric and positive semi-definite
 - The smallest eigenvalue of L is 0, and the constant one vector $\mathbf{1} \in \mathbb{R}^N$ must be (one of) the corresponding eigenvector
 - L has N non-negative eigenvalues $0 = \lambda_1 \leqslant \cdots \leqslant \lambda_N$.

Spectral Clustering

- Idea: map each $x^{(t)} \in \mathbb{R}^N$ to $z^{(t)} \in \mathbb{R}^m$ in some low dimensional space such that $z^{(i)}$ and $z^{(j)}$ are similar if they belong to the same cluster
 - Then apply a traditional clustering algorithm (e.g., *k*-means) to obtain the final cluster
- Based on $\boldsymbol{f}^{\top} \boldsymbol{L} \boldsymbol{f} = \frac{1}{2} \sum_{i,j=1}^{N} s_{i,j} (f_i f_j)^2$, we can first solve

$$\begin{aligned} \arg\min_{\boldsymbol{F} = [\boldsymbol{f}^{(1)}, \cdots, \boldsymbol{f}^{(m)}] \in \mathbb{R}^{N \times m}} \operatorname{tr}(\boldsymbol{F}^{\top} \boldsymbol{L} \boldsymbol{F}) &= \sum_{i=1}^{m} \boldsymbol{f}^{(i) \top} \boldsymbol{L} \boldsymbol{f}^{(i)}, \\ \text{subject to } \boldsymbol{F}^{\top} \boldsymbol{F} &= \boldsymbol{I} \end{aligned}$$

and then let $oldsymbol{z}^{(t)}$ be the t-th row of $oldsymbol{F}$

- $\bullet~ {\pmb f}_i$ and ${\pmb f}_j$ are orthogonal so that they provide complementary perspectives
- Each f_i is normalized so that the clusters are balanced (to be explained later)

• From the Rayleigh-Ritz theorem, $f^{(1)}, \cdots, f^{(m)}$ are the eigenvectors corresponding to the smallest eigenvalues of L

Theorem

Let G = (V, E) be an undirected graph with non-negative weights. Then the multiplicity K of the eigenvalue 0 of L equals the number of connected components $A_1, \dots, A_K \subset V$ in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbf{1}_{A_1}, \dots, \mathbf{1}_{A_K} \in \mathbb{R}^N$ of those components.

Spectrum of L (2)

Proof.

Assume that f is an eigenvector with eigenvalue 0. We know that $0 = f^{\top} L f = \sum_{i,j=1}^{N} s_{i,j} (f_i - f_j)^2$. As $s_{i,j}$ is non-negative, the sum can only vanish if all terms vanish. Thus, if two vertices v_i and v_j are connected (i.e., $s_{i,j} > 0$), then $f_i = f_j$. When K = 1, f needs to be constant one vector and L has eigenvalue 0 with multiplicity 1. When K > 1, without loss of generality we assume that the vertices are ordered according to the connected components they belong to. Then S has a block diagonal form, and the same is true for L:

$$\boldsymbol{L} = \left(\begin{array}{ccc} \boldsymbol{L}_1 & & \\ & \ddots & \\ & & \boldsymbol{L}_K \end{array} \right).$$

Since the spectrum of L is given by the union of the spectra of L_i , and the corresponding eigenvectors of L are the eigenvectors of L_i , filled with 0 at the positions of the other blocks.

Shan-Hung Wu (CS, NTHU)

37 / 68

- Based on the above theorem, we should make sure that #connected components < m when constructing the local similarity graph
 - Otherwise, some cluster may contain one connected component, and some may contain multiple
- In practice, we usually construct a fully-connected graph
 - The eigenvector of 0 is 1

• Other than 1, what f makes $f^{\top}Lf = \frac{1}{2} \sum_{i,j=1}^{N} s_{i,j} (f_i - f_j)^2$ small?

- Those f's with value levels
- Coordinates corresponding to the same G_i have the same value (forming a level)
- The gap between different levels corresponds to the min-cuts

- Besides, $\|f\| = 1$ makes gap correspond to the balanced min-cuts
- For example, suppose K = 2. Let

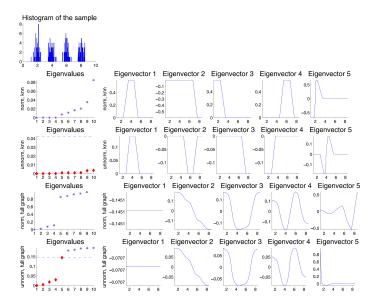
$$f_i = egin{cases} \sqrt{rac{|ar{G}|}{|V||G|}}, & ext{if } oldsymbol{x}^{(i)} \in G \ -\sqrt{rac{|G|}{|V||ar{G}|}}, & ext{otherwise} \end{cases}$$

We have

$$tr(\mathbf{f}^{\top} \mathbf{L} \mathbf{f}) = RatioCut(G, \overline{G}),$$

furthermore, $\boldsymbol{f}^{\top} \mathbf{1} = 0$ and $\|\boldsymbol{f}\| = 1$ [Homework]

m = K is enough due to orthogonality



Input: Similarity matrix S, number of clusters K**Output**: Clusters A_1, \dots, A_K

Compute the Laplacian L.; Compute the first K eigenvectors u_1, \dots, u_K of L. Let $U \in \mathbb{R}^{N \times K}$ be the matrix containing the vectors u_1, \dots, u_K as columns.; For $i = 1, \dots, N$, let $y_i \in \mathbb{R}^K$ be the vector corresponding to the *i*-th row of U.;

Cluster the points $(y_i)_{i=1,\dots,N}$ with the K-means algorithm; Algorithm 3: The spectral clustering algorithm. Pros:

- Local model, balanced
- Efficient event for large datasets (as S is sparse)
- No issue of getting stuck in local minimum (e.g., as in *k*-means due to bad initializations)
- Cons:
 - Performance sensitive to the quality of the local similarity graph
 - Relaxation is loose: no guarantee that the final clusters correspond to the balanced min-cuts
- Which local similarity is better?
 - Empirically, ϵ -NN graph is less vulnerable to the imperfect choice of parameters (ϵ , σ)
 - Graph is sparse

68

Outline

Clustering

- Why Clustering?
- k-Means Clustering
- Semiparametric Density Estimation
- Hierarchical Clustering
- Spectral Clustering
- Practical Considerations

Expectation Maximization

- Latent Variables and Complete Likelihood
- EM Steps
- EM for Mixture Models
- EM for Mixtures of Gaussians

Evaluating the Clusters

• How to evaluate the clusters we found?

