Dimensionality Reduction

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Spring 2015

Shan-Hung Wu (CS, NTHU)

Dimensionality Reduction

Net DB-ML, Spring 2015 1 / 57

1 Why Dimensionality Reduction?

Feature Selection

• Forward and Backward Selection (Supervised)

Feature Extraction

- Principal Component Analysis (Unsupervised, Linear)
- Linear Discriminant Analysis (Supervised, Linear)
- Kernel PCA (Unsupervised, Nonlinear)
- Isometric Feature Mapping (Unsupervised, Nonlinear)
- Locally Linear Embedding (Unsupervised, Nonlinear)

57

Outline

1 Why Dimensionality Reduction?

Feature Selection

Forward and Backward Selection (Supervised)

Feature Extraction

- Principal Component Analysis (Unsupervised, Linear)
- Linear Discriminant Analysis (Supervised, Linear)
- Kernel PCA (Unsupervised, Nonlinear)
- Isometric Feature Mapping (Unsupervised, Nonlinear)
- Locally Linear Embedding (Unsupervised, Nonlinear)

Why Dimensionality Reduction?

- Given a (normalized) training dataset $\{x^{(t)}, r^{(t)}\}$ where $x^{(t)} \in \mathbb{R}^d$, we want to reduce the input dimension from d to k, k < d
- Why dimensionality reduction?

Why Dimensionality Reduction?

- Given a (normalized) training dataset $\{x^{(t)}, r^{(t)}\}$ where $x^{(t)} \in \mathbb{R}^d$, we want to reduce the input dimension from d to k, k < d
- Why dimensionality reduction?
- To reduce the time/space requirements in training, cross validation, testing, and prediction
- To save the cost of data collection
 - If an input is decided to be unnecessary, we can stop observing it in the future
- To make the classifier/regressor robust to small datasets
 - Fewer parameters (e.g., elements of Σ) implies lower model complexity, and lower variance due to particulars of a sample
- To extract knowledge
 - The k inputs can describe the whole data and may explain something

- Basically, two ways to dimensionality reduction:
- Feature selection.
 - Keeping only k of d dimensions that is most helpful to classification/regression
- Feature extraction:
 - Finding a new set of k dimensions that are combinations of the original d dimensions and most helpful to classification/regression
 - The combination can be *linear* or *nonlinear*
- Can be supervised or unsupervised depending on whether or not the labels $\mathbf{r}^{(t)}$ are used

• Is dimension reduction a preferred step in data preprocessing?

- Is dimension reduction a preferred step in data preprocessing? Generally, yes
- But if your classifier/regressor make certain assumptions over the data, you should perform dimension reduction *only if those assumptions are still valid after the reduction*
 - Luckily, if we assume that the data are normally distributed within each class, then after linear dimension reduction, the data are still normal

1 Why Dimensionality Reduction?

Feature Selection

Forward and Backward Selection (Supervised)

Feature Extraction

- Principal Component Analysis (Unsupervised, Linear)
- Linear Discriminant Analysis (Supervised, Linear)
- Kernel PCA (Unsupervised, Nonlinear)
- Isometric Feature Mapping (Unsupervised, Nonlinear)
- Locally Linear Embedding (Unsupervised, Nonlinear)

Sequential Forward Selection

- Denote F the set of selected inputs
- In *sequential forward selection*, we start with no input $F = \emptyset$, and add inputs one by one
- At each step, we add x_j to F if x_j decreases the error most
 - Specifically, we add x_j to F if

$$j = \arg_i \min err(F \cup x_i)$$

and

$$err(F \cup x_j) < err(F) - \varepsilon$$
,

where err(F) is the error of predictions (on the validation set) made by a classifier/regressor considering only the inputs in F and ε is a user-defined threshold

• We stop adding inputs if there is no decrease in error, or the decrease in error is too small

Shan-Hung Wu (CS, NTHU)

- In sequential backward selection, we start with F containing all inputs, and remove inputs one by one
- At each step, we remove x_j from F if x_j increase the error least

• Specifically, we remove x_j from F if

 $j = \arg_i \min err(F - x_i)$ and $err(F - x_j) < err(F) + \varepsilon$

- In either direction, need to perform the classification/regression $d + (d-1) + \dots + (d-k) = O(d^2)$ times
 - But the training process in the backward direction is more costly, as *F* contains more inputs
 - Forward direction is preferable if k is much smaller than d

- The above algorithms are local search procedures and do not guarantee *F* to be optimal
- In some applications such as face recognition (where $x^{(t)}$ are images and the inputs are pixels), feature selection is not a good method for dimensionality reduction
 - Individual pixels do not carry much discriminative information; it is the combinations of pixels that carry face identities

1 Why Dimensionality Reduction?

Peature Selection

• Forward and Backward Selection (Supervised)

Feature Extraction

• Principal Component Analysis (Unsupervised, Linear)

- Linear Discriminant Analysis (Supervised, Linear)
- Kernel PCA (Unsupervised, Nonlinear)
- Isometric Feature Mapping (Unsupervised, Nonlinear)
- Locally Linear Embedding (Unsupervised, Nonlinear)

Principal Component Analysis (1/2)

- In Principal Component Analysis (PCA), we want to find k vectors w₁,..., w_k ∈ ℝ^d, named principal components, such that after projecting each instance x^(t) onto directions along w₁,..., w_k and obtaining z^(t) = [w₁,...,w_k]^T x^(t) ∈ ℝ^k, the new data collection {z^(t)}^N_{t=1} helps the classifier/regressor most
- Let k = 1, how to find w_1 ?

Principal Component Analysis (1/2)

• In *Principal Component Analysis (PCA)*, we want to find k vectors $w_1, \dots, w_k \in \mathbb{R}^d$, named *principal components*, such that after projecting each instance $x^{(t)}$ onto directions along w_1, \dots, w_k and obtaining $z^{(t)} = \begin{bmatrix} w_1 & \cdots & w_k \end{bmatrix}^\top x^{(t)} \in \mathbb{R}^k$, the new data collection $\{z^{(t)}\}_{t=1}^N$ helps the classifier/regressor most

- Of course we won't pick $\boldsymbol{w}_1 = \boldsymbol{0}$, because it makes $z^{(t)} = \boldsymbol{w}_1^\top \boldsymbol{x}^{(t)} = \boldsymbol{0}$ for all t and undistinguishable
- It is plausible to pick w_1 such that $z^{(t)}$ is most spread out; that is, let $x^{(1)}, \dots, x^{(N)}$ be i.i.d. samples drawn from an (unknown) population x, we can pick w_1 which maximizes $Var(z) = Var(w_1^{\top}x) = w_1^{\top}\Sigma w_1$

Principal Component Analysis (2/2)

• How to obtain the covairant matrix Σ ?

