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Why Dimensionality Reduction?

Given a (normalized) training dataset {x(t),r (t)} where x(t) ∈ Rd , we
want to reduce the input dimension from d to k , k < d

Why dimensionality reduction?

To reduce the time/space requirements in training, cross validation,
testing, and prediction

To save the cost of data collection

If an input is decided to be unnecessary, we can stop observing it in the
future

To make the classi�er/regressor robust to small datasets

Fewer parameters (e.g., elements of Σ) implies lower model complexity,
and lower variance due to particulars of a sample

To extract knowledge

The k inputs can describe the whole data and may explain something
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Feature Selection vs. Feature Extraction

Basically, two ways to dimensionality reduction:

Feature selection:

Keeping only k of d dimensions that is most helpful to
classi�cation/regression

Feature extraction:

Finding a new set of k dimensions that are combinations of the original
d dimensions and most helpful to classi�cation/regression

The combination can be linear or nonlinear

Can be supervised or unsupervised depending on whether or not the
labels r (t) are used
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Caution

Is dimension reduction a preferred step in data preprocessing?

Generally, yes

But if your classi�er/regressor make certain assumptions over the
data, you should perform dimension reduction only if those
assumptions are still valid after the reduction

Luckily, if we assume that the data are normally distributed within each
class, then after linear dimension reduction, the data are still normal
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Sequential Forward Selection

Denote F the set of selected inputs

In sequential forward selection, we start with no input F = ∅, and
add inputs one by one

At each step, we add xj to F if xj decreases the error most

Speci�cally, we add xj to F if

j = argi min err(F ∪ xi )

and
err(F ∪ xj)< err(F )−ε,

where err(F ) is the error of predictions (on the validation set) made by
a classi�er/regressor considering only the inputs in F and ε is a
user-de�ned threshold

We stop adding inputs if there is no decrease in error, or the decrease
in error is too small

Shan-Hung Wu (CS, NTHU) Dimensionality Reduction NetDB-ML, Spring 2015 8 / 57



Sequential Backward Selection

In sequential backward selection, we start with F containing all
inputs, and remove inputs one by one

At each step, we remove xj from F if xj increase the error least

Speci�cally, we remove xj from F if

j = argi min err(F − xi ) and err(F − xj)< err(F )+ε

In either direction, need to perform the classi�cation/regression
d +(d −1)+ · · ·+(d −k) = O(d2) times

But the training process in the backward direction is more costly, as F
contains more inputs
Forward direction is preferable if k is much smaller than d
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Are We Satis�ed?

The above algorithms are local search procedures and do not
guarantee F to be optimal

In some applications such as face recognition (where x(t) are images
and the inputs are pixels), feature selection is not a good method for
dimensionality reduction

Individual pixels do not carry much discriminative information; it is the
combinations of pixels that carry face identities
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Principal Component Analysis (1/2)

In Principal Component Analysis (PCA), we want to �nd k vectors
w1, · · · ,wk ∈ Rd , named principal components, such that after
projecting each instance x(t) onto directions along w1, · · · ,wk and

obtaining z(t) =
[
w1 , · · · ,wk

]>
x(t) ∈ Rk , the new data

collection {z(t)}Nt=1 helps the classi�er/regressor most

Let k = 1, how to �nd w1?

Of course we won't pick w1 = 0, because it makes z(t) =w>
1
x(t) = 0

for all t and undistinguishable
It is plausible to pick w1 such that z(t) is most spread out; that is, let
x(1), · · · ,x(N) be i.i.d. samples drawn from an (unknown) population
x , we can pick w1 which maximizes Var(z) = Var(w>

1
x) =w>

1
Σw1
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Principal Component Analysis (2/2)

How to obtain the covairant matrix Σ?