Evaluating the Clusters

- How to evaluate the clusters we found?
- If labels are not available during evaluation:
 - $\frac{\text{intercluster separation}}{\text{intracluster cohesion}} = \frac{\sum_{i,j} (m_i m_j)^2}{\sum_i \frac{1}{|G_i|} \sum_{x \in G_i} (x m_i)^2}$ (the higher the better)
- If labels (i.e., $\{\pmb{r}^{(t)}\}_{t=1}^N$, $\pmb{r}^{(t)} \in \mathbb{R}^K$) are available during the evaluation:
 - $entropy(G_i) = -\sum_{j=1}^{K} P_i[r_j^{(t)} = 1] \lg P_i[r_j^{(t)} = 1]$, where $P_i[r_j^{(t)} = 1]$ denotes the portions of instances in G_i which belong to class j

• Here we define $\lg 0 = 0$

• $entropy_{total}(\mathfrak{X}) = \sum_{i=1}^{K} \frac{|G_i|}{N} entropy(G_i)$ (the lower the better)

- Indirect evaluation: if clustering is used to help perform another task, then we can measure the performance of that task instead
 - E.g., click-through rate of the recommended item in a website (where clustering is used to group similar items/users)

44 / 68

Deciding the Number of Clusters K

• In the previous semiparametric methods, K is determined in advance

- We can decide K using the cross validation technique
- Plot the reconstruction error against K and pick the "elbow"
- In hierarchical clustering, K is decided along with h
 - h should be set to cut the "big jump"
- K can be either a parameter or a hyperparameter
- There are extensions for semiparametric methods that adapt K during the iteration
 - E.g.?

Deciding the Number of Clusters K

• In the previous semiparametric methods, K is determined in advance

- We can decide K using the cross validation technique
- Plot the reconstruction error against K and pick the "elbow"
- In hierarchical clustering, K is decided along with h
 - h should be set to cut the "big jump"
- K can be either a parameter or a hyperparameter
- There are extensions for semiparametric methods that adapt K during the iteration
 - E.g.? at each iteration, we can drop groups that are too small and/or split groups that are too large

Outline

Clustering

- Why Clustering?
- k-Means Clustering
- Semiparametric Density Estimation
- Hierarchical Clustering
- Spectral Clustering
- Practical Considerations

Expectation Maximization

- Latent Variables and Complete Likelihood
- EM Steps
- EM for Mixture Models
- EM for Mixtures of Gaussians

- We have seen the iterative methods for clustering
 - K-means
 - Semiparametric density estimation
- But we haven't answered the following questions:
 - Why does the iteration end?
 - Why is the clusters found in Step 2 better than the ones found in the previous iteration?

Latent Variables and Complete Likelihood (1/2)

- Problem definition: given a dataset $\mathcal{X} = \{\mathbf{x}^{(t)}\}_{t=1}^{N}$, suppose $p(\mathbf{x}) = \sum_{i=1}^{K} p(\mathbf{x}|G_i) P[G_i]$ and denote $\Theta = (\theta_i, \pi_i)_{i=1}^{K}$ where θ_i parametrizes $p(\mathbf{x}|G_i)$ and $\pi_i = P[G_i]$, we want to find Θ such that the log likelihood $\ln P[\mathcal{X}|\Theta]$ is maximized
 - $\ln P[\mathcal{X}|\Theta] = \sum_{t=1}^{N} \ln \sum_{i=1}^{K} p(\mathbf{x}^{(t)}|\theta_i) \pi_i d\mathbf{x}$
 - Unfortunately, since we don't know which instance belongs to which group, we cannot solve this this objective analytically
- Now suppose there is a set $\mathcal{Z} = \{z^{(t)}\}_{t=1}^N$ of *latent variables*, the *complete likelihood* can be written as: $\ln P[\mathcal{X}, \mathcal{Z}|\Theta]$
 - $z_i^{(t)} = 1$ if $x^{(t)}$ belongs to group *i*; 0 otherwise
 - $\bullet\,$ If we have $\mathcal{Z},$ we can solve this objective as we did in the parametric classification
 - Unfortunately, we don't know ${\mathcal Z}$
 - So let's create it and maximize $E_{\mathcal{Z}}[\ln P[\mathcal{X}|\Theta]]$

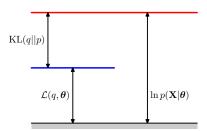
Latent Variables and Complete Likelihood (2/2)

- Observe that $\ln P[\mathcal{X}, \mathcal{Z}|\Theta] = \ln P[\mathcal{Z}|\mathcal{X}, \Theta] + \ln P[\mathcal{X}|\Theta]$
- We have $E_{\mathcal{Z}}[\ln P[\mathcal{X}|\Theta]] = L(q,\Theta) + KL(q||P)$ for any distribution q of \mathcal{Z}

•
$$L(q, \Theta) = \sum_{\mathcal{Z}} q(\mathcal{Z}) \ln \left(\frac{P[\mathcal{X}, \mathcal{Z}|\Theta]}{q(\mathcal{Z})} \right)$$