Principal Component Analysis (2/2)

- How to obtain the covairant matrix Σ?
 - Recall that $\boldsymbol{\Sigma}_{x} = E\left[\boldsymbol{x}\boldsymbol{x}^{ op}
 ight] \boldsymbol{\mu}_{x}\boldsymbol{\mu}_{x}^{ op}$
 - Assuming that \boldsymbol{x} is centered (e.g., *z*-normalized), we have an estimate $\boldsymbol{S} = \frac{1}{N} \sum_{t=1}^{N} \boldsymbol{x}^{(t)} \boldsymbol{x}^{(t)\top}$
- Given arbitrary k, PCA picks w_1, \dots, w_k such that
 - $Var(\boldsymbol{z}_i) = \boldsymbol{w}_i^{\top} \boldsymbol{S} \boldsymbol{w}_i$ for $i = 1, \cdots, k$ are the highest
 - w_1, \dots, w_k are orthogonal to each other so each of them helps the classifier/regressor independently
 - $\|\boldsymbol{w}_i\| = 1$ for $i = 1, \dots, k$ so the direction of \boldsymbol{w}_i is the only factor that affects $\boldsymbol{w}_i^{\top} \boldsymbol{S} \boldsymbol{w}_i$ (it is maximized not because we pick a large \boldsymbol{w}_i)

- To get w_1 , we need to solve the problem $\arg_{w_1} \max w_1^\top S w_1$ subject to $w_1^\top w_1 = 1$
 - \boldsymbol{w}_1 is a stationary point of the Lagrangian: $\boldsymbol{w}_1^\top \boldsymbol{S} \boldsymbol{w}_1 \alpha(\boldsymbol{w}_1^\top \boldsymbol{w}_1 1)$
 - Taking the partial derivatives with respect to \boldsymbol{w}_1 and $\boldsymbol{\alpha}$ we have $\begin{cases}
 2\boldsymbol{S}\boldsymbol{w}_1 - 2\boldsymbol{\alpha}\boldsymbol{w}_1 = \boldsymbol{0} \\
 \boldsymbol{w}_1^\top \boldsymbol{w}_1 - 1 = \boldsymbol{0} \\
 \boldsymbol{w}_1^\top \boldsymbol{S}\boldsymbol{w}_1 = \boldsymbol{\alpha}\boldsymbol{w}_1^\top \boldsymbol{w}_1 = \boldsymbol{\alpha}
 \end{cases}$
 - The candidates of \boldsymbol{w}_1 and $\boldsymbol{\alpha}$ are eigenvectors and eigenvalues of $\boldsymbol{\Sigma}$ respectively
 - Since we want to maximize *w*₁^T *Sw*₁ = α, *w*₁ is the eigenvector corresponding to the largest eigenvalue λ₁

Solving w_1, \cdots, w_k (2/3)

• To get w_2 , we solve the problem $\arg_{w_2} \max w_2^\top S w_2$ subject to $w_2^\top w_2 = 1$ and $w_2^\top w_1 = 0$

•
$$w_2$$
 is a stationary point of the Lagrangian:
 $w_2^{\top} S w_2 - \alpha (w_2^{\top} w_2 - 1) - \beta w_2^{\top} w_1$
• Taking the partial derivatives with respect to w_2 , α , and β we have

$$\begin{cases}
2Sw_2 - 2\alpha w_2 - \beta w_1 = \mathbf{0} \\
w_2^{\top} w_2 - 1 = \mathbf{0} \\
w_2^{\top} w_1 = \mathbf{0}
\end{cases}$$
• This implies $Sw_2 = \alpha w_2$, as
 $\mathbf{0} = w_1^{\top} \mathbf{0} = 2w_1^{\top} S w_2 - 2\alpha w_1^{\top} w_2 - \beta w_1^{\top} w_1 = 2w_2^{\top} S w_1 - \beta = 2\lambda_1 w_2^{\top} w_1 - \beta = -\beta$, hence $2Sw_2 - 2\alpha w_2 = \mathbf{0}$
• Additionally, $w_2^{\top} S w_2 = \alpha$, as
 $\mathbf{0} = w_2^{\top} \mathbf{0} = 2w_2^{\top} S w_2 - 2\alpha w_2^{\top} w_2 - \beta w_2^{\top} w_1 = 2w_2^{\top} S w_2 - 2\alpha$

- The candidates of w_2 are eigenvectors of **S** orthogonal to w_1
- Since we want to maximize *w*₂^T*Sw*₂ = α, *w*₂ is the eigenvector corresponding to the second largest eigenvalue λ₂
 - Recall that the eigenvectors of a symmetric matrix (\boldsymbol{S}) are orthogonal

From the above, we can see that w_i are the *i*th largest eigenvector of

We can reach the same conclusion by Rayleigh's quotient [Proof]

- Define $z = W^{\top} x$, where $W = [w_1, \cdots, w_k]$
 - If x are not normalized, we can center z around the origin by letting $z = W^{\top}(x m)$, where m is the sample mean of x
 - In addition, we can make z_i have the unit variance by dividing itself by $\sqrt{\lambda_i}$
- $z^{(t)}$ are i.i.d. samples of z

Effects of PCA

Figure : PCA centers the instances and rotates the axes to line up with the directions of the highest variance. With these new axes, the covariance matrix $\Sigma_z = W^{\top} SW \in \mathbb{R}^{k \times k}$ is always diagonal, making the naive Bayes' classifiers feasible.

Shan-Hung Wu (CS, NTHU)

The Scree Graph

- How do we decide a proper k?
 - Generally, we want to pick k such that the *proportion of variance* $\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{d} \lambda_i}$ is more than 90%
- We seek for the "elbow" in the *scree graph*:

Shan-Hung Wu (CS, NTHU)

Dimensionality Reduction

- In image processing applications (where x^(t) are images), w_i themselves can also be displayed as images and be seen as templates for important features
 - In these cases, w_i have a special name eigenfaces
- When should we use PCA?