Recall that Σx = E
[
xx>

]
−µxµ

>
x

Assuming that x is centered (e.g., z-normalized), we have an estimate

S = 1

N

∑N
t=1

x(t)x(t)>

Given arbitrary k , PCA picks w1, · · · ,wk such that

Var(z i ) =w>i Sw i for i = 1, · · · ,k are the highest

w1, · · · ,wk are orthogonal to each other so each of them helps the
classi�er/regressor independently
‖w i‖= 1 for i = 1, · · · ,k so the direction of w i is the only factor that
a�ects w>i Sw i (it is maximized not because we pick a large w i )
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Solving w1, · · · ,w k (1/3)

To get w1, we need to solve the problem argw1
maxw>1 Sw1 subject

to w>1 w1 = 1

w1 is a stationary point of the Lagrangian: w>
1
Sw1−α(w

>
1
w1−1)

Taking the partial derivatives with respect to w1 and α we have{
2Sw1−2αw1 = 0

w>
1
w1−1= 0

, implying Sw1 = αw1 and

w>
1
Sw1 = αw

>
1
w1 = α

The candidates of w1 and α are eigenvectors and eigenvalues of Σ
respectively
Since we want to maximize w>

1
Sw1 = α, w1 is the eigenvector

corresponding to the largest eigenvalue λ1
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Solving w1, · · · ,w k (2/3)

To get w2, we solve the problem argw2
maxw>2 Sw2 subject to

w>2 w2 = 1 and w>2 w1 = 0

w2 is a stationary point of the Lagrangian:
w>

2
Sw2−α(w

>
2
w2−1)−βw>

2
w1

Taking the partial derivatives with respect to w2, α, and β we have
2Sw2−2αw2−βw1 = 0

w>
2
w2−1= 0
w>

2
w1 = 0

This implies Sw2 = αw2, as
0= w>

1
0= 2w>

1
Sw2−2αw>

1
w2−βw

>
1
w1 = 2w>

2
Sw1−β=

2λ1w
>
2
w1−β=−β, hence 2Sw2−2αw2 = 0

Additionally, w>
2
Sw2 = α, as

0= w>
2
0= 2w>

2
Sw2−2αw>

2
w2−βw

>
2
w1 = 2w>

2
Sw2−2α

The candidates of w2 are eigenvectors of S orthogonal to w1

Since we want to maximize w>
2
Sw2 = α, w2 is the eigenvector

corresponding to the second largest eigenvalue λ2

Recall that the eigenvectors of a symmetric matrix (S) are orthogonal
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Solving w1, · · · ,w k (3/3)

From the above, we can see that w i are the ith largest eigenvector of
S
We can reach the same conclusion by Rayleigh's quotient [Proof]

De�ne z =W>x , where W = [w1, · · · ,wk ]

If x are not normalized, we can center z around the origin by letting
z =W> (x −m), where m is the sample mean of x
In addition, we can make zi have the unit variance by dividing itself by√
λi

z(t) are i.i.d. samples of z
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E�ects of PCA

z1

z2

x1

x 2

z1

z 2

Figure : PCA centers the instances and rotates the axes to line up with the
directions of the highest variance. With these new axes, the covariance matrix
Σz =W>SW ∈ Rk×k is always diagonal, making the naive Bayes' classi�ers
feasible.
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The Scree Graph

How do we decide a proper k?

Generally, we want to pick k such that the proportion of variance∑k
i=1λi∑d
i=1λi

is more than 90%

We seek for the �elbow� in the scree graph:
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Are We Satis�ed? (1/3)

In image processing applications (where x(t) are images), w i

themselves can also be displayed as images and be seen as templates
for important features

In these cases, w i have a special name eigenfaces

When should we use PCA?

PCA is helpful only when we have a small number of large eigenvalues
Or, when the original inputs of x are highly correlated (so the contours
are stretched)

Note the variance of each input of x may be very high that a�ects the
directions of principal components more than the correlations between
inputs do

Generally, we perform z-normalization before applying PCA
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Are We Satis�ed? (2/3)

PCA is a one-group procedure

Fine with the regression
But in the case of classi�cation, there are multiple groups

The Karhunen-Loeve expansion:

Instead of using the covariance matrix of the whole examples, we can
estimate separate covariance matrices for individual classes
Take their average (weighted by the estimated priors) as the covariance
matrix, and use its eigenvectors
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Linear Discriminant Analysis (1/3)

Given a training set X= {x(t),r (t)}Nt=1, in Linear Discriminant
Analysis (LDA), we want to �nd k vectors w1, · · · ,wk ∈ Rd , such
that after projecting each instance x(t) onto directions along
w1, · · · ,wk and obtaining z(t) =W>x(t) ∈ Rk , where
W = [w1, · · · ,wk ], the new data collection {z(t)}Nt=1 has the
properties:

Examples in di�erent classes are
as separate as possible

Examples of the same class are
as close as possible

w

m1

m1

m2

m2

s1
2

s2
2

x1

x 2
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Linear Discriminant Analysis (2/3)

Let mi =
1
Ni

∑N
t=1 r

(t)
i x(t) and

S i =
1

Ni−1

∑N
t=1 r

(t)
i (x(t)−mi )(x

(t)−mi )
>, where Ni =

∑N
t=1 r

(t)
i ,

be the estimated mean and variance of examples in class i respectively
We can measure the total within-class separation by
Swithin =

∑K
i=1NiS i

Denote m = 1
K

∑K
i=1mi , we can also measure the separation between

classes by Sbetween =
∑K

i=1Ni (mi −m)(mi −m)>

For each w j , the mean and variance of the projections z(t) are

mi =
1
Ni

∑N
t=1 r

(t)
i z

(t)
j = 1

Ni

∑N
t=1 r

(t)
i w>j x

(t) =

w>j

(
1
Ni

∑N
t=1 r

(t)
i x(t)

)
=w>j mi and

s2i = 1
Ni−1

∑N
t=1 r

(t)
i (z

(t)
j −w>j mi )(z

(t)
j −w>j mi )

> =

1
Ni−1

∑N
t=1 r

(t)
i (w>j x

(t)−w>j mi )(w
>
j x

(t)−w>j mi )
>=

1
Ni−1

∑N
t=1 r

(t)
i w>j (x

(t)−mi )(x
(t)−mi )

>w j =w>j S iw j respectively
The within- and between-class separation after projection becomes
w>j Swithinw j and w

>
j Sbetweenw j respectively
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Linear Discriminant Analysis (3/3)

LDA picks w1, · · · ,wk such that

The Fisher's linear discriminant J(w j) =
w
>
j Sbetweenw j

w
>
j
Swithinw j

are the highest

for j = 1, · · · ,k
w1, · · · ,wk are orthogonal to each other

We don't care ‖w j‖ now since we are maximizing the ratio

Unfortunately, the solution to the above objective is not unique since
if w1, · · · ,wk are the solution, so do c1w1, · · · ,ckwk ,∀cj ∈ R
We can instead maximize w>j Sbetweenw j subject to an additional

constrain w>j Swithinw j = 1
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Solving w1, · · · ,w k

Lagrangian for w1: argw1
maxw>1 Sbetweenw1−α(w

>
1 Swithinw1−1)

Taking the partial derivatives with respect to w1 and α and setting

them to zero we have

{
2Sbetweenw1−2αSwithinw1 = 0

w>
1
Swithinw1−1= 0

, leading to

(Swithin)
−1Sbetweenw1 = αw1 and w>

1
Sbetweenw1 = α

The candidates of w1 and α are eigenvectors and eigenvalues of
(Swithin)

−1Sbetween respectively
Since we want to maximize w>

1
Sbetweenw1 = α, w1 is the eigenvector

corresponding to the largest eigenvalue λ1

Similarly, w j is the jth largest eigenvector of (Swithin)
−1Sbetween

We can reach the same conclusion using the Rayleigh's quotient
[Proof: Observe that
w>j Sbetweenw j

w>j Swithinw j
=

w>j Sbetweenw j

(U>w j)>U
>
w j

=
(U>w j)

>U−1
Sbetween(U

>)−1(U>w j)

(U>w j)>U
>
w j

,

where Swithin =UU>]
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Deciding k

Note Sbetween is the sum of K matrices, namely (mi −m)(mi −m)>,
of rank 1

(mi −m)(mi −m)>
c
v [mi −m,0, · · · ,0]

Given K columns {m1−m, · · · ,mK −m}, only K −1 of them are
linearly independent

Since m = 1

K

∑K
i=1

mi , we can express mK −m by the linear
combination of m1−m, · · · ,mK−1−m

The maximum rank of Sbetween is K −1 and we can pick at most
K −1 eigenvectors (i.e., k = K −1)
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Are We Satis�ed?

Any classi�er can be used after LDA

To be able to apply LDA, Swithin must be invertible

If not, we can apply PCA �rst to get rid of the singularity

When should we use LDA?

LDA works best if instances in di�erent class are distributed in groups
(e.g., normal)
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PCA vs. LDA
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Figure : The distribution of z(t) found by PCA (left) and LDA (right)
respectively. Instances are plotted in the space of the �rst two attributes (out of
nine). LDA, as expected, leads to a better separation between classes.