• $KL(q||P) = -\sum_{\mathcal{Z}} q(\mathcal{Z}) \ln \left(\frac{P[\mathcal{Z}|\mathcal{X}, \Theta]}{q(\mathcal{Z})} \right)$

• Since KL(q||P) is the *relative entropy* (or *Kullback-Leibler divergence*) and is always greater than 0 [Proof: by Jensen's inequality or $\ln x \leq x-1$], we have the figure at right:



Iterative Methods: A Functional Perspective (1/3)

- To maximize E_Z [lnP[X|Θ]], we can employ an iterative method based on E_Z [lnP[X|Θ]] = L(q, Θ) + KL(q||P)
 - Since q is unknown, we make up q
 - We don't have to make up $\mathcal Z$ this time because we try out all possible $\mathcal Z$ in $L(q,\Theta)$ and KL(q||P)
- Start from a random guess about Θ , iterate the following steps:
 - Update q based on current Θ such that the blue line is up-aligned with the red
 - 2 Update Θ based on current q to raises the red line
- Stop until Θ converges
- Why another version?
 - We are sure that E_ℤ[lnP[𝔅|Θ]] (i.e., read line) can be raised at each iteration (although up to a local optimal)

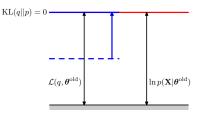
Iterative Methods: A Functional Perspective (2/3)

- Denote by Θ^{old} the parameters found in the previous iteration
- In Step 1, if we update q such that $q(\mathcal{Z}) = P[\mathcal{Z}|\mathcal{X}, \Theta^{old}]$

•
$$KL(q||P) = -\sum_{\mathcal{Z}} q(\mathcal{Z}) \ln 1 = 0$$

• $\ln P[\mathcal{X}|\Theta^{old}] = L(q,\Theta^{old}) + 0$

- Note the value of $E_{\mathcal{Z}}[\ln P[\mathcal{X}|\Theta^{old}]]$ won't change as we vary q
- So this step basically raises L(q, Θ^{old}) such that the blue line is up-aligned with the red

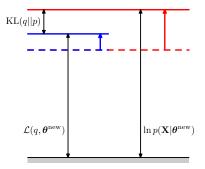


Iterative Methods: A Functional Perspective (3/3)

- Fixing q, for any Θ we have $E_{\mathcal{Z}}[\ln P[\mathcal{X}|\Theta]] = L(q,\Theta) + KL(q||P) =$ $\sum_{\mathcal{Z}} P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] \ln \left(\frac{P[\mathcal{X}, \mathcal{Z}|\Theta]}{P[\mathcal{Z}|\mathcal{X}, \Theta^{old}]}\right) \sum_{\mathcal{Z}} P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] \ln \left(\frac{P[\mathcal{Z}|\mathcal{X},\Theta]}{P[\mathcal{Z}|\mathcal{X}, \Theta^{old}]}\right)$
- In Step 2, we find Θ^{new} maximizing $L(q, \Theta)$ (blue line)
 - KL(q||P) =

$$-\sum_{\mathcal{Z}} P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] \ln\left(\frac{P[\mathcal{Z}|\mathcal{X}, \Theta^{new}]}{P[\mathcal{Z}|\mathcal{X}, \Theta^{old}]}\right) \ge 0$$

- $E_{\mathcal{Z}}[\ln P[\mathcal{X}|\Theta^{new}]] \ge E_{\mathcal{Z}}[\ln P[\mathcal{X}|\Theta^{old}]]$
- So this step basically raises the red line, meanwhile leaving the blue behind
- Repeating Steps 1 and 2 lifts
 E_Z[ln P[X|Θ]] till some local optimum



68

Outline

Clustering

- Why Clustering?
- k-Means Clustering
- Semiparametric Density Estimation
- Hierarchical Clustering
- Spectral Clustering
- Practical Considerations

Expectation Maximization

- Latent Variables and Complete Likelihood
- EM Steps
- EM for Mixture Models
- EM for Mixtures of Gaussians

Expectation Maximization (1/2)

- Note that in step 1, we don't need to write down q explicitly
 - We just need to evaluate terms in E_Z[lnP[X|Θ]] (a function of Θ to be maximized in step 2) that are related to q

• Fixing
$$q(\mathcal{Z}) = P[\mathcal{Z}|\mathcal{X}, \Theta^{old}]$$
, we have
 $L(q, \Theta) = \sum_{\mathcal{Z}} P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] \ln\left(\frac{P[\mathcal{X}, \mathcal{Z}|\Theta]}{P[\mathcal{Z}|\mathcal{X}, \Theta^{old}]}\right)$
 $= \sum_{\mathcal{Z}} P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] \ln\left(P[\mathcal{X}, \mathcal{Z}|\Theta]\right) - \sum_{\mathcal{Z}} P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] \ln\left(P[\mathcal{Z}|\mathcal{X}, \Theta^{old}]\right)$
 $= E_{\mathcal{Z}}[\ln\left(P[\mathcal{X}, \mathcal{Z}|\Theta]\right) |\mathcal{X}, \Theta^{old}] + constant$

 $\bullet\,$ The second term is an entropy of ${\mathfrak Z}$ and is independent of $\Theta\,$

- Steps 1 and 2 can be refined to be:
 - Expectation step (E-step): Formulate $\mathcal{Q}(\Theta; \Theta^{old}) = E_{\mathcal{Z}}[\ln(P[\mathcal{X}, \mathcal{Z}|\Theta]) | \mathcal{X}, \Theta^{old}]$ and evaluate the terms related to $P[\mathcal{Z}|\mathcal{X}, \Theta^{old}]$
 - Maximization step (M-step): Solve $\Theta^{new} = \arg_{\Theta} \max \Omega(\Theta; \Theta^{old})$