- In image processing applications (where x^(t) are images), w_i themselves can also be displayed as images and be seen as templates for important features
 - In these cases, **w**_i have a special name **eigenfaces**
- When should we use PCA?
 - PCA is helpful only when we have a small number of large eigenvalues
 - Or, when the original inputs of **x** are highly correlated (so the contours are stretched)
- Note the variance of each input of *x* may be very high that affects the directions of principal components more than the correlations between inputs do
 - Generally, we perform *z*-normalization before applying PCA

- PCA is a one-group procedure
 - Fine with the regression
 - But in the case of classification, there are multiple groups
- The Karhunen-Loeve expansion:
 - Instead of using the covariance matrix of the whole examples, we can estimate separate covariance matrices for individual classes
 - Take their average (weighted by the estimated priors) as the covariance matrix, and use its eigenvectors

1 Why Dimensionality Reduction?

Feature Selection

• Forward and Backward Selection (Supervised)

Feature Extraction

- Principal Component Analysis (Unsupervised, Linear)
- Linear Discriminant Analysis (Supervised, Linear)
- Kernel PCA (Unsupervised, Nonlinear)
- Isometric Feature Mapping (Unsupervised, Nonlinear)
- Locally Linear Embedding (Unsupervised, Nonlinear)

Linear Discriminant Analysis (1/3)

- Given a training set X = {x^(t), r^(t)}^N_{t=1}, in Linear Discriminant Analysis (LDA), we want to find k vectors w₁, ..., w_k ∈ ℝ^d, such that after projecting each instance x^(t) onto directions along w₁, ..., w_k and obtaining z^(t) = W^Tx^(t) ∈ ℝ^k, where W = [w₁, ..., w_k], the new data collection {z^(t)}^N_{t=1} has the properties:
- Examples in different classes are as separate as possible
- Examples of the same class are as close as possible

Linear Discriminant Analysis (2/3)

• Let
$$m_i = \frac{1}{N_i} \sum_{t=1}^{N} r_i^{(t)} \mathbf{x}^{(t)}$$
 and
 $\mathbf{S}_i = \frac{1}{N_{i-1}} \sum_{t=1}^{N} r_i^{(t)} (\mathbf{x}^{(t)} - \mathbf{m}_i) (\mathbf{x}^{(t)} - \mathbf{m}_i)^{\top}$, where $N_i = \sum_{t=1}^{N} r_i^{(t)}$,
be the estimated mean and variance of examples in class *i* respectively
• We can measure the total within-class separation by
 $\mathbf{S}_{within} = \sum_{i=1}^{K} N_i \mathbf{S}_i$
• Denote $\mathbf{m} = \frac{1}{K} \sum_{i=1}^{K} \mathbf{m}_i$, we can also measure the separation between
classes by $\mathbf{S}_{between} = \sum_{i=1}^{K} N_i (\mathbf{m}_i - \mathbf{m}) (\mathbf{m}_i - \mathbf{m})^{\top}$
• For each \mathbf{w}_j , the mean and variance of the projections $\mathbf{z}^{(t)}$ are
 $m_i = \frac{1}{N_i} \sum_{t=1}^{N} r_i^{(t)} \mathbf{z}_j^{(t)} = \frac{1}{N_i} \sum_{t=1}^{N} r_i^{(t)} \mathbf{w}_j^{\top} \mathbf{x}^{(t)} =$
 $\mathbf{w}_j^{\top} \left(\frac{1}{N_i} \sum_{t=1}^{N} r_i^{(t)} (\mathbf{z}_j^{(t)} - \mathbf{w}_j^{\top} \mathbf{m}_i) (\mathbf{z}_j^{(t)} - \mathbf{w}_j^{\top} \mathbf{m}_i)^{\top} =$
 $\frac{1}{N_i - 1} \sum_{t=1}^{N} r_i^{(t)} (\mathbf{w}_j^{\top} \mathbf{x}^{(t)} - \mathbf{w}_j^{\top} \mathbf{m}_i) (\mathbf{w}_j^{\top} \mathbf{x}^{(t)} - \mathbf{w}_j^{\top} \mathbf{m}_i)^{\top} =$
 $\frac{1}{N_i - 1} \sum_{t=1}^{N} r_i^{(t)} (\mathbf{w}_j^{\top} \mathbf{x}^{(t)} - \mathbf{m}_j) (\mathbf{w}_i^{\top} \mathbf{x}^{(t)} - \mathbf{w}_j^{\top} \mathbf{m}_i)^{\top} =$
 $\frac{1}{N_i - 1} \sum_{t=1}^{N} r_i^{(t)} \mathbf{w}_j^{\top} (\mathbf{x}^{(t)} - \mathbf{m}_i) (\mathbf{x}^{(t)} - \mathbf{m}_i)^{\top} \mathbf{w}_j = \mathbf{w}_j^{\top} \mathbf{S}_i \mathbf{w}_j$ respectively
• The within- and between-class separation after projection becomes
 $\mathbf{w}_j^{\top} \mathbf{S}_{within} \mathbf{w}_j$ and $\mathbf{w}_j^{\top} \mathbf{S}_{between} \mathbf{w}_j$ respectively

Linear Discriminant Analysis (3/3)

- LDA picks w_1, \cdots, w_k such that
 - The *Fisher's linear discriminant* $J(w_j) = \frac{w_j^\top S_{between} w_j}{w_j^\top S_{within} w_j}$ are the highest for $i = 1, \dots, k$
 - $\boldsymbol{w}_1, \cdots, \boldsymbol{w}_k$ are orthogonal to each other
- We don't care $\| oldsymbol{w}_j \|$ now since we are maximizing the ratio
- Unfortunately, the solution to the above objective is not unique since if w_1, \dots, w_k are the solution, so do $c_1 w_1, \dots, c_k w_k, \forall c_j \in \mathbb{R}$
- We can instead maximize $\boldsymbol{w}_j^{\top} \boldsymbol{S}_{between} \boldsymbol{w}_j$ subject to an additional constrain $\boldsymbol{w}_j^{\top} \boldsymbol{S}_{within} \boldsymbol{w}_j = 1$

