Dimensionality Reduction

Shan-Hung Wu
shwu@cs.nthu.edu.tw
Department of Computer Science,
National Tsing Hua University, Taiwan

NetDB-ML, Spring 2015

Outline

(1) Why Dimensionality Reduction?

(2) Feature Selection

- Forward and Backward Selection (Supervised)
(3) Feature Extraction
- Principal Component Analysis (Unsupervised, Linear)
- Linear Discriminant Analysis (Supervised, Linear)
- Kernel PCA (Unsupervised, Nonlinear)
- Isometric Feature Mapping (Unsupervised, Nonlinear)
- Locally Linear Embedding (Unsupervised, Nonlinear)

Outline

(1) Why Dimensionality Reduction?

(2) Feature Selection

- Forward and Backward Selection (Supervised)
(3) Feature Extraction
- Principal Component Analysis (Unsupervised, Linear)
- Linear Discriminant Analysis (Supervised, Linear)
- Kernel PCA (Unsupervised, Nonlinear)
- Isometric Feature Mapping (Unsupervised, Nonlinear)
- Locally Linear Embedding (Unsupervised, Nonlinear)

Why Dimensionality Reduction?

- Given a (normalized) training dataset $\left\{\boldsymbol{x}^{(t)}, \boldsymbol{r}^{(t)}\right\}$ where $\boldsymbol{x}^{(t)} \in \mathbb{R}^{d}$, we want to reduce the input dimension from d to $k, k<d$
- Why dimensionality reduction?

Why Dimensionality Reduction?

- Given a (normalized) training dataset $\left\{\boldsymbol{x}^{(t)}, \boldsymbol{r}^{(t)}\right\}$ where $\boldsymbol{x}^{(t)} \in \mathbb{R}^{d}$, we want to reduce the input dimension from d to $k, k<d$
- Why dimensionality reduction?
- To reduce the time/space requirements in training, cross validation, testing, and prediction
- To save the cost of data collection
- If an input is decided to be unnecessary, we can stop observing it in the future
- To make the classifier/regressor robust to small datasets
- Fewer parameters (e.g., elements of Σ) implies lower model complexity, and lower variance due to particulars of a sample
- To extract knowledge
- The k inputs can describe the whole data and may explain something

Feature Selection vs. Feature Extraction

- Basically, two ways to dimensionality reduction:
- Feature selection:
- Keeping only k of d dimensions that is most helpful to classification/regression
- Feature extraction:
- Finding a new set of k dimensions that are combinations of the original d dimensions and most helpful to classification/regression
- The combination can be linear or nonlinear
- Can be supervised or unsupervised depending on whether or not the labels $\boldsymbol{r}^{(t)}$ are used

Caution

- Is dimension reduction a preferred step in data preprocessing?

Caution

- Is dimension reduction a preferred step in data preprocessing? Generally, yes
- But if your classifier/regressor make certain assumptions over the data, you should perform dimension reduction only if those assumptions are still valid after the reduction
- Luckily, if we assume that the data are normally distributed within each class, then after linear dimension reduction, the data are still normal

Outline

(1) Why Dimensionality Reduction?

(2) Feature Selection

- Forward and Backward Selection (Supervised)

3) Feature Extraction

- Principal Component Analysis (Unsupervised, Linear)
- Linear Discriminant Analysis (Supervised, Linear)
- Kernel PCA (Unsupervised, Nonlinear)
- Isometric Feature Mapping (Unsupervised, Nonlinear) - Locally Linear Embedding (Unsupervised, Nonlinear)

Sequential Forward Selection

- Denote F the set of selected inputs
- In sequential forward selection, we start with no input $F=\emptyset$, and add inputs one by one
- At each step, we add x_{j} to F if x_{j} decreases the error most
- Specifically, we add x_{j} to F if

$$
j=\arg _{i} \min \operatorname{err}\left(F \cup x_{i}\right)
$$

and

$$
\operatorname{err}\left(F \cup x_{j}\right)<\operatorname{err}(F)-\varepsilon,
$$

where $\operatorname{err}(F)$ is the error of predictions (on the validation set) made by a classifier/regressor considering only the inputs in F and ε is a user-defined threshold

- We stop adding inputs if there is no decrease in error, or the decrease in error is too small

Sequential Backward Selection

- In sequential backward selection, we start with F containing all inputs, and remove inputs one by one
- At each step, we remove x_{j} from F if x_{j} increase the error least
- Specifically, we remove x_{j} from F if

$$
j=\arg _{i} \min \operatorname{err}\left(F-x_{i}\right) \text { and } \operatorname{err}\left(F-x_{j}\right)<\operatorname{err}(F)+\varepsilon
$$

- In either direction, need to perform the classification/regression $d+(d-1)+\cdots+(d-k)=O\left(d^{2}\right)$ times
- But the training process in the backward direction is more costly, as F contains more inputs
- Forward direction is preferable if k is much smaller than d

Are We Satisfied?

- The above algorithms are local search procedures and do not guarantee F to be optimal
- In some applications such as face recognition (where $\boldsymbol{x}^{(t)}$ are images and the inputs are pixels), feature selection is not a good method for dimensionality reduction
- Individual pixels do not carry much discriminative information; it is the combinations of pixels that carry face identities

Outline

(1) Why Dimensionality Reduction?

(2) Feature Selection

- Forward and Backward Selection (Supervised)
(3) Feature Extraction
- Principal Component Analysis (Unsupervised, Linear)
- Linear Discriminant Analysis (Supervised, Linear)
- Kernel PCA (Unsupervised, Nonlinear)
- Isometric Feature Mapping (Unsupervised, Nonlinear) - Locally Linear Embedding (Unsupervised, Nonlinear)

Principal Component Analysis (1/2)

- In Principal Component Analysis (PCA), we want to find k vectors $\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{k} \in \mathbb{R}^{d}$, named principal components, such that after projecting each instance $\boldsymbol{x}^{(t)}$ onto directions along $\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{k}$ and obtaining $\boldsymbol{z}^{(t)}=\left[\begin{array}{lll}\boldsymbol{w}_{1} & , \cdots & , \boldsymbol{w}_{k}\end{array}\right]^{\top} \boldsymbol{x}^{(t)} \in \mathbb{R}^{k}$, the new data collection $\left\{\boldsymbol{z}^{(t)}\right\}_{t=1}^{N}$ helps the classifier/regressor most
- Let $k=1$, how to find \boldsymbol{w}_{1} ?

Principal Component Analysis (1/2)

- In Principal Component Analysis (PCA), we want to find k vectors $\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{k} \in \mathbb{R}^{d}$, named principal components, such that after projecting each instance $\boldsymbol{x}^{(t)}$ onto directions along $\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{k}$ and obtaining $\boldsymbol{z}^{(t)}=\left[\begin{array}{lll}\boldsymbol{w}_{1} & , \cdots & , \boldsymbol{w}_{k}\end{array}\right]^{\top} \boldsymbol{x}^{(t)} \in \mathbb{R}^{k}$, the new data collection $\left\{\boldsymbol{z}^{(t)}\right\}_{t=1}^{N}$ helps the classifier/regressor most
- Let $k=1$, how to find \boldsymbol{w}_{1} ?
- Of course we won't pick $\boldsymbol{w}_{1}=\mathbf{0}$, because it makes $z^{(t)}=\boldsymbol{w}_{1}^{\top} \boldsymbol{x}^{(t)}=0$ for all t and undistinguishable
- It is plausible to pick \boldsymbol{w}_{1} such that $z^{(t)}$ is most spread out; that is, let $\boldsymbol{x}^{(1)}, \cdots, \boldsymbol{x}^{(N)}$ be i.i.d. samples drawn from an (unknown) population \boldsymbol{x}, we can pick \boldsymbol{w}_{1} which maximizes $\operatorname{Var}(\boldsymbol{z})=\operatorname{Var}\left(\boldsymbol{w}_{1}^{\top} \boldsymbol{x}\right)=\boldsymbol{w}_{1}^{\top} \boldsymbol{\Sigma} \boldsymbol{w}_{1}$

Principal Component Analysis (2/2)

- How to obtain the covairant matrix Σ ?