- The *Expectation Maximization (EM)* algorithm is a general technique to find the maximum likelihood solutions for probabilistic models having latent variables
 - Typically, latent variables are discrete, and there is one latent variable per observed instance

 $\begin{array}{ll} \textbf{Input:} \ \mathcal{X} \leftarrow \{\pmb{x}^{(t)}\}_{t=1}^N \\ \textbf{Output:} \ \Theta^{new}, \text{ a local optimizer of } E_{\mathcal{Z}}[P[\mathcal{X}|\Theta]] \end{array}$

Choose an initial Θ^{new} ;

repeat

```
 \begin{array}{|c|c|c|c|c|} & \Theta^{old} \leftarrow \Theta^{new}; \\ & \mbox{Formulate } \Omega(\Theta;\Theta^{old}) = E_{\mathcal{Z}}[\ln{(P[\mathfrak{X},\mathcal{Z}|\Theta])}|\mathfrak{X},\Theta^{old}] \mbox{ and evaluate} \\ & \mbox{the terms related to } P[\mathcal{Z}|\mathcal{X},\Theta^{old}]; \ // \ \mbox{E-step} \\ & \ \Theta^{new} \leftarrow \arg_{\Theta} \max \Omega(\Theta;\Theta^{old})^{new}; \ // \ \mbox{M-step} \\ & \mbox{until } \Theta^{new} \ converges; \\ & \ \mbox{Algorithm 4: The general EM algorithm.} \end{array}
```

Shan-Hung Wu (CS, NTHU)

Outline

Clustering

- Why Clustering?
- k-Means Clustering
- Semiparametric Density Estimation
- Hierarchical Clustering
- Spectral Clustering
- Practical Considerations

Expectation Maximization

- Latent Variables and Complete Likelihood
- EM Steps
- EM for Mixture Models
- EM for Mixtures of Gaussians

Assume that (x^(t), z^(t)) are i.i.d. samples drawn from some distribution
By definition, P[X, Z] = Π^N_{t=1}P[x^(t), z^(t)]
Denote e₁ = [1, 0 ··· , 0]^T, e₂ = [0, 1 ··· , 0]^T, ··· , e_K = [0, 0 ··· , 1]^T ∈ ℝ^K
We have P[X] = Σ_ZP[X, Z] = Σ_ZΠ^N_{t=1}P[x^(t), z^(t)] = Σ^{e_K}_{z^(t)=e₁} ··· Σ^{e_K}_{z^(N)=e₁} Π^N_{t=1}P[x^(t), z^(t)] = Π^N_{t=1}Σ^{e_K}_{z^(t)=e₁} P[x^(t), z^(t)] = Π^N_{t=1}P[x^(t)]
So, P[Z|X, Θ^{old}] = P[X, Z|Θ^{old}] = Π^N_{t=1}P[x^(t), z^(t)|Θ^{old}] = Π^N_{t=1}P[z^(t)|x^(t), Θ^{old}]

68

• Next, we formulate $\Omega(\Theta; \Theta^{old})$ given $P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] = \prod_{t=1}^{N} P[\mathbf{z}^{(t)}|\mathbf{x}^{(t)}, \Theta^{old}]$ (due to the i.i.d. instances), and the assumption of mixture density:

•
$$\Theta = (\theta_i, \pi_i)_{i=1}^K$$
 where θ_i parametrizes $p(\mathbf{x}|G_i)$ and $\pi_i = P[G_i]$

• Denote by $d(z^{(t)})$ the index of attribute of $z^{(t)}$ equal to 1

•
$$P[\mathbf{x}^{(t)}, \mathbf{z}^{(t)}|\Theta] = P[\mathbf{x}^{(t)}|\mathbf{z}^{(t)}, \Theta]P[\mathbf{z}^{(t)}|\Theta] = P[\mathbf{x}^{(t)}|\mathbf{z}^{(t)}, \theta_{d(\mathbf{z}^{(t)})}]\pi_{d(\mathbf{z}^{(t)})}$$

• For brevity, we use the shorthand $P[z_i^{(t)}]$ for $P[z^{(t)} = e_i]$ (or equivalently $P[z_i^{(t)} = 1]$)

58 / 68

 $\mathcal{Q}(\Theta; \Theta^{old}) = E_{\mathcal{Z}}[\ln\left(P[\mathcal{X}, \mathcal{Z}|\Theta]\right) | \mathcal{X}, \Theta^{old}] = \sum_{\mathcal{Z}} \ln\left(P[\mathcal{X}, \mathcal{Z}|\Theta]\right) P[\mathcal{Z}|\mathcal{X}, \Theta^{old}]$

$$\begin{split} & \Omega(\Theta; \Theta^{old}) = E_{\mathcal{Z}}[\ln\left(P[\mathcal{X}, \mathcal{Z}|\Theta]\right) | \mathcal{X}, \Theta^{old}] = \sum_{\mathcal{Z}} \ln\left(P[\mathcal{X}, \mathcal{Z}|\Theta]\right) P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] \\ & = \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\mathbf{x}^{(t)}, \mathbf{z}^{(t)}|\Theta]\right) \prod_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \end{split}$$

$$\begin{aligned} & \Omega(\Theta; \Theta^{old}) = E_{\mathcal{Z}}[\ln\left(P[\mathcal{X}, \mathcal{Z}|\Theta]\right) | \mathcal{X}, \Theta^{old}] = \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\mathcal{X}, \mathcal{Z}|\Theta]\right) P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\mathbf{x}^{(t)}, \mathbf{z}^{(t)}|\Theta]\right) \prod_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{z}^{(t)}, \theta_{d(\mathbf{z}^{(t)})}] \pi_{d(\mathbf{z}^{(t)})}\right) \prod_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \end{aligned}$$