Solving w_1, \cdots, w_k

- Lagrangian for \boldsymbol{w}_1 : $\arg_{\boldsymbol{w}_1} \max \boldsymbol{w}_1^\top \boldsymbol{S}_{between} \boldsymbol{w}_1 \alpha(\boldsymbol{w}_1^\top \boldsymbol{S}_{within} \boldsymbol{w}_1 1)$
 - Taking the partial derivatives with respect to \boldsymbol{w}_1 and α and setting them to zero we have $\begin{cases} 2\boldsymbol{S}_{between}\boldsymbol{w}_1 - 2\alpha\boldsymbol{S}_{within}\boldsymbol{w}_1 = \boldsymbol{0} \\ \boldsymbol{w}_1^{\top}\boldsymbol{S}_{within}\boldsymbol{w}_1 - 1 = \boldsymbol{0} \end{cases}$, leading to
 - $(\boldsymbol{S}_{within})^{-1} \boldsymbol{S}_{between} \boldsymbol{w}_1 = \alpha \boldsymbol{w}_1 \text{ and } \boldsymbol{w}_1^\top \boldsymbol{S}_{between} \boldsymbol{w}_1 = \alpha$
 - The candidates of w_1 and α are eigenvectors and eigenvalues of $(S_{within})^{-1}S_{between}$ respectively
 - Since we want to maximize $\boldsymbol{w}_1^{\top} \boldsymbol{S}_{between} \boldsymbol{w}_1 = \alpha$, \boldsymbol{w}_1 is the eigenvector corresponding to the largest eigenvalue λ_1
- Similarly, w_j is the *j*th largest eigenvector of $(S_{within})^{-1}S_{between}$
- We can reach the same conclusion using the Rayleigh's quotient [Proof: Observe that $\frac{w_j^{\top} S_{between} w_j}{w_j^{\top} S_{within} w_j} = \frac{w_j^{\top} S_{between} w_j}{(U^{\top} w_j)^{\top} U^{\top} w_j} = \frac{(U^{\top} w_j)^{\top} U^{-1} S_{between} (U^{\top})^{-1} (U^{\top} w_j)}{(U^{\top} w_j)^{\top} U^{\top} w_j},$ where $S_{within} = UU^{\top}$]

Note S_{between} is the sum of K matrices, namely (m_i − m)(m_i − m)^T, of rank 1

•
$$(\boldsymbol{m}_i - \boldsymbol{m})(\boldsymbol{m}_i - \boldsymbol{m})^\top \stackrel{c}{\backsim} [\boldsymbol{m}_i - \boldsymbol{m}, \boldsymbol{0}, \cdots, \boldsymbol{0}]$$

- Given K columns $\{m_1 m, \cdots, m_K m\}$, only K 1 of them are linearly independent
 - Since $\boldsymbol{m} = \frac{1}{K} \sum_{i=1}^{K} \boldsymbol{m}_i$, we can express $\boldsymbol{m}_K \boldsymbol{m}$ by the linear combination of $\boldsymbol{m}_1 \boldsymbol{m}, \cdots, \boldsymbol{m}_{K-1} \boldsymbol{m}$
- The maximum rank of $S_{between}$ is K-1 and we can pick at most K-1 eigenvectors (i.e., k = K-1)

- Any classifier can be used after LDA
- To be able to apply LDA, \boldsymbol{S}_{within} must be invertible
 - If not, we can apply PCA first to get rid of the singularity
- When should we use LDA?

- Any classifier can be used after LDA
- ullet To be able to apply LDA, $oldsymbol{S}_{within}$ must be invertible
 - If not, we can apply PCA first to get rid of the singularity
- When should we use LDA?
 - LDA works best if instances in different class are distributed in groups (e.g., normal)

Figure : The distribution of $z^{(t)}$ found by PCA (left) and LDA (right) respectively. Instances are plotted in the space of the first two attributes (out of nine). LDA, as expected, leads to a better separation between classes.

 Identify situations where PCA and LDA will find the same and totally different (orthogonal) directions [Homework]

1 Why Dimensionality Reduction?

Feature Selection

• Forward and Backward Selection (Supervised)

Feature Extraction

- Principal Component Analysis (Unsupervised, Linear)
- Linear Discriminant Analysis (Supervised, Linear)
- Kernel PCA (Unsupervised, Nonlinear)
- Isometric Feature Mapping (Unsupervised, Nonlinear)
- Locally Linear Embedding (Unsupervised, Nonlinear)

Why Nonlinear Mappings?

- Both PCA and LDA map examples x^(t) to a low dimensional space (through projection W)
 - We assume that the *d*-dimensional input space has a linear relationship with the low dimensional space
- Sometimes, this linear mapping does not help

Original

Fig. 1. Basic idea of kernel PCA: by using a nonlinear kernel function k instead of the standard dot product, we implicitly perform PCA in a possibly high-dimensional space F which is nonlinearly related to input space. The dotted lines are contour lines of constant feature value.

PCA Revisited

- Find the eigenvectors $\boldsymbol{w}^{(1)}, \cdots, \boldsymbol{w}^{(k)}$ of the matrix $\boldsymbol{S} = \frac{1}{N} \sum_{t=1}^{N} \boldsymbol{x}^{(t)} \boldsymbol{x}^{(t)\top}$ corresponding to the largest eigenvalues
- Each eigenvector $\pmb{w}^{(i)}$ lies in the span of $\pmb{x}^{(1)},\cdots,\pmb{x}^{(N)}$

• As

$$Sw^{(i)} = \lambda^{(i)}w^{(i)} \Rightarrow w^{(i)} = \frac{1}{\lambda^{(i)}}\sum_{t=1}^{N} x^{(t)}(x^{(t)\top}w^{(i)}) = \sum_{t=1}^{N} \alpha_t^{(i)}x^{(t)}$$

- This holds after the lifting: $\boldsymbol{w}^{(i)} = \sum_{t=1}^{N} \alpha_t^{(i)} \Phi(\boldsymbol{x}^{(t)})$
 - We can instead solve N variables in $oldsymbol{lpha}^{(i)} \in \mathbb{R}^N$ for each $oldsymbol{w}^{(i)}$
- We don't need to compute $\boldsymbol{w}^{(i)}$ explicitly to obtain $\boldsymbol{z}^{(t)} = \begin{bmatrix} \boldsymbol{w}^{(1)\top} \Phi(\boldsymbol{x}^{(t)}), \cdots, \boldsymbol{w}^{(k)\top} \Phi(\boldsymbol{x}^{(t)}) \end{bmatrix}^{\top}$ • $\boldsymbol{z}_{i}^{(t)} = \boldsymbol{w}^{(i)\top} \Phi(\boldsymbol{x}^{(t)}) = \sum_{s=1}^{N} \alpha_{s}^{(i)} k(\boldsymbol{x}^{(s)}, \boldsymbol{x}^{(t)})$