Principal Component Analysis (2/2)

- How to obtain the covairant matrix Σ ?
- Recall that $\Sigma_{x}=E\left[\boldsymbol{x}^{\top}\right]-\mu_{x} \mu_{x}^{\top}$
- Assuming that x is centered (e.g., z-normalized), we have an estimate $\boldsymbol{S}=\frac{1}{N} \sum_{t=1}^{N} \boldsymbol{x}^{(t)} \boldsymbol{x}^{(t) \top}$
- Given arbitrary k, PCA picks $\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{k}$ such that
- $\operatorname{Var}\left(\boldsymbol{z}_{\boldsymbol{i}}\right)=\boldsymbol{w}_{\boldsymbol{i}}^{\top} \boldsymbol{S} \boldsymbol{w}_{\boldsymbol{i}}$ for $i=1, \cdots, k$ are the highest
- $\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{k}$ are orthogonal to each other so each of them helps the classifier/regressor independently
- $\left\|\boldsymbol{w}_{\boldsymbol{i}}\right\|=1$ for $i=1, \cdots, k$ so the direction of $\boldsymbol{w}_{\boldsymbol{i}}$ is the only factor that affects $\boldsymbol{w}_{i}^{\top} \boldsymbol{S} \boldsymbol{w}_{\boldsymbol{i}}$ (it is maximized not because we pick a large $\boldsymbol{w}_{\boldsymbol{i}}$)

Solving $w_{1}, \cdots, w_{k}(1 / 3)$

- To get \boldsymbol{w}_{1}, we need to solve the problem $\arg _{\boldsymbol{w}_{1}} \max \boldsymbol{w}_{1}^{\top} \boldsymbol{S} \boldsymbol{w}_{1}$ subject to $\boldsymbol{w}_{1}^{\top} \boldsymbol{w}_{1}=1$
- \boldsymbol{w}_{1} is a stationary point of the Lagrangian: $\boldsymbol{w}_{1}^{\top} \boldsymbol{S} \boldsymbol{w}_{1}-\alpha\left(\boldsymbol{w}_{1}^{\top} \boldsymbol{w}_{1}-1\right)$
- Taking the partial derivatives with respect to \boldsymbol{w}_{1} and α we have $\left\{\begin{array}{r}2 \boldsymbol{S} \boldsymbol{w}_{1}-2 \alpha \boldsymbol{w}_{1}=\mathbf{0} \\ \boldsymbol{w}_{1}^{\top} \boldsymbol{w}_{1}-1=0\end{array}\right.$, implying $\boldsymbol{S} \boldsymbol{w}_{1}=\alpha \boldsymbol{w}_{1}$ and $\boldsymbol{w}_{1}^{\top} \boldsymbol{S} \boldsymbol{w}_{1}=\alpha \boldsymbol{w}_{1}^{\top} \boldsymbol{w}_{1}=\alpha$
- The candidates of \boldsymbol{w}_{1} and α are eigenvectors and eigenvalues of $\boldsymbol{\Sigma}$ respectively
- Since we want to maximize $\boldsymbol{w}_{1}^{\top} \boldsymbol{S} \boldsymbol{w}_{1}=\alpha, \boldsymbol{w}_{1}$ is the eigenvector corresponding to the largest eigenvalue λ_{1}

Solving $w_{1}, \cdots, w_{k}(2 / 3)$

- To get \boldsymbol{w}_{2}, we solve the problem $\arg _{\boldsymbol{w}_{2}} \max \boldsymbol{w}_{2}^{\top} \boldsymbol{S} \boldsymbol{w}_{2}$ subject to $\boldsymbol{w}_{2}^{\top} \boldsymbol{w}_{2}=1$ and $\boldsymbol{w}_{2}^{\top} \boldsymbol{w}_{1}=0$
- \boldsymbol{w}_{2} is a stationary point of the Lagrangian:

$$
\boldsymbol{w}_{2}^{\top} \boldsymbol{S} \boldsymbol{w}_{2}-\alpha\left(\boldsymbol{w}_{2}^{\top} \boldsymbol{w}_{2}-1\right)-\beta \boldsymbol{w}_{2}^{\top} \boldsymbol{w}_{1}
$$

- Taking the partial derivatives with respect to $\boldsymbol{w}_{2}, \alpha$, and β we have

$$
\left\{\begin{aligned}
2 \boldsymbol{S} \boldsymbol{w}_{2}-2 \alpha \boldsymbol{w}_{2}-\beta \boldsymbol{w}_{1} & =\mathbf{0} \\
\boldsymbol{w}_{2}^{\top} \boldsymbol{w}_{2}-1 & =0 \\
\boldsymbol{w}_{2}^{\top} \boldsymbol{w}_{1} & =0
\end{aligned}\right.
$$

- This implies $\boldsymbol{S} \boldsymbol{w}_{2}=\alpha \boldsymbol{w}_{2}$, as

$$
\begin{aligned}
& 0=\boldsymbol{w}_{1}^{\top} \mathbf{0}=2 \boldsymbol{w}_{1}^{\top} \boldsymbol{S} \boldsymbol{w}_{2}-2 \alpha \boldsymbol{w}_{1}^{\top} \boldsymbol{w}_{2}-\beta \boldsymbol{w}_{1}^{\top} \boldsymbol{w}_{1}=2 \boldsymbol{w}_{2}^{\top} \boldsymbol{S} \boldsymbol{w}_{1}-\beta= \\
& 2 \lambda_{1} \boldsymbol{w}_{2}^{\top} \boldsymbol{w}_{1}-\beta=-\beta \text {, hence } 2 \boldsymbol{S} \boldsymbol{w}_{2}-2 \alpha \boldsymbol{w}_{2}=\mathbf{0}
\end{aligned}
$$

- Additionally, $\boldsymbol{w}_{2}^{\top} \boldsymbol{S} \boldsymbol{w}_{2}=\alpha$, as

$$
0=\boldsymbol{w}_{2}^{\top} \mathbf{0}=2 \boldsymbol{w}_{2}^{\top} \boldsymbol{S} \boldsymbol{w}_{2}-2 \alpha \boldsymbol{w}_{2}^{\top} \boldsymbol{w}_{2}-\beta \boldsymbol{w}_{2}^{\top} \boldsymbol{w}_{1}=2 \boldsymbol{w}_{2}^{\top} \boldsymbol{S} \boldsymbol{w}_{2}-2 \alpha
$$

- The candidates of \boldsymbol{w}_{2} are eigenvectors of \boldsymbol{S} orthogonal to \boldsymbol{w}_{1}
- Since we want to maximize $\boldsymbol{w}_{2}^{\top} \boldsymbol{S} \boldsymbol{w}_{2}=\alpha, \boldsymbol{w}_{2}$ is the eigenvector corresponding to the second largest eigenvalue λ_{2}
- Recall that the eigenvectors of a symmetric matrix (S) are orthogonal

Solving $w_{1}, \cdots, w_{k}(3 / 3)$

- From the above, we can see that \boldsymbol{w}_{i} are the i th largest eigenvector of S
We can reach the same conclusion by Rayleigh's quotient [Proof]
- Define $\boldsymbol{z}=\boldsymbol{W}^{\top} \boldsymbol{x}$, where $\boldsymbol{W}=\left[\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{k}\right]$
- If \boldsymbol{x} are not normalized, we can center \boldsymbol{z} around the origin by letting $\boldsymbol{z}=\boldsymbol{W}^{\top}(\boldsymbol{x}-\boldsymbol{m})$, where \boldsymbol{m} is the sample mean of \boldsymbol{x}
- In addition, we can make z_{i} have the unit variance by dividing itself by $\sqrt{\lambda_{i}}$
- $z^{(t)}$ are i.i.d. samples of z

Effects of PCA

Figure: PCA centers the instances and rotates the axes to line up with the directions of the highest variance. With these new axes, the covariance matrix $\boldsymbol{\Sigma}_{\boldsymbol{z}}=\boldsymbol{W}^{\top} \boldsymbol{S} \boldsymbol{W} \in \mathbb{R}^{k \times k}$ is always diagonal, making the naive Bayes' classifiers feasible.