$$\begin{split} & \mathcal{Q}(\Theta; \Theta^{old}) = E_{\mathcal{Z}}[\ln\left(P[\mathcal{X}, \mathcal{Z}|\Theta]\right) | \mathcal{X}, \Theta^{old}] = \sum_{\mathcal{Z}} \ln\left(P[\mathcal{X}, \mathcal{Z}|\Theta]\right) P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\mathbf{x}^{(t)}, \mathbf{z}^{(t)}|\Theta]\right) \Pi_{j=1}^{N} P[\mathbf{z}^{(j)} | \mathbf{x}^{(j)}, \Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\mathbf{x}^{(t)} | \mathbf{z}^{(t)}, \theta_{d(\mathbf{z}^{(t)})}] \pi_{d(\mathbf{z}^{(t)})}\right) \Pi_{j=1}^{N} P[\mathbf{z}^{(j)} | \mathbf{x}^{(j)}, \Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \delta_{\mathbf{z}^{(t)}, e} \ln\left(P[\mathbf{x}^{(t)} | \mathbf{e}, \theta_{d(e)}] \pi_{d(e)}\right) \\ &\Pi_{j=1}^{N} P[\mathbf{z}^{(j)} | \mathbf{x}^{(j)}, \Theta^{old}] \quad // \delta_{a,b} = 1 \text{ if } a = b; \text{ Ootherwise} \\ &= \sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \ln\left(P[\mathbf{x}^{(t)} | \mathbf{e}, \theta_{d(e)}] \pi_{d(e)}\right) \sum_{\mathcal{Z}} \delta_{\mathbf{z}^{(t)}, e} \Pi_{j=1}^{N} P[\mathbf{z}^{(j)} | \mathbf{x}^{(j)}, \Theta^{old}] \\ &= \sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \ln\left(P[\mathbf{x}^{(t)} | \mathbf{e}, \theta_{d(e)}] \pi_{d(e)}\right) \\ &\sum_{\mathbf{z}^{(1)}=e_1}^{e_K} \cdots \sum_{\mathbf{z}^{(N)}=e_1}^{e_K} \delta_{\mathbf{z}^{(t)}, e} \Pi_{j=1}^{N} P[\mathbf{z}^{(j)} | \mathbf{x}^{(j)}, \Theta^{old}] \end{split}$$

$$\begin{split} & \mathcal{Q}(\Theta; \Theta^{old}) = E_{\mathcal{Z}}[\ln\left(P[\mathcal{X}, \mathcal{Z}|\Theta]\right) | \mathcal{X}, \Theta^{old}] = \sum_{\mathcal{Z}} \ln\left(P[\mathcal{X}, \mathcal{Z}|\Theta]\right) P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\mathbf{x}^{(t)}, \mathbf{z}^{(t)}|\Theta]\right) \Pi_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{z}^{(t)}, \theta_{d(\mathbf{z}^{(t)})}] \pi_{d(\mathbf{z}^{(t)})}\right) \Pi_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \sum_{e=e_1}^{e_e} \delta_{\mathbf{z}^{(t)}, e} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e}, \theta_{d(e)}] \pi_{d(e)}\right) \\ &\Pi_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \quad // \delta_{a,b} = 1 \text{ if } a = b; \text{ 0otherwise} \\ &= \sum_{t=1}^{N} \sum_{e=e_1}^{e_e} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e}, \theta_{d(e)}] \pi_{d(e)}\right) \sum_{\mathcal{Z}} \delta_{\mathbf{z}^{(t)}, e} \Pi_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \\ &= \sum_{t=1}^{N} \sum_{e=e_1}^{e_e} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e}, \theta_{d(e)}] \pi_{d(e)}\right) \\ &\sum_{\mathbf{z}^{(1)}=e_1}^{e_e} \cdots \sum_{\mathbf{z}^{(N)}=e_1}^{e_e} \delta_{\mathbf{z}^{(t)}, e} \Pi_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \\ &= \sum_{t=1}^{N} \sum_{e=e_1}^{e_e} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e}, \theta_{d(e)}] \pi_{d(e)}\right) \sum_{\mathbf{z}^{(1)}=e_1}^{e_e} \cdots \sum_{\mathbf{z}^{(t-1)}=e_1}^{e_e} \sum_{\mathbf{z}^{(t-1)}=e_1}^{e_e} \cdots \sum_{\mathbf{z}^{(t-1)}=e_1}^{e_e} \sum_{\mathbf{z}^{(t-1)}=e_1}^{e_e} \sum_{\mathbf{z}^{(t-1)}=e_1}^{e_e} \cdots \sum_{\mathbf{z}^{(N)}=e_1}^{e_e} \prod_{j=1, j\neq t}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] P[\mathbf{e}|\mathbf{x}^{(t)}, \Theta^{old}] \end{split}$$

Shan-Hung Wu (CS, NTHU)

