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Inputs and Assumptions

Elements of the training set X=
{(
x(t), r (t)

)}N
t=1

are assumed to be
i.i.d. and drawn from the same (unknown) joint distribution F (x , r)

x(t) ∈ Rd and d is called the input dimension

A new pair (x ′, r ′) (whose r ′ is unknown and will be predicted by our
model) is also assumed to be drawn from the same distribution

If x ′ is assumed to come from a di�erent distribution, then we call the
learning task transitive learning
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Features

As we have seen, data may be raised to another space before fed into
a learning algorithm

E.g., kernelization

We call the space and dimension of the raised instances the feature
space and feature dimension respectively

Input space 6= feature space

Shan-Hung Wu (CS, NTHU) Experiments NetDB-ML, Spring 2015 6 / 58



Data Preprocessing

Examples are usually preprocessed before becoming the input

Why preprocessing?

Real world data are generally

Incomplete: lacking attribute values, lacking certain attributes of
interest, or containing only aggregate data
Noisy: containing noises or outliers

Noises, e.g., due to imprecision in recording the inputs or latent (or
hidden) attributes that a�ect the actual labeling
Outliers, e.g., due to errors in labeling examples

Inconsistent: di�erent data sources may use di�erent names, scale,
precision, etc.
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Tasks in Data Preprocessing

Data integration: using multiple databases, data cubes, or �les

Data cleaning: �ll in missing values, smooth noisy data, identify or
remove outliers, and resolve inconsistencies

Data transformation: normalization and aggregation

Data reduction: reducing the volume but producing the same or
similar analytical results

Discretization: part of data reduction, replacing numerical attributes
with nominal ones
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Data Integration

How to correct/merge inconsistent data ?

No generally good solution
Usually rely on domain knowledge or human experts
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Filling Missing Values

Missing values could be attributes or labels

How?

Ignore the instance: usually done when the label is missing

Use the attribute mean (or majority nominal value) to �ll in the
missing value

Use the attribute mean (or majority nominal value) for all samples
belonging to the same class

Predict the missing value by using a learning algorithm: consider the
attribute with the missing value as the �label� and run a learning
algorithm (usually Bayes or decision tree) to predict the missing value
from other attributes
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Identify Outliers and Smooth-Out Noises

How?

Binning (histograms): reducing the number of attribute values by
grouping them into intervals (bins)

Sort the attribute values and partition them into bins

Equal-interval (equiwidth) binning: split the whole range of values in
intervals with equal size
Equal-frequency (equidepth) binning: use intervals containing equal
number of values

Then smooth by bin means, bin median, or bin boundaries

Clustering: group values in clusters and then detect and remove
outliers (automatic or manual)

Regression: smooth by �tting the data into regression functions
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Normalization

Scaling attribute values to fall within a speci�ed range

Example: to transform v in [min,max ] to v ′ in [0,1], apply
v ′ := (v −min)/(max −min)

Scaling by using mean and standard deviation

Useful when min and max are unknown or when there are outliers
Example: Z -normalization: v ′ := (v −mean)/std

Why normalization?

To prevent some attributes from dominating the performance of a
learning algorithm
E.g., those with wide value ranges
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Aggregation

Combing two or more attributes into a single attribute

For example, merging daily sales attributes to obtain monthly sales
attributes

Why aggregation?

Data reduction
If done properly, aggregation can act as scope or scale, providing a high
level view of data instead of a low level view

Forget seasoning is a common pitfall in e-commerce learning tasks
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Attribute Construction/Augmentation:

Replacing or adding new attributes inferred by existing attributes

Why?