The Scree Graph

- How do we decide a proper k ?
- Generally, we want to pick k such that the proportion of variance $\frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{d} \lambda_{i}}$ is more than 90%
- We seek for the "elbow" in the scree graph:

Are We Satisfied? (1/3)

- In image processing applications (where $\boldsymbol{x}^{(t)}$ are images), $\boldsymbol{w}_{\boldsymbol{i}}$ themselves can also be displayed as images and be seen as templates for important features
- In these cases, $\boldsymbol{w}_{\boldsymbol{i}}$ have a special name eigenfaces
- When should we use PCA?

Are We Satisfied? $(1 / 3)$

- In image processing applications (where $\boldsymbol{x}^{(t)}$ are images), $\boldsymbol{w}_{\boldsymbol{i}}$ themselves can also be displayed as images and be seen as templates for important features
- In these cases, $\boldsymbol{w}_{\boldsymbol{i}}$ have a special name eigenfaces
- When should we use PCA?
- PCA is helpful only when we have a small number of large eigenvalues
- Or, when the original inputs of x are highly correlated (so the contours are stretched)
- Note the variance of each input of x may be very high that affects the directions of principal components more than the correlations between inputs do
- Generally, we perform z-normalization before applying PCA

Are We Satisfied? $(2 / 3)$

- PCA is a one-group procedure
- Fine with the regression
- But in the case of classification, there are multiple groups
- The Karhunen-Loeve expansion:
- Instead of using the covariance matrix of the whole examples, we can estimate separate covariance matrices for individual classes
- Take their average (weighted by the estimated priors) as the covariance matrix, and use its eigenvectors

Outline

(1) Why Dimensionality Reduction?

(2) Feature Selection

- Forward and Backward Selection (Supervised)
(3) Feature Extraction
- Principal Component Analysis (Unsupervised, Linear)
- Linear Discriminant Analysis (Supervised, Linear)
- Kernel PCA (Unsupervised, Nonlinear)
- Isometric Feature Mapping (Unsupervised, Nonlinear) - Locally Linear Embedding (Unsupervised, Nonlinear)

Linear Discriminant Analysis (1/3)

- Given a training set $X=\left\{\boldsymbol{x}^{(t)}, \boldsymbol{r}^{(t)}\right\}_{t=1}^{N}$, in Linear Discriminant Analysis (LDA), we want to find k vectors $\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{k} \in \mathbb{R}^{d}$, such that after projecting each instance $\boldsymbol{x}^{(t)}$ onto directions along $\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{k}$ and obtaining $\boldsymbol{z}^{(t)}=\boldsymbol{W}^{\top} \boldsymbol{x}^{(t)} \in \mathbb{R}^{k}$, where $\boldsymbol{W}=\left[\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{k}\right]$, the new data collection $\left\{\boldsymbol{z}^{(t)}\right\}_{t=1}^{N}$ has the properties:
- Examples in different classes are as separate as possible
- Examples of the same class are as close as possible

Linear Discriminant Analysis (2/3)

- Let $\boldsymbol{m}_{i}=\frac{1}{N_{i}} \sum_{t=1}^{N} r_{i}^{(t)} \boldsymbol{x}^{(t)}$ and
$S_{i}=\frac{1}{N_{i}-1} \sum_{t=1}^{N} r_{i}^{(t)}\left(\boldsymbol{x}^{(t)}-\boldsymbol{m}_{i}\right)\left(\boldsymbol{x}^{(t)}-\boldsymbol{m}_{i}\right)^{\top}$, where $N_{i}=\sum_{t=1}^{N} r_{i}^{(t)}$, be the estimated mean and variance of examples in class i respectively
- We can measure the total within-class separation by
$S_{\text {within }}=\sum_{i=1}^{K} N_{i} \boldsymbol{S}_{i}$
- Denote $\boldsymbol{m}=\frac{1}{K} \sum_{i=1}^{K} \boldsymbol{m}_{i}$, we can also measure the separation between classes by $\boldsymbol{S}_{\text {between }}=\sum_{i=1}^{K} N_{i}\left(\boldsymbol{m}_{i}-\boldsymbol{m}\right)\left(\boldsymbol{m}_{i}-\boldsymbol{m}\right)^{\top}$
- For each \boldsymbol{w}_{j}, the mean and variance of the projections $\boldsymbol{z}^{(t)}$ are $m_{i}=\frac{1}{N_{i}} \sum_{t=1}^{N} r_{i}^{(t)} z_{j}^{(t)}=\frac{1}{N_{i}} \sum_{t=1}^{N} r_{i}^{(t)} \boldsymbol{w}_{j}^{\top} \boldsymbol{x}^{(t)}=$ $\boldsymbol{w}_{j}^{\top}\left(\frac{1}{N_{i}} \sum_{t=1}^{N} r_{i}^{(t)} \boldsymbol{x}^{(t)}\right)=\boldsymbol{w}_{j}^{\top} \boldsymbol{m}_{i}$ and $s_{i}^{2}=\frac{1}{N_{i}-1} \sum_{t=1}^{N} r_{i}^{(t)}\left(z_{j}^{(t)}-\boldsymbol{w}_{j}^{\top} \boldsymbol{m}_{i}\right)\left(z_{j}^{(t)}-\boldsymbol{w}_{j}^{\top} \boldsymbol{m}_{i}\right)^{\top}=$ $\frac{1}{N_{i}-1} \sum_{t=1}^{N} r_{i}^{(t)}\left(\boldsymbol{w}_{j}^{\top} \boldsymbol{x}^{(t)}-\boldsymbol{w}_{j}^{\top} \boldsymbol{m}_{i}\right)\left(\boldsymbol{w}_{j}^{\top} \boldsymbol{x}^{(t)}-\boldsymbol{w}_{j}^{\top} \boldsymbol{m}_{i}\right)^{\top}=$ $\frac{1}{N_{i}-1} \sum_{t=1}^{N} r_{i}^{(t)} \boldsymbol{w}_{j}^{\top}\left(\boldsymbol{x}^{(t)}-\boldsymbol{m}_{i}\right)\left(\boldsymbol{x}^{(t)}-\boldsymbol{m}_{i}\right)^{\top} \boldsymbol{w}_{j}=\boldsymbol{w}_{j}^{\top} \boldsymbol{S}_{\boldsymbol{i}} \boldsymbol{w}_{j}$ respectively
- The within- and between-class separation after projection becomes $\boldsymbol{w}_{j}^{\top} \boldsymbol{S}_{\text {within }} \boldsymbol{w}_{j}$ and $\boldsymbol{w}_{j}^{\top} \boldsymbol{S}_{\text {between }} \boldsymbol{w}_{j}$ respectively

Linear Discriminant Analysis (3/3)

- LDA picks $\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{k}$ such that
- The Fisher's linear discriminant $J\left(\boldsymbol{w}_{j}\right)=\frac{w_{j}^{\top} s_{\text {between }} w_{j}}{w_{j}^{\top} s_{\text {within }} w_{j}}$ are the highest for $j=1, \cdots, k$
- $\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{k}$ are orthogonal to each other
- We don't care $\left\|\boldsymbol{w}_{j}\right\|$ now since we are maximizing the ratio
- Unfortunately, the solution to the above objective is not unique since if $\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{k}$ are the solution, so do $c_{1} \boldsymbol{w}_{1}, \cdots, c_{k} \boldsymbol{w}_{k}, \forall c_{j} \in \mathbb{R}$
- We can instead maximize $\boldsymbol{w}_{j}^{\top} \boldsymbol{S}_{\text {between }} \boldsymbol{w}_{j}$ subject to an additional constrain $\boldsymbol{w}_{j}^{\top} \boldsymbol{S}_{\text {within }} \boldsymbol{w}_{j}=1$