NetDB-ML, Spring 2015

59 / 68

Formulating $\Omega(\Theta; \Theta^{old})$ (2/3)

$$\begin{split} & \mathcal{Q}(\Theta; \Theta^{old}) = E_{\mathcal{Z}}[\ln\left(P[\mathcal{X}, \mathcal{Z}|\Theta]\right) | \mathcal{X}, \Theta^{old}] = \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\mathcal{X}, \mathcal{Z}|\Theta]\right) P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\mathbf{x}^{(t)}, \mathbf{z}^{(t)}|\Theta]\right) \Pi_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{z}^{(t)}, \theta_{d(\mathbf{z}^{(t)})}]\pi_{d(\mathbf{z}^{(t)})}\right) \Pi_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{\mathcal{K}}} \delta_{\mathbf{z}^{(t)}, e} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e}, \theta_{d(e)}]\pi_{d(e)}\right) \\ &\Pi_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \quad // \delta_{a,b} = 1 \text{ if } a = b; \text{ 0otherwise} \\ &= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{\mathcal{K}}} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e}, \theta_{d(e)}]\pi_{d(e)}\right) \sum_{\mathcal{Z}} \delta_{\mathbf{z}^{(t)}, e} \Pi_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \\ &= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{\mathcal{K}}} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e}, \theta_{d(e)}]\pi_{d(e)}\right) \sum_{\mathbf{z}^{(1)}=e_{1}}^{e_{\mathcal{K}}} \cdots \sum_{\mathbf{z}^{(t-1)}=e_{1}}^{e_{\mathcal{K}}} \sum_{\mathbf{z}^{(t-1)}=e_{1}} \\ &\qquad \sum_{t=1}^{e_{\mathcal{K}}} \sum_{e=e_{1}}^{e_{\mathcal{K}}} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e}, \theta_{d(e)}]\pi_{d(e)}\right) \left(\sum_{\mathbf{z}^{(1)}=e_{1}}^{e_{\mathcal{K}}} \cdots \sum_{\mathbf{z}^{(t-1)}=e_{1}} \sum_{\mathbf{z}^{(t+1)}=e_{1}}^{e_{\mathcal{K}}} \cdots \sum_{\mathbf{z}^{(N)}=e_{1}}^{e_{\mathcal{K}}} \Pi_{j=1,j\neq t}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \right) P[\mathbf{e}|\mathbf{x}^{(t)}, \Theta^{old}] \\ &= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{\mathcal{K}}} \sum_{\mathbf{z}^{(N)}=e_{1}} \Pi_{\mathbf{z}^{(N)}=e_{1}}^{N} \Pi_{j=1,j\neq t}^{N} P[\mathbf{z}^{(j)}|\mathbf{z}^{(j)}, \Theta^{old}] P[\mathbf{e}|\mathbf{x}^{(t)}, \Theta^{old}] \end{aligned}$$

Shan-Hung Wu (CS, NTHU)

$$= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{K}} \ln \left(P[\mathbf{x}^{(t)}|e, \theta_{d(e)}] \pi_{d(e)} \right) \left(\sum_{z^{(1)}=e_{1}}^{e_{K}} \cdots \sum_{z^{(t-1)}=e_{1}}^{e_{K}} \sum_{z^{(t+1)}=e_{1}}^{e_{K}} \cdots \sum_{z^{(N)}=e_{1}}^{e_{K}} \prod_{j=1, j \neq t}^{N} P[z^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \right) P[e|\mathbf{x}^{(t)}, \Theta^{old}]$$

$$= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{K}} \ln \left(P[\mathbf{x}^{(t)} | \mathbf{e}, \theta_{d(e)}] \pi_{d(e)} \right) \left(\sum_{z^{(1)}=e_{1}}^{e_{K}} \cdots \sum_{z^{(t-1)}=e_{1}}^{e_{K}} \sum_{z^{(t-1)}=e_{1}}^{e_{K}} \cdots \sum_{z^{(N)}=e_{1}}^{e_{K}} \prod_{j=1, j \neq t}^{N} P[z^{(j)} | \mathbf{x}^{(j)}, \Theta^{old}] \right) P[\mathbf{e} | \mathbf{x}^{(t)}, \Theta^{old}]$$

$$= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{K}} \ln \left(P[\mathbf{x}^{(t)} | \mathbf{e}, \theta_{d(e)}] \pi_{d(e)} \right) \left(\prod_{j=1, j \neq t}^{N} \sum_{z^{(j)}=e_{1}}^{e_{K}} P[z^{(j)} | \mathbf{x}^{(j)}, \Theta^{old}] \right) P[\mathbf{e} | \mathbf{x}^{(t)}, \Theta^{old}]$$

$$= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{K}} \ln \left(P[\mathbf{x}^{(t)} | \mathbf{e}, \theta_{d(e)}] \pi_{d(e)} \right) \left(\sum_{z^{(1)}=e_{1}}^{e_{K}} \cdots \sum_{z^{(t-1)}=e_{1}}^{e_{K}} \sum_{z^{(t-1)}=e_{1}}^{e_{K}} \cdots \sum_{z^{(t-1)}=e_{1}}^{e_{K}} \prod_{j=1, j \neq t}^{N} P[\mathbf{z}^{(j)} | \mathbf{x}^{(j)}, \Theta^{old}] \right) P[\mathbf{e} | \mathbf{x}^{(t)}, \Theta^{old}]$$

$$= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{K}} \ln \left(P[\mathbf{x}^{(t)} | \mathbf{e}, \theta_{d(e)}] \pi_{d(e)} \right) \left(\prod_{j=1, j \neq t}^{N} \sum_{z^{(j)}=e_{1}}^{e_{K}} P[\mathbf{z}^{(j)} | \mathbf{x}^{(j)}, \Theta^{old}] \right) P[\mathbf{e} | \mathbf{x}^{(t)}, \Theta^{old}]$$

$$= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{K}} \ln \left(P[\mathbf{x}^{(t)} | \mathbf{e}, \theta_{d(e)}] \pi_{d(e)} \right) P[\mathbf{e} | \mathbf{x}^{(t)}, \Theta^{old}]$$

$$= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{K}} \ln \left(P[\mathbf{x}^{(t)} | \mathbf{e}, \theta_{d(e)}] \pi_{d(e)} \right) \left(\sum_{z^{(1)}=e_{1}}^{e_{K}} \cdots \sum_{z^{(t-1)}=e_{1}}^{e_{K}} \sum_{z^{(t-1)}=e_{1}}^{e_{K}} \cdots \sum_{z^{(t-1)}=e_{1}}^{e_{K}} \prod_{j=1, j \neq t}^{N} P[\mathbf{z}^{(j)} | \mathbf{x}^{(j)}, \Theta^{old}] \right) P[\mathbf{e} | \mathbf{x}^{(t)}, \Theta^{old}]$$