Identify situations where PCA and LDA will �nd the same and totally
di�erent (orthogonal) directions [Homework]
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Why Nonlinear Mappings?

Both PCA and LDA map examples x(t) to a
low dimensional space (through projection
W )

We assume that the d -dimensional input
space has a linear relationship with the low
dimensional space

Sometimes, this linear mapping does not help
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Kernel PCA: Basic Idea
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PCA Revisited

Find the eigenvectors w (1), · · · ,w (k) of the matrix
S = 1

N

∑N
t=1 x

(t)x(t)> corresponding to the largest eigenvalues

Each eigenvector w (i) lies in the span of x(1), · · · ,x(N)

As
Sw (i) = λ(i)w (i)⇒w (i) = 1

λ(i)

∑N
t=1

x(t)(x(t)>w (i)) =
∑N

t=1
α
(i)
t x(t)

This holds after the lifting: w (i) =
∑N

t=1α
(i)
t Φ(x(t))

We can instead solve N variables in α(i) ∈ RN for each w (i)

We don't need to compute w (i) explicitly to obtain

z(t) =
[
w (1)>Φ(x(t)), · · · ,w (k)>Φ(x(t))

]>
z
(t)
i =w (i)>Φ(x(t)) =

∑N
s=1

α
(i)
s k(x(s),x(t))

Shan-Hung Wu (CS, NTHU) Dimensionality Reduction NetDB-ML, Spring 2015 32 / 57



Solving α(1), · · · ,α(k) (1/3)

Let S = 1
N

∑N
t=1Φ(x(t))Φ(x(t))>

Then we can write w (i) as w (i) =
∑N

t=1α
(i)
t Φ(x(t))

Also we have Sw (i) = λ(i)w (i), implying that

1

N

N∑
t=1

Φ(x(t))Φ(x(t))>
N∑

s=1

α
(i)
s Φ(x(s)) = λ(i)

N∑
s=1

α
(i)
s Φ(x(s))
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Solving α(1), · · · ,α(k) (2/3)

1
N

∑N
t=1Φ(x(t))Φ(x(t))>

∑N
s=1α

(i)
s Φ(x(s)) = λ(i)

∑N
s=1α

(i)
s Φ(x(s))

⇒
∑N

t=1

∑N
s=1Φ(x(t))(Φ(x(t))>Φ(x(i)))α

(i)
s = Nλ(i)

∑N
s=1α

(i)
s Φ(x(s))

⇒
∑N

t=1

∑N
s=1Φ(x(l))>Φ(x(t))(Φ(x(t))>Φ(x(i)))α

(i)
s

= Nλ(i)
∑N

s=1α
(i)
s Φ(x(l))>Φ(x(i)), for l = 1, · · · ,N

⇒K 2α(i) = Nλ(i)Kα(i)

⇒Kα(i) = Nλ(i)α(i) = λ̃(i)α(i)

Maximizing λ(1), · · · ,λ(k) (eigenvalues of S) amounts to maximizing
λ̃(1), · · · , λ̃(k) (eigenvalues of K )

α(i)'s are the eigenvectors corresponding the maximal eigenvalues of
K
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Solving α(1), · · · ,α(k) (3/3)

Note that w (i) is normalized, i.e., ‖w (i)‖= 1

Each α(i) needs to be scaled properly

‖w (i)‖2 = (
∑N

t=1α
(i)
t Φ(x(t)))>(

∑N
t=1α

(i)
t Φ(x(t))) = α(i)>Kα(i) =

1⇒ α(i)>α(i) = 1/Nλ(i) = 1/λ̃(i)

α(i)← α(i)√
λ̃(i)‖α(i)‖

To project the z(t) =w>Φ(x(t))

Similarly, α2, · · · ,αk are the (scaled) eigenvectors corresponding to
the largest eigenvalues of K
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Centering Φ(x (t))'s

Note that by letting S = 1
N

∑N
t=1Φ(x(t))Φ(x(t))>, we assume that

Φ(x(t))'s are centered

Recall that ΣΦ(x) = E
[
Φ(x)Φ(x)>

]
−µΦ(x)µ

>
Φ(x)