E.g., for social networking data where each instance represents a node
in a social graph, it is good to create attributes for each node
summarizing the structure of its two or three hops ego network
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Reducing the Number of Instances

Sampling

But not suitable for all tasks

E.g., identifying terrorists
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Reducing the Number of Attributes

Data cube aggregation: applying roll-up, slice, or dice operations

Removing irrelevant attributes: attribute selection

Filtering and wrapper methods; e.g., forward/backward attribute
selection

Principle component analysis (numeric attributes only)

Searching for a lower dimensional space that can best represent the
data
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Reducing the Number of Attribute Values

Discretization: round the values to their �representative� ones

Can be stored/processed using sparse representations

Unsupervised discretization (labels are not used)

Binning (histograms): reducing the number of attributes by grouping
them into intervals (bins)

Eequiwidth or equidepth

Clustering: grouping values in clusters

Supervised discretization

Discretization based on concept hierarchies
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Concept Hierarchies based on Class Boundaries

Three steps:

Sort values
Place breakpoints between values belonging to di�erent classes
If too many intervals, merge intervals with equal or similar class
distributions
Repeat the above steps to create a concept hierarchy
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Information-based Concept Hierarchies (1)

Information in a class distribution:

Denote a set of �ve values occurring in instances belonging to two
classes (+ and -) as [+,+,+,−,−]; that is, the �rst 3 belong to "+"
tuples and the last 2 - to "-" tuples
Then, Info([+,+,+,−,−]) = −(3/5)∗ log(3/5)−(2/5)∗ log(2/5)

log's are base-2

3/5 and 2/5 are relative frequencies (probabilities)

Information after a split

Info([+,+], [+,−,−]) = (2/5)∗ Info([+,+])+(3/5)∗ Info([+,−,−])
2/5 and 3/5 are weight coe�cients
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Information-based Concept Hierarchies (2)

Method:

Sort the values
Calculate information in all possible splits

No need to consider split points between values belonging to the same
class as it will increase information

Choose the split that minimizes information
Apply the same to the resulting intervals until some stopping criterion
is satis�ed

E.g., there's no split that leads to enough reduction in information
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False Positives and Negatives (1/2)

A negative instance which is
wrongly predicted as positive is
called the false positive; and a
positive instance which is
wrongly predicted as negative is
called the false negative

They are all errors, why
distinguished?

Depending on applications,
they may not be equally
serious
E.g., spam �ltering, cancer
detection, etc.
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False Positives and Negatives (2/2)

Unfortunately, in practice we don't know C

We therefore estimate the false positive/negative rate by a testing set

Remove certain examples in the training set and put them into the
testing set
Examples in the testing set do not participate in the training process
After training, use the classi�er to predict the labels of the instances in
the testing set and compare with their actual label to obtain the
confusion matrix:

Predicted Class

True Class Positive Negative Total

Positive tp fn p

Negative fp tn n

Total p ′ n ′ T
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Performance Measures

Name Formula

Error (fp+ fn)/T
Accuracy 1− error

FP-Rate fp/n

FN-Rate fn/p

Precision tp/p ′

Recall (TP-Rate) tp/p

Sensitivity (TP-Rate) tp/p

Speci�city tn/n
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ROC Curves (1)

If a classi�er gives soft values (e.g., [−1,1]) rather
than the hard ones {−1,1}, its performance varies
with a threshold θ

Instances with scores larger/smaller than θ is
predicted as positive/negative respectively

The Receiver Operating Characteristics (ROC)
curve measures the performance of a classi�er at
di�erent thresholds

Rank the T instances from the highest to the
lowest score
For each threshold θ ∈ {0,1, · · · ,T }, predict those
instances before (inclusive)/after (exclusive) θ as
positive/negative respectively, and then calculate
tpθ and fpθ
Connect the pairs (tp0, fp0), (tp1, fp1), · · · ,
(tpT , fpT ) and we obtain an ROC curve

1
1

0.87 θ

0.64 ⇓
...

−0.88
−0.93

−1
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ROC Curves (2)

What does the diagonal line means?

The ROC curve of pure guesses

How should the line given by a good classi�er look like?

The more a classi�er gets closer to the upper-left corner the better
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ROC Curves (3)

Which one is the best?