$$= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{K}} \ln \left(P[\mathbf{x}^{(t)} | \mathbf{e}, \theta_{d(e)}] \pi_{d(e)} \right) \left(\prod_{j=1, j \neq t}^{N} \sum_{z^{(j)}=e_{1}}^{e_{K}} P[\mathbf{z}^{(j)} | \mathbf{x}^{(j)}, \Theta^{old}] \right) P[\mathbf{e} | \mathbf{x}^{(t)}, \Theta^{old}]$$

$$= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{K}} \ln \left(P[\mathbf{x}^{(t)} | \mathbf{e}, \theta_{d(e)}] \pi_{d(e)} \right) P[\mathbf{e} | \mathbf{x}^{(t)}, \Theta^{old}]$$

$$= \sum_{t=1}^{N} \sum_{z=e_{1}}^{e_{K}} \ln \left(\pi_{i} \right) P[\mathbf{z}_{i}^{(t)} | \mathbf{x}^{(i)}, \Theta^{old}] + \sum_{t=1}^{N} \sum_{i=1}^{K} \ln \left(P[\mathbf{x}^{(t)} | \mathbf{z}_{i}^{(t)}, \theta_{i}] \right) P[\mathbf{z}_{i}^{(t)} | \mathbf{x}^{(t)}, \Theta^{old}]$$

- Given mixtures of i.i.d. samples, we have $\Omega(\Theta; \Theta^{old}) = \sum_{t=1}^{N} \sum_{i=1}^{K} \ln(\pi_i) P[z_i^{(t)} | \mathbf{x}^{(t)}, \Theta^{old}] + \sum_{t=1}^{N} \sum_{i=1}^{K} \ln\left(P[\mathbf{x}^{(t)} | z_i^{(t)}, \theta_i]\right) P[z_i^{(t)} | \mathbf{x}^{(t)}, \Theta^{old}]$
- The problem evaluating $P[\mathbb{Z}|\mathcal{X}, \Theta^{old}]$ is thus reduced to evaluating $P[z_i^{(t)}|\mathbf{x}^{(t)}, \Theta^{old}]$ for all $1 \leq i \leq K$ and $1 \leq t \leq N$

Outline

Clustering

- Why Clustering?
- k-Means Clustering
- Semiparametric Density Estimation
- Hierarchical Clustering
- Spectral Clustering
- Practical Considerations

Expectation Maximization

- Latent Variables and Complete Likelihood
- EM Steps
- EM for Mixture Models
- EM for Mixtures of Gaussians

Evaluating $P[z_i^{(t)}|x^{(t)}, \Theta^{old}]$

- Problem: given Θ^{old} , evaluate $P[z_i^{(t)}|\mathbf{x}^{(t)}, \Theta^{old}]$ for all $1 \le i \le K$ and $1 \le t \le N$
- From Bayes' theorem, $P[z_i^{(t)} | \mathbf{x}^{(t)}, \Theta^{old}] = \frac{P[\mathbf{x}^{(t)} | z_i^{(t)}, \Theta^{old}] P[z_i^{(t)} | \Theta^{old}]}{\sum_{j=1}^{K} P[\mathbf{x}^{(t)} | z_j^{(t)}, \Theta^{old}] P[z_j^{(t)} | \Theta^{old}]} = \frac{P[\mathbf{x}^{(t)} | z_i^{(t)}, \Theta_i^{old}] \pi_i^{old}}{\sum_{j=1}^{K} P[\mathbf{x}^{(t)} | z_j^{(t)}, \Theta_j^{old}] \pi_j^{old}}$
- If we further assume that instances in each group are normally distributed, then $\theta_i^{old} = (\mu_i^{old}, \Sigma_i^{old})$ and we can easily obtain $P[\mathbf{x}^{(t)}|z_i^{(t)}, \theta_i^{old}]$ based on the normal distribution
- \bullet For brevity, we denote the evaluated $P[z_i^{(t)}|\pmb{x}^{(t)},\Theta^{old}]$ by $h_i^{(t)}$
 - $h_i^{(t)}$ aligns with the soft label $z_i^{(t)}$ in semiparametric density estimation

- $\Omega(\Theta; \Theta^{old}) = \sum_{t=1}^{N} \sum_{i=1}^{K} \ln(\pi_i) h_i^{(t)} + \sum_{t=1}^{N} \sum_{i=1}^{K} \ln\left(P[\mathbf{x}^{(t)}|z_i^{(t)}, \theta_i]\right) h_i^{(t)}$
- Observe that the first term of $\Omega(\Theta; \Theta^{old})$ depends only on $\{\pi_i\}_{i=1}^K$; and the second depends only on $\{\theta_i\}_{i=1}^K$
- We can obtain Θ^{new} by solving the two problems individually:

•
$$\arg_{\pi_1,\dots,\pi_K} \max \sum_{t=1}^N \sum_{i=1}^K \ln(\pi_i) h_i^{(t)}$$
 subject to $\sum_{i=1}^K \pi_i = 1$
• $\arg_{\theta_1,\dots,\theta_K} \max \sum_{t=1}^N \sum_{i=1}^K \ln\left(P[\mathbf{x}^{(t)}|z_i^{(t)},\theta_i]\right) h_i^{(t)}$

Solving $\{\pi\}_{i=1}^{K}$

Lagrangian:

$$L(\{\mathbf{x}^{(t)}\}_{t=1}^{N}, \{\pi_i\}_{i=1}^{K}, \alpha) = \sum_{t=1}^{N} \sum_{i=1}^{K} \ln(\pi_i) h_i^{(t)} - \alpha \left(\sum_{i=1}^{K} \pi_i - 1\right)$$