In linear PCA, we can simply center Φ(x(t))'s by a preprocessing step

Given an arbitrary kernel function k(·), there is no guarantee that
Φ(x(t))'s will be centered in the lifted space

Preprocessing is infeasible
The model itself needs to be extended to accept uncentered instances
in the lifted space. How? [Homework]
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PCA vs. Kernel PCA
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Outline

1 Why Dimensionality Reduction?

2 Feature Selection

Forward and Backward Selection (Supervised)

3 Feature Extraction

Principal Component Analysis (Unsupervised, Linear)
Linear Discriminant Analysis (Supervised, Linear)
Kernel PCA (Unsupervised, Nonlinear)
Isometric Feature Mapping (Unsupervised, Nonlinear)
Locally Linear Embedding (Unsupervised, Nonlinear)
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Manifold-Preserved Nonlinear Mapping

Kernel PCA does not assumed a particular nonlinear mapping

Performance largely depends on the selection of kernel function

In some applications, assuming some particular form of nonlinear
mapping will be more helpful

Consider an example where x(t) are face photos of size 100×100
pixels

A series of one's photos token from di�erent angles forms a trajectory
in the 10000-dimensional space
The collection of people's photos de�nes a manifold in the
10000-dimensional space
If we map the 10000-dimensional space linearly to a low dimensional
space, the structure of the manifold may not be preserved
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The Basic Idea

Nonlinear methods rebuild the manifold in a low dimensional space

1 Treat the manifold as a space
2 Measure the relations/constrains between x(t) in that space (which

re�ect the structure of the manifold)
3 Find instances z(t) in a low dimensional space that obey the constrains

most (so preserve the structure)

The �nal z(t) may not relate to x(t) linearly

Two popular algorithms:

Isometric feature mapping (Isomap)
Locally linear embedding (LLE)

It might be a good idea to review the topology now
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Isomap

The Isometric feature mapping (Isomap) measures the geodesic
distances between examples in step 2; and then in step 3, �nd
instances z(t) in a low dimensional space with mutual distances as
close as the geodesic distances as possible

Geodesic distance is the distance along the manifold that the data lies
in, as opposed to the Euclidean distance in the input space
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Measuring the Geodesic Distances

Recall that a manifold resembles a Euclidean space at a small enough
scale

One topological property of the Euclidean space is that points are
connected

A point x(r) and another x(s) are directly connected if x(s) lies in the
same neighborhood with x(r) , and their geodesic distance can simply
be the Euclidean distance

Any other choice?

Mahalanobis distance, at the cost of computing the
covariance matrix Σ

How about points not in the same neighborhood?

In an atlas, neighborhoods are overlapped
The geodesic distance between two points that are not in the same
neighborhood can be calculated by the length of their shortest path
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Identifying the Neighborhood

How identify to the neighboring points of x(r)?

We assume that x(r) and x(s) lie in the same neighborhood if:∥∥x(r)−x(s)
∥∥< ε; or

x(s) is one of the n-nearest neighbors of x(r)

User-speci�c parameters ε and n are usually small, but must be chosen
carefully to make sure that the network is still connected
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Finding {z(t)}Nt=1 (1/3)

Let dr ,s be the geodesic distance between x(r) and x(s), 16 r ,s 6 N,
now we want to �nd z(r) and z(s) in a k-dimensional space such that
their mutual Euclidean distances are as close to dr ,s as possible

Exact solution (without error) may exist only when k is larger than d

There may be no way to �straighten� the geodesic distances between
points in a space of dimension d (or lower)

The solution {z(t)}t is not unique, as we can shift all z(t) together to
get another solution

To constrain the solution, we assume that
∑N

t=1
z
(t)
i = 0 for i = 1, · · · ,k
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Finding {z(t)}Nt=1 (2/3)

Let Z =

 z(1)

...

z(N)

 ∈ RN×k , we want to �nd the relationship between

Z and dr ,s

For any z(r) and z(s), we have

d2r ,s =
∥∥z(r)−z(s)

∥∥2 = br ,r +bs,s −2br ,s , where

br ,s =
∑k

i=1 z
(r)
i z

(s)
i =

(
z(r)

)>
z(s)

Therefore, B =

 b1,1 · · · b1,N
...