• Let
$$\boldsymbol{S} = \frac{1}{N} \sum_{t=1}^{N} \Phi(\boldsymbol{x}^{(t)}) \Phi(\boldsymbol{x}^{(t)})^{\top}$$

• Then we can write $\boldsymbol{w}^{(i)}$ as $\boldsymbol{w}^{(i)} = \sum_{t=1}^{N} \alpha_t^{(i)} \Phi(\boldsymbol{x}^{(t)})$
• Also we have $\boldsymbol{S} \boldsymbol{w}^{(i)} = \lambda^{(i)} \boldsymbol{w}^{(i)}$, implying that

$$\frac{1}{N}\sum_{t=1}^{N}\Phi(\boldsymbol{x}^{(t)})\Phi(\boldsymbol{x}^{(t)})^{\top}\sum_{s=1}^{N}\alpha_{s}^{(i)}\Phi(\boldsymbol{x}^{(s)}) = \lambda^{(i)}\sum_{s=1}^{N}\alpha_{s}^{(i)}\Phi(\boldsymbol{x}^{(s)})$$

Shan-Hung Wu (CS, NTHU)

NetDB-ML, Spring 2015 33 / 57

$$\begin{split} &\frac{1}{N}\sum_{t=1}^{N}\Phi(\mathbf{x}^{(t)})\Phi(\mathbf{x}^{(t)})^{\top}\sum_{s=1}^{N}\alpha_{s}^{(i)}\Phi(\mathbf{x}^{(s)}) = \lambda^{(i)}\sum_{s=1}^{N}\alpha_{s}^{(i)}\Phi(\mathbf{x}^{(s)}) \\ &\Rightarrow \sum_{t=1}^{N}\sum_{s=1}^{N}\Phi(\mathbf{x}^{(t)})(\Phi(\mathbf{x}^{(t)})^{\top}\Phi(\mathbf{x}^{(i)}))\alpha_{s}^{(i)} = N\lambda^{(i)}\sum_{s=1}^{N}\alpha_{s}^{(i)}\Phi(\mathbf{x}^{(s)}) \\ &\Rightarrow \sum_{t=1}^{N}\sum_{s=1}^{N}\Phi(\mathbf{x}^{(l)})^{\top}\Phi(\mathbf{x}^{(t)})(\Phi(\mathbf{x}^{(t)})^{\top}\Phi(\mathbf{x}^{(i)}))\alpha_{s}^{(i)} \\ &= N\lambda^{(i)}\sum_{s=1}^{N}\alpha_{s}^{(i)}\Phi(\mathbf{x}^{(l)})^{\top}\Phi(\mathbf{x}^{(i)}), \text{ for } l = 1, \cdots, N \\ &\Rightarrow \mathcal{K}^{2}\alpha^{(i)} = N\lambda^{(i)}\mathcal{K}\alpha^{(i)} = \widetilde{\lambda}^{(i)}\alpha^{(i)} \end{split}$$

- Maximizing $\lambda^{(1)}, \cdots, \lambda^{(k)}$ (eigenvalues of \boldsymbol{S}) amounts to maximizing $\widetilde{\lambda}^{(1)}, \cdots, \widetilde{\lambda}^{(k)}$ (eigenvalues of \boldsymbol{K})
- α⁽ⁱ⁾'s are the eigenvectors corresponding the maximal eigenvalues of K

- Note that $oldsymbol{w}^{(i)}$ is normalized, i.e., $\|oldsymbol{w}^{(i)}\|=1$
 - Each $\pmb{\alpha}^{(i)}$ needs to be scaled properly

•
$$\| \mathbf{w}^{(i)} \|^2 = (\sum_{t=1}^N \alpha_t^{(i)} \Phi(\mathbf{x}^{(t)}))^\top (\sum_{t=1}^N \alpha_t^{(i)} \Phi(\mathbf{x}^{(t)})) = \mathbf{\alpha}^{(i)\top} \mathbf{K} \mathbf{\alpha}^{(i)} = 1 \Rightarrow \mathbf{\alpha}^{(i)\top} \mathbf{\alpha}^{(i)} = 1/N\lambda^{(i)} = 1/\widetilde{\lambda}^{(i)}$$

•
$$\boldsymbol{\alpha}^{(i)} \leftarrow \frac{\boldsymbol{\alpha}^{(i)}}{\sqrt{\tilde{\lambda}^{(i)}} \| \boldsymbol{\alpha}^{(i)} \|}$$

• To project the
$$m{z}^{(t)} = m{w}^{ op} \Phi(m{x}^{(t)})$$

 Similarly, α₂,..., α_k are the (scaled) eigenvectors corresponding to the largest eigenvalues of *K*

Centering $\Phi(\mathbf{x}^{(t)})$'s

- Note that by letting $S = \frac{1}{N} \sum_{t=1}^{N} \Phi(x^{(t)}) \Phi(x^{(t)})^{\top}$, we assume that $\Phi(x^{(t)})$'s are centered
 - Recall that $\Sigma_{\Phi(\mathbf{x})} = E\left[\Phi(\mathbf{x})\Phi(\mathbf{x})^{\top}\right] \mu_{\Phi(\mathbf{x})}\mu_{\Phi(\mathbf{x})}^{\top}$
 - In linear PCA, we can simply center $\Phi(\pmb{x}^{(t)})$'s by a preprocessing step
- Given an arbitrary kernel function $k(\cdot)$, there is **no** guarantee that $\Phi(\mathbf{x}^{(t)})$'s will be centered in the lifted space
 - Preprocessing is infeasible
 - The model itself needs to be extended to accept uncentered instances in the lifted space. How? [Homework]

PCA vs. Kernel PCA

Shan-Hung Wu (CS, NTHU)

NetDB-ML, Spring 2015 37 / 57

1 Why Dimensionality Reduction?

Feature Selection

• Forward and Backward Selection (Supervised)