Solving $\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{k}$

- Lagrangian for $\boldsymbol{w}_{1}: \arg _{\boldsymbol{w}_{1}} \max \boldsymbol{w}_{1}^{\top} \boldsymbol{S}_{\text {between }} \boldsymbol{w}_{1}-\alpha\left(\boldsymbol{w}_{1}^{\top} \boldsymbol{S}_{\text {within }} \boldsymbol{w}_{1}-1\right)$
- Taking the partial derivatives with respect to \boldsymbol{w}_{1} and α and setting them to zero we have $\left\{\begin{array}{r}2 \boldsymbol{S}_{\text {between }} \boldsymbol{w}_{1}-2 \alpha \boldsymbol{S}_{\text {within }} \boldsymbol{w}_{1}=\mathbf{0} \\ \boldsymbol{w}_{1}^{\top} \boldsymbol{S}_{\text {within }} \boldsymbol{w}_{1}-1=0\end{array}\right.$, leading to $\left(\boldsymbol{S}_{\text {within }}\right)^{-1} \boldsymbol{S}_{\text {between }} \boldsymbol{w}_{1}=\alpha \boldsymbol{w}_{1}$ and $\boldsymbol{w}_{1}^{\top} \boldsymbol{S}_{\text {between }} \boldsymbol{w}_{1}=\alpha$
- The candidates of \boldsymbol{w}_{1} and α are eigenvectors and eigenvalues of $\left(\boldsymbol{S}_{\text {within }}\right)^{-1} \boldsymbol{S}_{\text {between }}$ respectively
- Since we want to maximize $\boldsymbol{w}_{1}^{\top} \boldsymbol{S}_{\text {between }} \boldsymbol{w}_{1}=\alpha, \boldsymbol{w}_{1}$ is the eigenvector corresponding to the largest eigenvalue λ_{1}
- Similarly, \boldsymbol{w}_{j} is the j th largest eigenvector of $\left(\boldsymbol{S}_{\text {within }}\right)^{-1} \boldsymbol{S}_{\text {between }}$
- We can reach the same conclusion using the Rayleigh's quotient [Proof: Observe that
$\frac{\boldsymbol{w}_{j}^{\top} \boldsymbol{S}_{\text {between }} \boldsymbol{w}_{\boldsymbol{j}}}{\boldsymbol{w}_{\boldsymbol{j}}^{\top} \boldsymbol{S}_{\text {within }} \boldsymbol{w}_{\boldsymbol{j}}}=\frac{\boldsymbol{w}_{\boldsymbol{j}}^{\top} \boldsymbol{S}_{\text {between }} \boldsymbol{w}_{\boldsymbol{j}}}{\left(\boldsymbol{U}^{\top} \boldsymbol{w}_{\boldsymbol{j}}\right)^{\top} \boldsymbol{U}^{\top} \boldsymbol{w}_{\boldsymbol{j}}}=\frac{\left(\boldsymbol{U}^{\top} \boldsymbol{w}_{\boldsymbol{j}}\right)^{\top} \boldsymbol{U}^{-1} \boldsymbol{S}_{\text {between }}\left(\boldsymbol{U}^{\top}\right)^{-1}\left(\boldsymbol{U}^{\top} \boldsymbol{w}_{\boldsymbol{j}}\right)}{\left(\boldsymbol{U}^{\top} \boldsymbol{w}_{\boldsymbol{j}}\right)^{\top} \boldsymbol{U}^{\top} \boldsymbol{w}_{\boldsymbol{j}}}$, where $\boldsymbol{S}_{\text {within }}=\boldsymbol{U} \boldsymbol{U}^{\top}$]

Deciding k

- Note $\boldsymbol{S}_{\text {between }}$ is the sum of K matrices, namely $\left(\boldsymbol{m}_{i}-\boldsymbol{m}\right)\left(\boldsymbol{m}_{i}-\boldsymbol{m}\right)^{\top}$, of rank 1
- $\left(\boldsymbol{m}_{i}-\boldsymbol{m}\right)\left(\boldsymbol{m}_{i}-\boldsymbol{m}\right)^{\top} \backsim\left[\boldsymbol{m}_{i}-\boldsymbol{m}, \mathbf{0}, \cdots, \mathbf{0}\right]$
- Given K columns $\left\{\boldsymbol{m}_{1}-\boldsymbol{m}, \cdots, \boldsymbol{m}_{K}-\boldsymbol{m}\right\}$, only $K-1$ of them are linearly independent
- Since $\boldsymbol{m}=\frac{1}{K} \sum_{i=1}^{K} \boldsymbol{m}_{i}$, we can express $\boldsymbol{m}_{K}-\boldsymbol{m}$ by the linear combination of $\boldsymbol{m}_{1}-\boldsymbol{m}, \cdots, \boldsymbol{m}_{K-1}-\boldsymbol{m}$
- The maximum rank of $S_{\text {between }}$ is $K-1$ and we can pick at most $K-1$ eigenvectors (i.e., $k=K-1$)

Are We Satisfied?

- Any classifier can be used after LDA
- To be able to apply LDA, $\boldsymbol{S}_{\text {within }}$ must be invertible
- If not, we can apply PCA first to get rid of the singularity
- When should we use LDA?

Are We Satisfied?

- Any classifier can be used after LDA
- To be able to apply LDA, $\boldsymbol{S}_{\text {within }}$ must be invertible
- If not, we can apply PCA first to get rid of the singularity
- When should we use LDA?
- LDA works best if instances in different class are distributed in groups (e.g., normal)

PCA vs. LDA

Figure: The distribution of $z^{(t)}$ found by PCA (left) and LDA (right) respectively. Instances are plotted in the space of the first two attributes (out of nine). LDA, as expected, leads to a better separation between classes.

- Identify situations where PCA and LDA will find the same and totally different (orthogonal) directions [Homework]

Outline

(1) Why Dimensionality Reduction?

(2) Feature Selection

- Forward and Backward Selection (Supervised)
(3) Feature Extraction
- Principal Component Analysis (Unsupervised, Linear)
- Linear Discriminant Analysis (Supervised, Linear)
- Kernel PCA (Unsupervised, Nonlinear)
- Isometric Feature Mapping (Unsupervised, Nonlinear) - Locally Linear Embedding (Unsupervised, Nonlinear)

Why Nonlinear Mappings?

Original

- Both PCA and LDA map examples $\boldsymbol{x}^{(t)}$ to a low dimensional space (through projection W)
- We assume that the d-dimensional input space has a linear relationship with the low dimensional space
- Sometimes, this linear mapping does not help

Linear PCA

Kernel PCA: Basic Idea

Fig. 1. Basic idea of kernel PCA: by using a nonlinear kernel function k instead of the standard dot product, we implicitly perform PCA in a possibly high-dimensional space F which is nonlinearly related to input space. The dotted lines are contour lines of constant feature value.