. . .
...

bN,1 · · · bN,N

= ZZ>
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Finding {z(t)}Nt=1 (3/3)

On the other hand, let T =
∑N

t=1 bt,t =
∑

t

∑
i (z

(t)
i )2, we get∑

r d
2

r ,s = T +Nbs,s −2
∑

r

∑
i z

(r)
i z

(s)
i =

T +Nbs,s −2
∑

i

(∑
r z

(r)
i

)
z
(s)
i = T +Nbs,s∑

s d
2

r ,s = Nbr ,r +T∑
r

∑
s d

2

r ,s = 2NT

Each element in B can be expressed by the geodesic distance by bi ,j =
1
2

(
bi ,i +bj ,j −d2i ,j

)
= 1

2

(
1
N

∑
s d

2
i ,s +

1
N

∑
r d

2
r ,j −

1
N2

∑
r

∑
s d

2
r ,s −d2i ,j

)
Note B is symmetric and can be written as B =UDU>, where the
columns of U are eigenvectors

We �nd Z =UD1/2
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Deciding k

Given Z ∈ RN×k , the rank of ZZ> is at most k

In the case that B ∈ RN×N has full rank, we need k = N to obtain the
exact solution

However, for dimension reduction, we want k < d (and N)

This leads to a low rank approximation problem: given a small k ,

k < N, we want to �nd a matrix B̃ such that
∥∥∥B− B̃

∥∥∥
F
is minimized,

subject to rank(B̃) = k

Why Frobenius norm?

To minimize the error of the approximated
distances

Recall that the best approximation is given by B̃ = ŨD̃Ũ
>
, where

D̃ ∈ Rk×k contains only the k largest eigenvalues and
Ũ = [u1, · · · ,uk ] ∈ RN×k contains the corresponding eigenvectors

Finally, we let Z = ŨD̃
1/2
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Are We Satis�ed? (1/2)

Isomap is also a one-group process

This is less severe since the �structure� between examples is preserved
We can also let d ′r ,s = (1−α)dr ,s +αcr ,s , where cr ,s is the distance

between classes x(r) and x(s) belong to, and the parameter α can be
tuned using the cross validation

The major problem of Isomap is that it does not learn a mapping
between x(t) and z(t)

Z = ŨD̃
1/2

implies that z
(t)
j = λju

(t)
j , where u

(t)
j is the tth component

of the eigenvector u j ∈ RN×1 in Ũ
Given a new instance x ′, we need to rerun the whole algorithm using
the N+1 instances to get z ′
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Are We Satis�ed? (2/2)

Solution?

Taking the advantage that a manifold is locally linear, we can identify
examples x(s) in the same neighborhood as x and calculate w such

that
∥∥x −∑s wsx

(s)
∥∥2 is minimized

Calculate z by interpolation: z =
∑

s wsz
(s)

The cost is that we need to store the whole set of {x(t),z(t)}Nt=1
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Outline

1 Why Dimensionality Reduction?

2 Feature Selection

Forward and Backward Selection (Supervised)

3 Feature Extraction

Principal Component Analysis (Unsupervised, Linear)
Linear Discriminant Analysis (Supervised, Linear)
Kernel PCA (Unsupervised, Nonlinear)
Isometric Feature Mapping (Unsupervised, Nonlinear)
Locally Linear Embedding (Unsupervised, Nonlinear)
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Locally Linear Embedding (1/2)

Based on the similar idea above, the Locally Linear Embedding
(LLE) represents each example as a linear combination of its nearby
points in step 2; and then in step 3, �nd instances z(t) in a low
dimensional space which preserve the combinations most
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Locally Linear Embedding (2/2)

Step 2: For each example x(r) and all its nearby points x(s), s 6= r ,

�nd weights wr ,s such that
∥∥x(r)−∑s wr ,sx

(s)
∥∥2is minimized, subject

to
∑

s wr ,s = 1

The constraint ensures that after translating all the points together by
some vector c , the combination is still valid; i.e.,∥∥(x(r)+c)−

∑
s wr ,s(x

(s)+c)
∥∥2 = ∥∥x(r)−∑s wr ,sx

(s)
∥∥2

Step 3: Find {z(t)}Nt=1 such that
∑

r

∥∥z(r)−∑s wr ,sz
(s)
∥∥2 is

minimized, subject to 1
N

∑
t z

(t) = 0 (E [z ] = 0) and
1

N−1

∑
t(z

(t)−0)(z(t)−0)> = I (Cov(z) = I )