Feature Extraction

- Principal Component Analysis (Unsupervised, Linear)
- Linear Discriminant Analysis (Supervised, Linear)
- Kernel PCA (Unsupervised, Nonlinear)
- Isometric Feature Mapping (Unsupervised, Nonlinear)
- Locally Linear Embedding (Unsupervised, Nonlinear)

- Kernel PCA does not assumed a particular nonlinear mapping
 - Performance largely depends on the selection of kernel function
- In some applications, assuming some particular form of nonlinear mapping will be more helpful
- Consider an example where $\mathbf{x}^{(t)}$ are face photos of size 100×100 pixels
 - A series of one's photos token from different angles forms a trajectory in the 10000-dimensional space
 - The collection of people's photos defines a *manifold* in the 10000-dimensional space
 - If we map the 10000-dimensional space linearly to a low dimensional space, the structure of the manifold may not be preserved

Nonlinear methods rebuild the manifold in a low dimensional space

- Treat the manifold as a space
- Measure the relations/constrains between x^(t) in that space (which reflect the structure of the manifold)
- Sind instances z^(t) in a low dimensional space that obey the constrains most (so preserve the structure)
- The final $\boldsymbol{z}^{(t)}$ may not relate to $\boldsymbol{x}^{(t)}$ linearly
- Two popular algorithms:
 - Isometric feature mapping (Isomap)
 - Locally linear embedding (LLE)
- It might be a good idea to review the topology now

lsomap

- The *Isometric feature mapping (Isomap)* measures the *geodesic distances* between examples in step 2; and then in step 3, find instances $z^{(t)}$ in a low dimensional space with mutual distances as close as the geodesic distances as possible
 - Geodesic distance is the distance along the manifold that the data lies in, as opposed to the Euclidean distance in the input space

Measuring the Geodesic Distances

- Recall that a manifold resembles a Euclidean space at a small enough scale
 - One topological property of the Euclidean space is that points are connected
- A point $x^{(r)}$ and another $x^{(s)}$ are directly connected if $x^{(s)}$ lies in the same neighborhood with $x^{(r)}$, and their geodesic distance can simply be the Euclidean distance
 - Any other choice?

Measuring the Geodesic Distances

- Recall that a manifold resembles a Euclidean space at a small enough scale
 - One topological property of the Euclidean space is that points are connected
- A point $x^{(r)}$ and another $x^{(s)}$ are directly connected if $x^{(s)}$ lies in the same neighborhood with $x^{(r)}$, and their geodesic distance can simply be the Euclidean distance
 - $\bullet\,$ Any other choice? Mahalanobis distance, at the cost of computing the covariance matrix $\pmb{\Sigma}$
- How about points not in the same neighborhood?

Measuring the Geodesic Distances

- Recall that a manifold resembles a Euclidean space at a small enough scale
 - One topological property of the Euclidean space is that points are connected
- A point $x^{(r)}$ and another $x^{(s)}$ are directly connected if $x^{(s)}$ lies in the same neighborhood with $x^{(r)}$, and their geodesic distance can simply be the Euclidean distance
 - $\bullet\,$ Any other choice? Mahalanobis distance, at the cost of computing the covariance matrix $\pmb{\Sigma}$
- How about points not in the same neighborhood?
 - In an atlas, neighborhoods are overlapped
 - The geodesic distance between two points that are not in the same neighborhood can be calculated by the length of their shortest path

• How identify to the neighboring points of $x^{(r)}$?

- How identify to the neighboring points of $x^{(r)}$?
- We assume that $x^{(r)}$ and $x^{(s)}$ lie in the same neighborhood if:

•
$$\left\| \boldsymbol{x}^{(r)} - \boldsymbol{x}^{(s)} \right\| < \varepsilon;$$
 or

- $\mathbf{x}^{(s)}$ is one of the *n*-nearest neighbors of $\mathbf{x}^{(r)}$
- User-specific parameters ε and n are usually small, but must be chosen carefully to make sure that the network is still connected

- Let $d_{r,s}$ be the geodesic distance between $x^{(r)}$ and $x^{(s)}$, $1 \le r, s \le N$, now we want to find $z^{(r)}$ and $z^{(s)}$ in a k-dimensional space such that their mutual Euclidean distances are as close to $d_{r,s}$ as possible
- Exact solution (without error) may exist only when k is *larger* than d
 - There may be no way to "straighten" the geodesic distances between points in a space of dimension *d* (or lower)
- The solution $\{z^{(t)}\}_t$ is not unique, as we can shift all $z^{(t)}$ together to get another solution
 - To constrain the solution, we assume that $\sum_{i=1}^{N} z_i^{(t)} = 0$ for $i = 1, \dots, k$

• Let
$$Z = \begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(N)} \end{bmatrix} \in \mathbb{R}^{N \times k}$$
, we want to find the relationship between
 Z and $d_{r,s}$
• For any $z^{(r)}$ and $z^{(s)}$, we have
 $d_{r,s}^2 = ||z^{(r)} - z^{(s)}||^2 = b_{r,r} + b_{s,s} - 2b_{r,s}$, where
 $b_{r,s} = \sum_{i=1}^{k} z_i^{(r)} z_i^{(s)} = (z^{(r)})^\top z^{(s)}$
• Therefore, $B = \begin{bmatrix} b_{1,1} \cdots b_{1,N} \\ \vdots & \vdots \\ b_{N,1} \cdots & b_{N,N} \end{bmatrix} = ZZ^\top$

Shan-Hung Wu (CS, NTHU)

NetDB-ML, Spring 2015 45 / 57

Finding $\{z^{(t)}\}_{t=1}^{N}$ (3/3)

• On the other hand, let $T = \sum_{t=1}^{N} b_{t,t} = \sum_{t} \sum_{i} (z_i^{(t)})^2$, we get

•
$$\sum_{r} d_{r,s}^{2} = T + Nb_{s,s} - 2\sum_{r} \sum_{i} z_{i}^{(r)} z_{i}^{(s)} =$$

 $T + Nb_{s,s} - 2\sum_{i} \left(\sum_{r} z_{i}^{(r)}\right) z_{i}^{(s)} = T + Nb_{s,s}$
• $\sum_{s} d_{r,s}^{2} = Nb_{r,r} + T$
• $\sum_{r} \sum_{s} d_{r,s}^{2} = 2NT$