PCA Revisited

- Find the eigenvectors $\boldsymbol{w}^{(1)}, \cdots, \boldsymbol{w}^{(k)}$ of the matrix

$$
\boldsymbol{S}=\frac{1}{N} \sum_{t=1}^{N} \boldsymbol{x}^{(t)} \boldsymbol{x}^{(t) \top} \text { corresponding to the largest eigenvalues }
$$

- Each eigenvector $\boldsymbol{w}^{(i)}$ lies in the span of $\boldsymbol{x}^{(1)}, \cdots, \boldsymbol{x}^{(N)}$
- As

$$
\boldsymbol{S} \boldsymbol{w}^{(i)}=\lambda^{(i)} \boldsymbol{w}^{(i)} \Rightarrow \boldsymbol{w}^{(i)}=\frac{1}{\lambda^{(i)}} \sum_{t=1}^{N} \boldsymbol{x}^{(t)}\left(\boldsymbol{x}^{(t) \top} \boldsymbol{w}^{(i)}\right)=\sum_{t=1}^{N} \alpha_{t}^{(i)} \boldsymbol{x}^{(t)}
$$

- This holds after the lifting: $\boldsymbol{w}^{(i)}=\sum_{t=1}^{N} \alpha_{t}^{(i)} \Phi\left(\boldsymbol{x}^{(t)}\right)$
- We can instead solve N variables in $\boldsymbol{\alpha}^{(i)} \in \mathbb{R}^{N}$ for each $\boldsymbol{w}^{(i)}$
- We don't need to compute $\boldsymbol{w}^{(i)}$ explicitly to obtain

$$
\begin{aligned}
\boldsymbol{z}^{(t)} & =\left[\boldsymbol{w}^{(1) \top} \Phi\left(\boldsymbol{x}^{(t)}\right), \cdots, \boldsymbol{w}^{(k) \top} \Phi\left(\boldsymbol{x}^{(t)}\right)\right]^{\top} \\
& \bullet z_{i}^{(t)}=\boldsymbol{w}^{(i) \top} \Phi\left(\boldsymbol{x}^{(t)}\right)=\sum_{s=1}^{N} \alpha_{s}^{(i)} k\left(\boldsymbol{x}^{(s)}, \boldsymbol{x}^{(t)}\right)
\end{aligned}
$$

Solving $\alpha^{(1)}, \cdots, \alpha^{(k)}(1 / 3)$

- Let $\boldsymbol{S}=\frac{1}{N} \sum_{t=1}^{N} \Phi\left(\boldsymbol{x}^{(t)}\right) \Phi\left(\boldsymbol{x}^{(t)}\right)^{\top}$
- Then we can write $\boldsymbol{w}^{(i)}$ as $\boldsymbol{w}^{(i)}=\sum_{t=1}^{N} \alpha_{t}^{(i)} \Phi\left(\boldsymbol{x}^{(t)}\right)$
- Also we have $\boldsymbol{S} \boldsymbol{w}^{(i)}=\lambda^{(i)} \boldsymbol{w}^{(i)}$, implying that

$$
\frac{1}{N} \sum_{t=1}^{N} \Phi\left(x^{(t)}\right) \Phi\left(x^{(t)}\right)^{\top} \sum_{s=1}^{N} \alpha_{s}^{(i)} \Phi\left(x^{(s)}\right)=\lambda^{(i)} \sum_{s=1}^{N} \alpha_{s}^{(i)} \Phi\left(x^{(s)}\right)
$$

Solving $\alpha^{(1)}, \cdots, \alpha^{(k)}(2 / 3)$

$$
\begin{aligned}
& \frac{1}{N} \sum_{t=1}^{N} \Phi\left(\boldsymbol{x}^{(t)}\right) \Phi\left(\boldsymbol{x}^{(t)}\right)^{\top} \sum_{s=1}^{N} \alpha_{s}^{(i)} \Phi\left(\boldsymbol{x}^{(s)}\right)=\lambda^{(i)} \sum_{s=1}^{N} \alpha_{s}^{(i)} \Phi\left(\boldsymbol{x}^{(s)}\right) \\
& \Rightarrow \sum_{t=1}^{N} \sum_{s=1}^{N} \Phi\left(\boldsymbol{x}^{(t)}\right)\left(\Phi\left(\boldsymbol{x}^{(t)}\right)^{\top} \Phi\left(\boldsymbol{x}^{(i)}\right)\right) \alpha_{s}^{(i)}=N \lambda^{(i)} \sum_{s=1}^{N} \alpha_{s}^{(i)} \Phi\left(\boldsymbol{x}^{(s)}\right) \\
& \Rightarrow \sum_{t=1}^{N} \sum_{s=1}^{N} \Phi\left(\boldsymbol{x}^{(l)}\right)^{\top} \Phi\left(\boldsymbol{x}^{(t)}\right)\left(\Phi\left(\boldsymbol{x}^{(t)}\right)^{\top} \Phi\left(\boldsymbol{x}^{(i)}\right)\right) \alpha_{s}^{(i)} \\
& \quad=N \lambda^{(i)} \sum_{s=1}^{N} \alpha_{s}^{(i)} \Phi\left(\boldsymbol{x}^{(l)}\right)^{\top} \Phi\left(\boldsymbol{x}^{(i)}\right), \text { for } I=1, \cdots, N \\
& \Rightarrow \boldsymbol{K}^{2} \boldsymbol{\alpha}^{(i)}=N \lambda^{(i)} \boldsymbol{K} \boldsymbol{\alpha}^{(i)} \\
& \Rightarrow \boldsymbol{K} \boldsymbol{\alpha}^{(i)}=N \lambda^{(i)} \boldsymbol{\alpha}^{(i)}=\widetilde{\lambda}^{(i)} \boldsymbol{\alpha}^{(i)}
\end{aligned}
$$

- Maximizing $\lambda^{(1)}, \cdots, \lambda^{(k)}$ (eigenvalues of S) amounts to maximizing $\widetilde{\lambda}^{(1)}, \cdots, \widetilde{\lambda}^{(k)}$ (eigenvalues of K)
- $\boldsymbol{\alpha}^{(i)}$'s are the eigenvectors corresponding the maximal eigenvalues of K

Solving $\alpha^{(1)}, \cdots, \alpha^{(k)}(3 / 3)$

- Note that $\boldsymbol{w}^{(i)}$ is normalized, i.e., $\left\|\boldsymbol{w}^{(i)}\right\|=1$
- Each $\boldsymbol{\alpha}^{(i)}$ needs to be scaled properly
- $\left\|\boldsymbol{w}^{(i)}\right\|^{2}=\left(\sum_{t=1}^{N} \alpha_{t}^{(i)} \Phi\left(\boldsymbol{x}^{(t)}\right)\right)^{\top}\left(\sum_{t=1}^{N} \alpha_{t}^{(i)} \Phi\left(\boldsymbol{x}^{(t)}\right)\right)=\boldsymbol{\alpha}^{(i) \top} \boldsymbol{K} \boldsymbol{\alpha}^{(i)}=$ $1 \Rightarrow \boldsymbol{\alpha}^{(i) \top} \boldsymbol{\alpha}^{(i)}=1 / N \lambda^{(i)}=1 / \widetilde{\lambda}^{(i)}$
- $\boldsymbol{\alpha}^{(i)} \leftarrow \frac{\alpha^{(i)}}{\sqrt{\tilde{\lambda}^{(i)}\left\|\boldsymbol{\alpha}^{(i)}\right\|}}$
- To project the $z^{(t)}=\boldsymbol{w}^{\top} \Phi\left(\boldsymbol{x}^{(t)}\right)$
- Similarly, $\boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{k}$ are the (scaled) eigenvectors corresponding to the largest eigenvalues of K

Centering $\Phi\left(x^{(t)}\right)$'s

- Note that by letting $\boldsymbol{S}=\frac{1}{N} \sum_{t=1}^{N} \Phi\left(\boldsymbol{x}^{(t)}\right) \Phi\left(\boldsymbol{x}^{(t)}\right)^{\top}$, we assume that $\Phi\left(\boldsymbol{x}^{(t)}\right)^{\prime} \mathrm{s}$ are centered
- Recall that $\Sigma_{\Phi(x)}=E\left[\Phi(\boldsymbol{x}) \Phi(\boldsymbol{x})^{\top}\right]-\boldsymbol{\mu}_{\Phi(x)} \mu_{\Phi(x)}^{\top}$
- In linear PCA, we can simply center $\Phi\left(\boldsymbol{x}^{(t)}\right)^{\prime}$'s by a preprocessing step
- Given an arbitrary kernel function $k(\cdot)$, there is no guarantee that $\Phi\left(\boldsymbol{x}^{(t)}\right)$'s will be centered in the lifted space
- Preprocessing is infeasible
- The model itself needs to be extended to accept uncentered instances in the lifted space. How? [Homework]

PCA vs. Kernel PCA

Outline

(1) Why Dimensionality Reduction?