The �rst constraint is similar to that of Isomap and ensures an unique
solution
The second guarantees that attributes of z a) are uncorrelated; b) have
the same (unit) variance (this is stronger)
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Solving wr ,s

wr ,s can be solved by considering one example x(r) by one

Let w (r) = [wr ,1, · · · ,wr ,n]
>, we can rewrite the objective in step 2 as∥∥x(r)−∑s wr ,sx

(s)
∥∥2 = ∥∥∑s wr ,s

(
x(r)−x(s)

)∥∥2 =
w (r)>G (r)>G (r)w (r)

G (r) = [x(r)−x(1), · · · ,x(r)−x(n)] ∈ Rd×n

Subject to 1>w (r) = 1

Taking the partial derivatives of the Lagrangian
w (r)>G (r)>G (r)w (r)−α(1>w (r)−1) with respect to w (r) and α

and setting them to zero, we have

{
2G (r)>G (r)w (r)−α1= 0

1>w (r) = 1

w (r) =
(G(r)>

G
(r))−11

1
>(G(r)>

G
(r))−11

can be solve analytically [Proof]

Note for G (r)>G (r) to be invertible, we need make sure that n 6 d
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Solving {z(t)}Nt=1 (1/3)

Now we are given W ∈ RN×N , a matrix with nonzero elements
corresponding to the weights wr ,s found in step 2

W1= 1

Let Z =

 z(1)

...

z(N)

 ∈RN×k . Since the attributes of z are uncorrelated,

the columns c1, · · · ,ck ∈ RN×1 of Z are orthogonal to each other

To get c1, we consider only the �rst attribute of z(t) and rewrite the
objective in step 3 as∑

r

∥∥∥z(r)1 −
∑

s wr ,sz
(s)
1

∥∥∥2 =∑r z
(r)2
1 −

∑
r z

(r)
1

(∑
s wr ,sz

(s)
1

)
−∑

r

(∑
s wr ,sz

(s)
1

)
z
(r)
1 +

∑
r

(∑
s wr ,sz

(s)
1

)2
=

c>1 c1−c>1 (Wc1)−(Wc1)
> c1+(Wc1)

> (Wc1) =

((I −W )c1)
> ((I −W )c1) = c>1 Mc1, where M = (I −W )> (I −W )

Subject to 1

N−1
c>
1
c1 = 1
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Solving {z(t)}Nt=1 (2/3)

Taking the partial derivatives of the Lagrangian
c>1 Mc1−α(c

>
1 c1−N+1) with respect to c1 and α and setting

them to zero, we have

{
2Mc1−2αc1 = 0

c>1 c1−N+1= 0
, implying Mc1 = αc1

and c>1 Mc1 = (N−1)α

c1 is the eigenvector of M corresponding to the smallest eigenvalue

Similarly, c j which is orthogonal to c1, · · · ,c j−1 is the eigenvector
corresponding to the jth smallest eigenvalue

M is symmetric and has orthogonal eigenvectors
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Solving {z(t)}Nt=1 (3/3)

Note we did not enforce the constraint 1
N

∑
t z

(t) = 1
N
Z>1= 0 (or

1
N
c>j 1= 0 for all 16 j 6 k)

Notice that the �rst eigenvector is always 1

Since
∑

s wr ,s = 1, we have

M1= (I −W )> (I −W )1= (I −W )> (1−1) = 0

M is positive semide�nite and 0 must be the smallest eigenvalue
[Proof]

To be orthogonal to 1, all other eigenvectors must have components
summed to 0, by virtue of orthogonality

We can simply discard 1 and let c j correspond to the (j +1)th
eigenvector to enforce c>j 1= 0

Finally, z
(t)
j equals to the tth component of the eigenvector

c j ∈ RN×1 of M
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Summary of Nonlinear Methods

LLE has a similar problem with Isomap in that there is no mapping
between x(t) and z(t)

The interpolation technique applies to LLE

It can be shown that LLE is equivalent to kernel PCA with the �LLE
kernel�

Both Isomap and LLE reconstruct the manifold in a k-dimensional
space by patching the overlapping neighborhoods

In Isomap, geodesic distances are calculated hop by hop and preserved
in the low dimensional space
In LLE, weights of combination are preserved hop by hop in the low
dimensional space
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