- Taking the partial derivatives of L with respect to $\alpha, \pi_1, \dots, \pi_K$ and setting them to zero we have $\sum_{i=1}^{K} \pi_i = 1$ and $\sum_{t=1}^{N} \frac{1}{\pi_i} h_i^{(t)} \alpha = 0 \Rightarrow \sum_{t=1}^{N} h_i^{(t)} = \pi_i \alpha$ for $i = 1, \dots, K$
- Summing the equations with α above we have $\sum_{i=1}^{K} \sum_{t=1}^{N} h_i^{(t)} = \sum_{i=1}^{K} \pi_i \alpha \Rightarrow \alpha = \sum_{t=1}^{N} \sum_{i=1}^{K} h_i^{(t)} = \sum_{t=1}^{N} \sum_{i=1}^{K} P[z_i^{(t)} | \mathbf{x}^{(t)}, \Theta^{old}] = N$
- Substituting N for α in each of the above equation we have $\pi_i = \frac{\sum_{t=1}^N h_i^{(t)}}{N}$
 - This aligns with the π_i in semiparametric density estimation

68

Solving $\{\theta_i\}_{i=1}^K (1/2)$

- Objective: $\arg_{\theta_1, \dots, \theta_K} \max \sum_{t=1}^N \sum_{i=1}^K \ln \left(P[\boldsymbol{x}^{(t)} | \boldsymbol{z}_i^{(t)}, \theta_i] \right) h_i^{(t)}$
- Since the groups in the mixtures are independent with each other, we can solve $\theta_i = (\mu_i, \Sigma_i)$ one by one

•
$$\arg_{\theta_i} \max \sum_{t=1}^N \ln \left(P[\mathbf{x}^{(t)} | z_i^{(t)}, \theta_i] \right) h_i^{(t)}$$

• With the Gaussian mixture, we have

$$\sum_{t=1}^{N} \ln \left(P[\mathbf{x}^{(t)} | z_i^{(t)}, \theta_i] \right) h_i^{(t)} = -\frac{N_i d}{2} \log(2\pi) - \frac{N_i}{2} \log(det(\boldsymbol{\Sigma}_i)) - \frac{1}{2} \sum_{t=1}^{N} h_i^{(t)} (\mathbf{x}^{(t)} - \boldsymbol{\mu}_i)^\top \boldsymbol{\Sigma}_i^{-1} (\mathbf{x}^{(t)} - \boldsymbol{\mu}_i) = -\frac{N_i d}{2} \log(2\pi) + \frac{N_i}{2} \log(det(\boldsymbol{\Sigma}_i^{-1})) - \frac{1}{2} \sum_{t=1}^{N} h_i^{(t)} tr \left(\boldsymbol{\Sigma}_i^{-1} (\mathbf{x}^{(t)} - \boldsymbol{\mu}_i) (\mathbf{x}^{(t)} - \boldsymbol{\mu}_i)^\top \right), \text{ where } N_i = \sum_{t=1}^{N} h_i^{(t)}$$

66 / 68

- Taking the partial derivatives of the above objective with respect to $\boldsymbol{\mu}_i$ and $\boldsymbol{\Sigma}_i^{-1}$ and setting them to zero we have $\begin{cases} \sum_{t=1}^{N} h_i^{(t)} (\boldsymbol{x}^{(t)} - \boldsymbol{\mu}_i)^\top \boldsymbol{\Sigma}_i^{-1} = \boldsymbol{0}^\top \\ \frac{N_i}{2} \boldsymbol{\Sigma}_i - \frac{1}{2} \sum_{t=1}^{N} h_i^{(t)} (\boldsymbol{x}^{(t)} - \boldsymbol{\mu}_i) (\boldsymbol{x}^{(t)} - \boldsymbol{\mu}_i)^\top = \boldsymbol{0} \end{cases}$ • $\boldsymbol{m}_i = \frac{\sum_{t=1}^{N} \boldsymbol{x}^{(t)} h_i^{(t)}}{\sum_{t=1}^{N} h_i^{(t)}}$ • $\boldsymbol{S}_i = \frac{\sum_{t=1}^{N} (\boldsymbol{x}^{(t)} - \boldsymbol{m}_i) (\boldsymbol{x}^{(t)} - \boldsymbol{m}_i)^\top h_i^{(t)}}{\sum_{t=1}^{N} h_i^{(t)}}$
- Again, these results align with the m_i and S_i in semiparametric density estimation

68

- Both the K-means and semiparametric density estimation are EM algorithms
 - ullet The iteration ends and Θ converges to a local optimum
- In particular, when assuming that the priors π_i are all equal and $\Sigma_i = \sigma^2 I$, we have

•
$$h_i^{(t)} = \frac{exp[-(1/2(s^{old})^2) \| \mathbf{x}^{(t)} - \mathbf{m}_i^{old} \|]}{\sum_{j=1}^{K} exp[-(1/2(s^{old})^2) \| \mathbf{x}^{(t)} - \mathbf{m}_j^{old} \|]}$$

- The objective $\arg_{\theta_1, \cdots, \theta_K} \max \sum_{t=1}^N \sum_{i=1}^K \ln \left(P[\mathbf{x}^{(t)} | z_i^{(t)}, \theta_i] \right) h_i^{(t)}$ can be rewritten as $\arg_{\mathbf{m}_1, \cdots, \mathbf{m}_K, s} \min \sum_{t=1}^N \sum_{i=1}^K \frac{||\mathbf{x}^{(t)} \mathbf{m}_i||^2}{s^2} h_i^{(t)}$
- This is equivalent to minimizing the reconstruction error in the *K*-means