- Each element in **B** can be expressed by the geodesic distance by $b_{i,j} = \frac{1}{2} \left(b_{i,i} + b_{j,j} d_{i,j}^2 \right) = \frac{1}{2} \left(\frac{1}{N} \sum_s d_{i,s}^2 + \frac{1}{N} \sum_r d_{r,j}^2 \frac{1}{N^2} \sum_r \sum_s d_{r,s}^2 d_{i,j}^2 \right)$
- Note **B** is symmetric and can be written as $B = UDU^{\top}$, where the columns of **U** are eigenvectors
- We find $Z = UD^{1/2}$

Deciding k

- Given $\boldsymbol{Z} \in \mathbb{R}^{N \times k}$, the rank of $\boldsymbol{Z} \boldsymbol{Z}^{ op}$ is at most k
- In the case that $\boldsymbol{B} \in \mathbb{R}^{N imes N}$ has full rank, we need k = N to obtain the exact solution
- However, for dimension reduction, we want k < d (and N)
- This leads to a *low rank approximation problem*: given a small k, k < N, we want to find a matrix \widetilde{B} such that $\left\| B \widetilde{B} \right\|_{F}$ is minimized, subject to $rank(\widetilde{B}) = k$
 - Why Frobenius norm?

Deciding k

- Given $\boldsymbol{Z} \in \mathbb{R}^{N \times k}$, the rank of $\boldsymbol{Z} \boldsymbol{Z}^{ op}$ is at most k
- In the case that $\boldsymbol{B} \in \mathbb{R}^{N imes N}$ has full rank, we need k = N to obtain the exact solution
- However, for dimension reduction, we want k < d (and N)
- This leads to a *low rank approximation problem*: given a small k, k < N, we want to find a matrix \widetilde{B} such that $\left\| B \widetilde{B} \right\|_{F}$ is minimized, subject to $rank(\widetilde{B}) = k$
 - Why Frobenius norm? To minimize the error of the approximated distances
 - Recall that the best approximation is given by $\widetilde{\boldsymbol{B}} = \widetilde{\boldsymbol{U}}\widetilde{\boldsymbol{D}}\widetilde{\boldsymbol{U}}^{\top}$, where $\widetilde{\boldsymbol{D}} \in \mathbb{R}^{k \times k}$ contains only the k largest eigenvalues and $\widetilde{\boldsymbol{U}} = [\boldsymbol{u}_1, \cdots, \boldsymbol{u}_k] \in \mathbb{R}^{N \times k}$ contains the corresponding eigenvectors
- Finally, we let $Z = \widetilde{\boldsymbol{U}}\widetilde{\boldsymbol{D}}^{1/2}$

- Isomap is also a one-group process
 - This is less severe since the "structure" between examples is preserved
 - We can also let $d'_{r,s} = (1 \alpha)d_{r,s} + \alpha c_{r,s}$, where $c_{r,s}$ is the distance between classes $\mathbf{x}^{(r)}$ and $\mathbf{x}^{(s)}$ belong to, and the parameter α can be tuned using the cross validation
- The major problem of Isomap is that it does not learn a mapping between x^(t) and z^(t)
 - $Z = \widetilde{U} \widetilde{D}^{1/2}$ implies that $z_j^{(t)} = \lambda_j u_j^{(t)}$, where $u_j^{(t)}$ is the *t*th component of the eigenvector $u_j \in \mathbb{R}^{N \times 1}$ in \widetilde{U}
 - Given a new instance x', we need to rerun the whole algorithm using the N+1 instances to get z'

• Solution?

Shan-Hung Wu (CS, NTHU)

Solution?

- Taking the advantage that a manifold is locally linear, we can identify examples $\mathbf{x}^{(s)}$ in the same neighborhood as \mathbf{x} and calculate \mathbf{w} such that $\|\mathbf{x} \sum_{s} w_{s} \mathbf{x}^{(s)}\|^{2}$ is minimized
- Calculate z by interpolation: $z = \sum_{s} w_{s} z^{(s)}$
- The cost is that we need to store the whole set of $\{x^{(t)}, z^{(t)}\}_{t=1}^{N}$

1 Why Dimensionality Reduction?

Feature Selection

• Forward and Backward Selection (Supervised)

Feature Extraction

- Principal Component Analysis (Unsupervised, Linear)
- Linear Discriminant Analysis (Supervised, Linear)
- Kernel PCA (Unsupervised, Nonlinear)
- Isometric Feature Mapping (Unsupervised, Nonlinear)
- Locally Linear Embedding (Unsupervised, Nonlinear)

Locally Linear Embedding (1/2)

• Based on the similar idea above, the *Locally Linear Embedding (LLE)* represents each example as a linear combination of its nearby points in step 2; and then in step 3, find instances $z^{(t)}$ in a low dimensional space which preserve the combinations most

Locally Linear Embedding (2/2)

- Step 2: For each example $\mathbf{x}^{(r)}$ and all its nearby points $\mathbf{x}^{(s)}$, $s \neq r$, find weights $w_{r,s}$ such that $\|\mathbf{x}^{(r)} \sum_{s} w_{r,s} \mathbf{x}^{(s)}\|^2$ is minimized, subject to $\sum_{s} w_{r,s} = 1$
 - The constraint ensures that after translating all the points together by some vector \boldsymbol{c} , the combination is still valid; i.e., $\left\| (\boldsymbol{x}^{(r)} + \boldsymbol{c}) - \sum_{s} w_{r,s} (\boldsymbol{x}^{(s)} + \boldsymbol{c}) \right\|^2 = \left\| \boldsymbol{x}^{(r)} - \sum_{s} w_{r,s} \boldsymbol{x}^{(s)} \right\|^2$
- Step 3: Find $\{z^{(t)}\}_{t=1}^{N}$ such that $\sum_{r} ||z^{(r)} \sum_{s} w_{r,s} z^{(s)}||^{2}$ is minimized, subject to $\frac{1}{N} \sum_{t} z^{(t)} = \mathbf{0}$ ($E[z] = \mathbf{0}$) and $\frac{1}{N-1} \sum_{t} (z^{(t)} \mathbf{0})(z^{(t)} \mathbf{0})^{\top} = I$ (Cov(z) = I)
 - The first constraint is similar to that of Isomap and ensures an unique solution
 - The second guarantees that attributes of *z* a) are uncorrelated; *b*) have the same (unit) variance (this is stronger)