(2) Feature Selection

- Forward and Backward Selection (Supervised)
(3) Feature Extraction
- Principal Component Analysis (Unsupervised, Linear)
- Linear Discriminant Analysis (Supervised, Linear)
- Kernel PCA (Unsupervised, Nonlinear)
- Isometric Feature Mapping (Unsupervised, Nonlinear)
- Locally Linear Embedding (Unsupervised, Nonlinear)

Manifold-Preserved Nonlinear Mapping

- Kernel PCA does not assumed a particular nonlinear mapping
- Performance largely depends on the selection of kernel function
- In some applications, assuming some particular form of nonlinear mapping will be more helpful
- Consider an example where $\boldsymbol{x}^{(t)}$ are face photos of size 100×100 pixels
- A series of one's photos token from different angles forms a trajectory in the 10000-dimensional space
- The collection of people's photos defines a manifold in the 10000-dimensional space
- If we map the 10000 -dimensional space linearly to a low dimensional space, the structure of the manifold may not be preserved

The Basic Idea

- Nonlinear methods rebuild the manifold in a low dimensional space
(1) Treat the manifold as a space
(2) Measure the relations/constrains between $\boldsymbol{x}^{(t)}$ in that space (which reflect the structure of the manifold)
(3) Find instances $\boldsymbol{z}^{(t)}$ in a low dimensional space that obey the constrains most (so preserve the structure)
- The final $\boldsymbol{z}^{(t)}$ may not relate to $\boldsymbol{x}^{(t)}$ linearly
- Two popular algorithms:
- Isometric feature mapping (Isomap)
- Locally linear embedding (LLE)
- It might be a good idea to review the topology now

Isomap

- The Isometric feature mapping (Isomap) measures the geodesic distances between examples in step 2; and then in step 3, find instances $z^{(t)}$ in a low dimensional space with mutual distances as close as the geodesic distances as possible
- Geodesic distance is the distance along the manifold that the data lies in, as opposed to the Euclidean distance in the input space

Measuring the Geodesic Distances

- Recall that a manifold resembles a Euclidean space at a small enough scale
- One topological property of the Euclidean space is that points are connected
- A point $\boldsymbol{x}^{(r)}$ and another $\boldsymbol{x}^{(s)}$ are directly connected if $\boldsymbol{x}^{(s)}$ lies in the same neighborhood with $\boldsymbol{x}^{(r)}$, and their geodesic distance can simply be the Euclidean distance
- Any other choice?

Measuring the Geodesic Distances

- Recall that a manifold resembles a Euclidean space at a small enough scale
- One topological property of the Euclidean space is that points are connected
- A point $\boldsymbol{x}^{(r)}$ and another $\boldsymbol{x}^{(s)}$ are directly connected if $\boldsymbol{x}^{(s)}$ lies in the same neighborhood with $\boldsymbol{x}^{(r)}$, and their geodesic distance can simply be the Euclidean distance
- Any other choice? Mahalanobis distance, at the cost of computing the covariance matrix Σ
- How about points not in the same neighborhood?

Measuring the Geodesic Distances

- Recall that a manifold resembles a Euclidean space at a small enough scale
- One topological property of the Euclidean space is that points are connected
- A point $\boldsymbol{x}^{(r)}$ and another $\boldsymbol{x}^{(s)}$ are directly connected if $\boldsymbol{x}^{(s)}$ lies in the same neighborhood with $\boldsymbol{x}^{(r)}$, and their geodesic distance can simply be the Euclidean distance
- Any other choice? Mahalanobis distance, at the cost of computing the covariance matrix Σ
- How about points not in the same neighborhood?
- In an atlas, neighborhoods are overlapped
- The geodesic distance between two points that are not in the same neighborhood can be calculated by the length of their shortest path

Identifying the Neighborhood

- How identify to the neighboring points of $\boldsymbol{x}^{(r)}$?

Identifying the Neighborhood

- How identify to the neighboring points of $\boldsymbol{x}^{(r)}$?
- We assume that $\boldsymbol{x}^{(r)}$ and $\boldsymbol{x}^{(s)}$ lie in the same neighborhood if:
- $\left\|\boldsymbol{x}^{(r)}-\boldsymbol{x}^{(s)}\right\|<\varepsilon$; or
- $\boldsymbol{x}^{(s)}$ is one of the n-nearest neighbors of $\boldsymbol{x}^{(r)}$
- User-specific parameters ε and n are usually small, but must be chosen carefully to make sure that the network is still connected

Finding $\left\{\mathbf{z}^{(t)}\right\}_{t=1}^{N}(1 / 3)$

- Let $d_{r, s}$ be the geodesic distance between $\boldsymbol{x}^{(r)}$ and $\boldsymbol{x}^{(s)}, 1 \leqslant r, s \leqslant N$, now we want to find $z^{(r)}$ and $z^{(s)}$ in a k-dimensional space such that their mutual Euclidean distances are as close to $d_{r, s}$ as possible
- Exact solution (without error) may exist only when k is larger than d
- There may be no way to "straighten" the geodesic distances between points in a space of dimension d (or lower)
- The solution $\left\{\boldsymbol{z}^{(t)}\right\}_{t}$ is not unique, as we can shift all $\boldsymbol{z}^{(t)}$ together to get another solution
- To constrain the solution, we assume that $\sum_{t=1}^{N} z_{i}^{(t)}=0$ for $i=1, \cdots, k$

Finding $\left\{\mathbf{z}^{(t)}\right\}_{t=1}^{N}(2 / 3)$

- Let $\boldsymbol{Z}=\left[\begin{array}{c}\boldsymbol{z}^{(1)} \\ \vdots \\ \boldsymbol{z}^{(N)}\end{array}\right] \in \mathbb{R}^{N \times k}$, we want to find the relationship between Z and $d_{r, s}$
- For any $z^{(r)}$ and $z^{(s)}$, we have $d_{r, s}^{2}=\left\|z^{(r)}-z^{(s)}\right\|^{2}=b_{r, r}+b_{s, s}-2 b_{r, s}$, where $b_{r, s}=\sum_{i=1}^{k} z_{i}^{(r)} z_{i}^{(s)}=\left(z^{(r)}\right)^{\top} z^{(s)}$
- Therefore, $\boldsymbol{B}=\left[\begin{array}{ccc}b_{1,1} & \cdots & b_{1, N} \\ \vdots & \ddots & \vdots \\ b_{N, 1} & \cdots & b_{N, N}\end{array}\right]=\boldsymbol{Z} \boldsymbol{Z}^{\top}$

Finding $\left\{\mathbf{z}^{(t)}\right\}_{t=1}^{N}(3 / 3)$

- On the other hand, let $T=\sum_{t=1}^{N} b_{t, t}=\sum_{t} \sum_{i}\left(z_{i}^{(t)}\right)^{2}$, we get

$$
\begin{aligned}
& \text { - } \sum_{r} d_{r, s}^{2}=T+N b_{s, s}-2 \sum_{r} \sum_{i} z_{i}^{(r)} z_{i}^{(s)}= \\
& T+N b_{s, s}-2 \sum_{i}\left(\sum_{r} z_{i}^{(r)}\right) z_{i}^{(s)}=T+N b_{s, s} \\
& \text { - } \sum_{s} d_{r, s}^{2}=N b_{r, r}+T \\
& \text { - } \sum_{r} \sum_{s} d_{r, s}^{2}=2 N T
\end{aligned}
$$