Solving w_{r,s}

- $w_{r,s}$ can be solved by considering one example $x^{(r)}$ by one
- Let $\mathbf{w}^{(r)} = [w_{r,1}, \cdots, w_{r,n}]^{\top}$, we can rewrite the objective in step 2 as $\begin{aligned} \left\| \mathbf{x}^{(r)} - \sum_{s} w_{r,s} \mathbf{x}^{(s)} \right\|^{2} &= \left\| \sum_{s} w_{r,s} \left(\mathbf{x}^{(r)} - \mathbf{x}^{(s)} \right) \right\|^{2} = \\ \mathbf{w}^{(r)\top} \mathbf{G}^{(r)\top} \mathbf{G}^{(r)} \mathbf{w}^{(r)} \end{aligned}$ • $\mathbf{G}^{(r)} = [\mathbf{x}^{(r)} - \mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(r)} - \mathbf{x}^{(n)}] \in \mathbb{R}^{d \times n}$

• Taking the partial derivatives of the Lagrangian $\boldsymbol{w}^{(r)\top}\boldsymbol{G}^{(r)\top}\boldsymbol{G}^{(r)}\boldsymbol{w}^{(r)} - \alpha(\boldsymbol{1}^{\top}\boldsymbol{w}^{(r)} - 1)$ with respect to $\boldsymbol{w}^{(r)}$ and α and setting them to zero, we have $\begin{cases} 2\boldsymbol{G}^{(r)\top}\boldsymbol{G}^{(r)}\boldsymbol{w}^{(r)} - \alpha \boldsymbol{1} = 0 \\ \boldsymbol{1}^{\top}\boldsymbol{w}^{(r)} = 1 \end{cases}$

•
$$w^{(r)} = \frac{(G^{(r)\top}G^{(r)})^{-1}1}{1^{\top}(G^{(r)\top}G^{(r)})^{-1}1}$$
 can be solve analytically [Proof]

• Note for $\boldsymbol{G}^{(r)\top}\boldsymbol{G}^{(r)}$ to be invertible, we need make sure that $n\leqslant d$

Solving $\{z^{(t)}\}_{t=1}^{N}$ (1/3)

• Now we are given $\boldsymbol{W} \in \mathbb{R}^{N \times N}$, a matrix with nonzero elements corresponding to the weights $w_{r,s}$ found in step 2

•
$$W1 = 1$$

• Let $Z = \begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(N)} \end{bmatrix} \in \mathbb{R}^{N \times k}$. Since the attributes of z are uncorrelated,

the columns $m{c}_1,\cdots,m{c}_k\in\mathbb{R}^{N imes 1}$ of $m{Z}$ are orthogonal to each other

• To get c_1 , we consider only the first attribute of $z^{(t)}$ and rewrite the objective in step 3 as

$$\begin{split} &\sum_{r} \left\| z_{1}^{(r)} - \sum_{s} w_{r,s} z_{1}^{(s)} \right\|^{2} = \sum_{r} z_{1}^{(r)2} - \sum_{r} z_{1}^{(r)} \left(\sum_{s} w_{r,s} z_{1}^{(s)} \right) - \\ &\sum_{r} \left(\sum_{s} w_{r,s} z_{1}^{(s)} \right) z_{1}^{(r)} + \sum_{r} \left(\sum_{s} w_{r,s} z_{1}^{(s)} \right)^{2} = \\ &c_{1}^{\top} c_{1} - c_{1}^{\top} \left(W c_{1} \right) - \left(W c_{1} \right)^{\top} c_{1} + \left(W c_{1} \right)^{\top} \left(W c_{1} \right) = \\ &\left((I - W) c_{1} \right)^{\top} \left((I - W) c_{1} \right) = c_{1}^{\top} M c_{1}, \text{ where } M = (I - W)^{\top} (I - W) \\ &\bullet \text{ Subject to } \frac{1}{N - 1} c_{1}^{\top} c_{1} = 1 \end{split}$$

- Taking the partial derivatives of the Lagrangian $c_1^{\top} M c_1 - \alpha (c_1^{\top} c_1 - N + 1)$ with respect to c_1 and α and setting them to zero, we have $\begin{cases} 2Mc_1 - 2\alpha c_1 = 0\\ c_1^{\top} c_1 - N + 1 = 0 \end{cases}$, implying $Mc_1 = \alpha c_1$ and $c_1^{\top} M c_1 = (N-1)\alpha$
 - $m{c}_1$ is the eigenvector of $m{M}$ corresponding to the smallest eigenvalue
- Similarly, c_j which is orthogonal to c₁,..., c_{j-1} is the eigenvector corresponding to the jth smallest eigenvalue
 - **M** is symmetric and has orthogonal eigenvectors

Solving $\{z^{(t)}\}_{t=1}^{N}$ (3/3)

- Note we did not enforce the constraint $\frac{1}{N}\sum_{t} z^{(t)} = \frac{1}{N} Z^{\top} \mathbf{1} = \mathbf{0}$ (or $\frac{1}{N} c_{j}^{\top} \mathbf{1} = 0$ for all $1 \leq j \leq k$)
- Notice that the first eigenvector is always 1
 - Since $\sum_{s} w_{r,s} = 1$, we have $M1 = (I - W)^{\top} (I - W) 1 = (I - W)^{\top} (1 - 1) = 0$
 - **M** is positive semidefinite and 0 must be the smallest eigenvalue [Proof]
- To be orthogonal to 1, all other eigenvectors must have components summed to 0, by virtue of orthogonality
- We can simply discard 1 and let c_j correspond to the (j+1)th eigenvector to enforce $c_j^{\top} 1 = 0$

• Finally, $z_j^{(t)}$ equals to the tth component of the eigenvector $c_j \in \mathbb{R}^{N imes 1}$ of M

Summary of Nonlinear Methods

- LLE has a similar problem with Isomap in that there is no mapping between x^(t) and z^(t)
 - The interpolation technique applies to LLE
- It can be shown that LLE is equivalent to kernel PCA with the "LLE kernel"
- Both Isomap and LLE reconstruct the manifold in a k-dimensional space by patching the overlapping neighborhoods
 - In Isomap, geodesic distances are calculated hop by hop and preserved in the low dimensional space
 - In LLE, weights of combination are preserved hop by hop in the low dimensional space