- Each element in \boldsymbol{B} can be expressed by the geodesic distance by $b_{i, j}=$ $\frac{1}{2}\left(b_{i, i}+b_{j, j}-d_{i, j}^{2}\right)=\frac{1}{2}\left(\frac{1}{N} \sum_{s} d_{i, s}^{2}+\frac{1}{N} \sum_{r} d_{r, j}^{2}-\frac{1}{N^{2}} \sum_{r} \sum_{s} d_{r, s}^{2}-d_{i, j}^{2}\right)$
- Note \boldsymbol{B} is symmetric and can be written as $\boldsymbol{B}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{\top}$, where the columns of \boldsymbol{U} are eigenvectors
- We find $Z=U D^{1 / 2}$

Deciding k

- Given $\boldsymbol{Z} \in \mathbb{R}^{N \times k}$, the rank of $\boldsymbol{Z} \boldsymbol{Z}^{\top}$ is at most k
- In the case that $B \in \mathbb{R}^{N \times N}$ has full rank, we need $k=N$ to obtain the exact solution
- However, for dimension reduction, we want $k<d$ (and N)
- This leads to a low rank approximation problem: given a small k, $k<N$, we want to find a matrix \widetilde{B} such that $\|B-\widetilde{B}\|_{F}$ is minimized, subject to $\operatorname{rank}(\widetilde{\boldsymbol{B}})=k$
- Why Frobenius norm?

Deciding k

- Given $\boldsymbol{Z} \in \mathbb{R}^{N \times k}$, the rank of $\boldsymbol{Z} \boldsymbol{Z}^{\top}$ is at most k
- In the case that $B \in \mathbb{R}^{N \times N}$ has full rank, we need $k=N$ to obtain the exact solution
- However, for dimension reduction, we want $k<d$ (and N)
- This leads to a low rank approximation problem: given a small k, $k<N$, we want to find a matrix \widetilde{B} such that $\|B-\widetilde{\boldsymbol{B}}\|_{F}$ is minimized, subject to $\operatorname{rank}(\widetilde{\boldsymbol{B}})=k$
- Why Frobenius norm? To minimize the error of the approximated distances
- Recall that the best approximation is given by $\widetilde{\boldsymbol{B}}=\widetilde{\boldsymbol{U}} \tilde{\boldsymbol{D}} \widetilde{\boldsymbol{U}}^{\top}$, where $\widetilde{\boldsymbol{D}} \in \mathbb{R}^{k \times k}$ contains only the k largest eigenvalues and $\widetilde{\boldsymbol{U}}=\left[\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{k}\right] \in \mathbb{R}^{N \times k}$ contains the corresponding eigenvectors
- Finally, we let $Z=\tilde{\boldsymbol{U}} \tilde{D}^{1 / 2}$

Are We Satisfied? (1/2)

- Isomap is also a one-group process
- This is less severe since the "structure" between examples is preserved
- We can also let $d_{r, s}^{\prime}=(1-\alpha) d_{r, s}+\alpha c_{r, s}$, where $c_{r, s}$ is the distance between classes $\boldsymbol{x}^{(r)}$ and $\boldsymbol{x}^{(s)}$ belong to, and the parameter α can be tuned using the cross validation
- The major problem of Isomap is that it does not learn a mapping between $\boldsymbol{x}^{(t)}$ and $\boldsymbol{z}^{(t)}$
- $Z=\widetilde{\boldsymbol{U}} \widetilde{\boldsymbol{D}}^{1 / 2}$ implies that $z_{j}^{(t)}=\lambda_{j} u_{j}^{(t)}$, where $u_{j}^{(t)}$ is the t th component of the eigenvector $\boldsymbol{u}_{j} \in \mathbb{R}^{N \times 1}$ in $\widetilde{\boldsymbol{U}}$
- Given a new instance \boldsymbol{x}^{\prime}, we need to rerun the whole algorithm using the $N+1$ instances to get z^{\prime}

Are We Satisfied? $(2 / 2)$

- Solution?

Are We Satisfied? $(2 / 2)$

- Solution?
- Taking the advantage that a manifold is locally linear, we can identify examples $\boldsymbol{x}^{(s)}$ in the same neighborhood as \boldsymbol{x} and calculate \boldsymbol{w} such that $\left\|\boldsymbol{x}-\sum_{s} w_{s} \boldsymbol{x}^{(s)}\right\|^{2}$ is minimized
- Calculate \boldsymbol{z} by interpolation: $\boldsymbol{z}=\sum_{s} w_{s} z^{(s)}$
- The cost is that we need to store the whole set of $\left\{\boldsymbol{x}^{(t)}, \boldsymbol{z}^{(t)}\right\}_{t=1}^{N}$

Outline

(1) Why Dimensionality Reduction?

(2) Feature Selection

- Forward and Backward Selection (Supervised)
(3) Feature Extraction
- Principal Component Analysis (Unsupervised, Linear)
- Linear Discriminant Analysis (Supervised, Linear)
- Kernel PCA (Unsupervised, Nonlinear)
- Isometric Feature Mapping (Unsupervised, Nonlinear)
- Locally Linear Embedding (Unsupervised, Nonlinear)

Locally Linear Embedding (1/2)

- Based on the similar idea above, the Locally Linear Embedding (LLE) represents each example as a linear combination of its nearby points in step 2; and then in step 3, find instances $\boldsymbol{Z}^{(t)}$ in a low dimensional space which preserve the combinations most

x space

z space

Locally Linear Embedding (2/2)

- Step 2: For each example $\boldsymbol{x}^{(r)}$ and all its nearby points $\boldsymbol{x}^{(s)}, s \neq r$, find weights $w_{r, s}$ such that $\left\|\boldsymbol{x}^{(r)}-\sum_{s} w_{r, s} \boldsymbol{x}^{(s)}\right\|^{2}$ is minimized, subject to $\sum_{s} w_{r, s}=1$
- The constraint ensures that after translating all the points together by some vector \boldsymbol{c}, the combination is still valid; i.e.,

$$
\left\|\left(\boldsymbol{x}^{(r)}+\boldsymbol{c}\right)-\sum_{s} w_{r, s}\left(\boldsymbol{x}^{(s)}+\boldsymbol{c}\right)\right\|^{2}=\left\|\boldsymbol{x}^{(r)}-\sum_{s} w_{r, s} \boldsymbol{x}^{(s)}\right\|^{2}
$$

- Step 3: Find $\left\{z^{(t)}\right\}_{t=1}^{N}$ such that $\sum_{r}\left\|z^{(r)}-\sum_{s} w_{r, s} z^{(s)}\right\|^{2}$ is minimized, subject to $\frac{1}{N} \sum_{t} z^{(t)}=0(E[z]=0)$ and $\frac{1}{N-1} \sum_{t}\left(z^{(t)}-\mathbf{0}\right)\left(z^{(t)}-\mathbf{0}\right)^{\top}=\boldsymbol{I}(\operatorname{Cov}(z)=\boldsymbol{I})$
- The first constraint is similar to that of Isomap and ensures an unique solution
- The second guarantees that attributes of \boldsymbol{z} a) are uncorrelated; \boldsymbol{b}) have the same (unit) variance (this is stronger)

Solving $w_{r, s}$

- $w_{r, s}$ can be solved by considering one example $\boldsymbol{x}^{(r)}$ by one
- Let $\boldsymbol{w}^{(r)}=\left[w_{r, 1}, \cdots, w_{r, n}\right]^{\top}$, we can rewrite the objective in step 2 as $\left\|\boldsymbol{x}^{(r)}-\sum_{s} w_{r, s} \boldsymbol{X}^{(s)}\right\|^{2}=\left\|\sum_{s} w_{r, s}\left(\boldsymbol{x}^{(r)}-\boldsymbol{x}^{(s)}\right)\right\|^{2}=$ $\boldsymbol{w}^{(r) \top} \boldsymbol{G}^{(r) \top} \boldsymbol{G}^{(r)} \boldsymbol{w}^{(r)}$
- $\boldsymbol{G}^{(r)}=\left[\boldsymbol{x}^{(r)}-\boldsymbol{x}^{(1)}, \cdots, \boldsymbol{x}^{(r)}-\boldsymbol{x}^{(n)}\right] \in \mathbb{R}^{d \times n}$
- Subject to $\mathbf{1}^{\top} \boldsymbol{w}^{(r)}=1$
- Taking the partial derivatives of the Lagrangian $\boldsymbol{w}^{(r) \top} \boldsymbol{G}^{(r) \top} \boldsymbol{G}^{(r)} \boldsymbol{w}^{(r)}-\alpha\left(\mathbf{1}^{\top} \boldsymbol{w}^{(r)}-1\right)$ with respect to $\boldsymbol{w}^{(r)}$ and α and setting them to zero, we have $\left\{\begin{array}{r}2 \boldsymbol{G}^{(r) \top} \boldsymbol{G}^{(r)} \boldsymbol{w}^{(r)}-\alpha \mathbf{1}=0 \\ \mathbf{1}^{\top} \boldsymbol{w}^{(r)}=1\end{array}\right.$
- $\boldsymbol{w}^{(r)}=\frac{\left(\boldsymbol{G}^{(r) \top} \boldsymbol{G}^{(r)}\right)^{-\mathbf{1}} \mathbf{1}}{\mathbf{1}^{\top}\left(\boldsymbol{G}^{(r) \top} \boldsymbol{G}^{(r)}\right)^{-\mathbf{1}} \mathbf{1}}$ can be solve analytically [Proof]
- Note for $\boldsymbol{G}^{(r) \top} \boldsymbol{G}^{(r)}$ to be invertible, we need make sure that $n \leqslant d$

Solving $\left\{\mathbf{z}^{(t)}\right\}_{t=1}^{N}(1 / 3)$

- Now we are given $W \in \mathbb{R}^{N \times N}$, a matrix with nonzero elements corresponding to the weights $w_{r, s}$ found in step 2
- W1 = $\mathbf{1}$
- Let $\boldsymbol{Z}=\left[\begin{array}{c}\boldsymbol{z}^{(1)} \\ \vdots \\ z^{(N)}\end{array}\right] \in \mathbb{R}^{N \times k}$. Since the attributes of \boldsymbol{z} are uncorrelated, the columns $c_{1}, \cdots, c_{k} \in \mathbb{R}^{N \times 1}$ of \boldsymbol{Z} are orthogonal to each other
- To get c_{1}, we consider only the first attribute of $\boldsymbol{z}^{(t)}$ and rewrite the objective in step 3 as

$$
\begin{aligned}
& \sum_{r}\left\|z_{1}^{(r)}-\sum_{s} w_{r, s} z_{1}^{(s)}\right\|^{2}=\sum_{r} z_{1}^{(r) 2}-\sum_{r} z_{1}^{(r)}\left(\sum_{s} w_{r, s} z_{1}^{(s)}\right)- \\
& \sum_{r}\left(\sum_{s} w_{r, s} z_{1}^{(s)}\right) z_{1}^{(r)}+\sum_{r}\left(\sum_{s} w_{r, s} z_{1}^{(s)}\right)^{2}= \\
& \boldsymbol{c}_{1}^{\top} \boldsymbol{c}_{1}-\boldsymbol{c}_{1}^{\top}\left(\boldsymbol{W} \boldsymbol{c}_{1}\right)-\left(\boldsymbol{W} \boldsymbol{c}_{1}\right)^{\top} \boldsymbol{c}_{1}+\left(\boldsymbol{W} \boldsymbol{c}_{1}\right)^{\top}\left(\boldsymbol{W} \boldsymbol{c}_{1}\right)= \\
& \left((\boldsymbol{I}-\boldsymbol{W}) \boldsymbol{c}_{1}\right)^{\top}\left((\boldsymbol{I}-\boldsymbol{W}) \boldsymbol{c}_{1}\right)=\boldsymbol{c}_{1}^{\top} \boldsymbol{M} \boldsymbol{c}_{1} \text {, where } \boldsymbol{M}=(\boldsymbol{I}-\boldsymbol{W})^{\top}(\boldsymbol{I}-\boldsymbol{W})
\end{aligned}
$$

- Subject to $\frac{1}{N-1} \boldsymbol{c}_{1}^{\top} \boldsymbol{c}_{1}=1$

Solving $\left\{z^{(t)}\right\}_{t=1}^{N}(2 / 3)$

- Taking the partial derivatives of the Lagrangian $\boldsymbol{c}_{1}^{\top} \boldsymbol{M} \boldsymbol{c}_{1}-\alpha\left(\boldsymbol{c}_{1}^{\top} \boldsymbol{c}_{1}-N+1\right)$ with respect to \boldsymbol{c}_{1} and α and setting them to zero, we have $\left\{\begin{array}{c}2 M c_{1}-2 \alpha c_{1}=0 \\ c_{1}^{\top} c_{1}-N+1=0\end{array}\right.$, implying $M c_{1}=\alpha c_{1}$ and $\boldsymbol{c}_{1}^{\top} \boldsymbol{M} \boldsymbol{c}_{1}=(N-1) \alpha$
- \boldsymbol{c}_{1} is the eigenvector of \boldsymbol{M} corresponding to the smallest eigenvalue
- Similarly, $\boldsymbol{c}_{\boldsymbol{j}}$ which is orthogonal to $\boldsymbol{c}_{1}, \cdots, \boldsymbol{c}_{j-1}$ is the eigenvector corresponding to the j th smallest eigenvalue
- \boldsymbol{M} is symmetric and has orthogonal eigenvectors

Solving $\left\{\mathbf{z}^{(t)}\right\}_{t=1}^{N}(3 / 3)$

- Note we did not enforce the constraint $\frac{1}{N} \sum_{t} z^{(t)}=\frac{1}{N} \boldsymbol{Z}^{\top} \mathbf{1}=\mathbf{0}$ (or $\frac{1}{N} \boldsymbol{c}_{j}^{\top} \mathbf{1}=0$ for all $1 \leqslant j \leqslant k$)
- Notice that the first eigenvector is always $\mathbf{1}$
- Since $\sum_{s} w_{r, s}=1$, we have

$$
\boldsymbol{M} \mathbf{1}=(\boldsymbol{I}-\boldsymbol{W})^{\top}(\boldsymbol{I}-\boldsymbol{W}) \mathbf{1}=(\boldsymbol{I}-\boldsymbol{W})^{\top}(\mathbf{1}-\mathbf{1})=\mathbf{0}
$$

- M is positive semidefinite and 0 must be the smallest eigenvalue [Proof]
- To be orthogonal to $\mathbf{1}$, all other eigenvectors must have components summed to 0 , by virtue of orthogonality
- We can simply discard $\mathbf{1}$ and let \boldsymbol{c}_{j} correspond to the $(j+1)$ th eigenvector to enforce $\boldsymbol{c}_{j}^{\top} \mathbf{1}=0$
- Finally, $z_{j}^{(t)}$ equals to the t th component of the eigenvector $c_{j} \in \mathbb{R}^{N \times 1}$ of M

Summary of Nonlinear Methods

- LLE has a similar problem with Isomap in that there is no mapping between $\boldsymbol{x}^{(t)}$ and $\boldsymbol{z}^{(t)}$
- The interpolation technique applies to LLE
- It can be shown that LLE is equivalent to kernel PCA with the "LLE kernel"
- Both Isomap and LLE reconstruct the manifold in a k-dimensional space by patching the overlapping neighborhoods
- In Isomap, geodesic distances are calculated hop by hop and preserved in the low dimensional space
- In LLE, weights of combination are preserved hop by hop in the low dimensional space