Classi�ers B and C are better than A

B and C are preferred under di�erent loss conditions: if you tolerate no
more than 15% FP-rate, you should pick B at θ= 0.15T , and 60%
TP-rate is best you can get
If you tolerate 40% FP-rate, then pick C at θ= 0.4T , which gives 90%
TP-rate
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AUC

We can reduce an ROC curve to a single value by calculating the Area
Under the Curve (AUC)

An ideal classi�er has AUC 1, and the pure guess has 0.5

What does AUC mean?

AUC is equal to the probability that a classi�er will rank a randomly
chosen positive instance higher than a randomly chosen negative one
[Homework: By partitioning the AUC horizontally]

Shan-Hung Wu (CS, NTHU) Experiments NetDB-ML, Spring 2015 32 / 58



AUC

We can reduce an ROC curve to a single value by calculating the Area
Under the Curve (AUC)

An ideal classi�er has AUC 1, and the pure guess has 0.5

What does AUC mean?

AUC is equal to the probability that a classi�er will rank a randomly
chosen positive instance higher than a randomly chosen negative one
[Homework: By partitioning the AUC horizontally]

Shan-Hung Wu (CS, NTHU) Experiments NetDB-ML, Spring 2015 32 / 58



Outline

1 Data Preprocessing

Why?
Data Cleaning
Data Transformation
Data Reduction

2 Performance Measures

Metrics for Classi�cation
Metrics for Regression

3 Generalizability and Model Selection

4 Cross-Validation

5 Ensemble Methods

Voting
Bagging
Boosting

Shan-Hung Wu (CS, NTHU) Experiments NetDB-ML, Spring 2015 33 / 58



Measuring the Regression Performance

One common measure is the coe�cient of determination:
R2 = 1−ERSE

ERSE =
∑N

t=1(r
(t)−h(x(t);θ))2∑N

t=1(r
(t)−r)2

is called the relative square error

What doe it mean?

Indicates how good our prediction is as compared to the naive
prediction by averaging

The smaller the ERSE the better

A good regression function h should have R2 close to 1
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Generalization Performance

Assuming a hypothesis class H, let h ∈H be the hypothesis trained
from the dataset X= {(x(t), r (t))}Nt=1 by minimizing the empirical

error: Remp[h] :=
1
N

∑N
t=1 l(h(x

(t)), r (t))

l is the loss function

Generalization error of h:
R[h] :=

∫
p(x , r)l(h(x), r)d(x , r) = EI×L[l(h(x), r)]

Let h∗ := arg infg∈HR[g ] and R∗ := inff :X→RR[f ]

Our ultimate goal:
R[h]→ R∗

R[h]−R∗ = R[h]−R[h∗]+R[h∗]−R∗

R[h]−R[h∗] is called the estimation error

R[h∗]−R∗ is called the approximation error
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Model Selection

We need to pick H with right complexity to prevent both under�tting
and over�tting

In the context of kernelized and regularized linear models, we need to
pick good hyperparameters

E.g., γ in the Gaussian RBF kernel, and the coe�cient λ of a
regularization term

How to determine good hyperparameters?
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Three-Way Data Splits

Idea1: try out all possible combinations of hyperparameters and pick
the one which gives the least testing error

Good idea?

Problem 1: in practice, we may not have time to try out all possible
combinations

Global search techniques such as the grid search can be used speed up
try outs

Problem2: testing instances are revealed in the training process, so you
cannot report the generalization performance of the learned hypothesis
anymore

Idea 2: in addition to the testing set, we can split a validation set
from the training set and then choose the combination that results in
the least validation error

Testing set is used only for the evaluation of generalization performance
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Problems of Holdout Methods

We holdout the validation and testing sets for the model selection and
performance evaluation respectively

Drawbacks?

Given a small dataset, we may not a�ord the �luxury� of setting aside
a portion of the dataset from training

The holdout estimate of error rate will be misleading if we happen to
get an �unfortunate� split

Improvement?
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Cross-Validation (1)

We usually perform K -fold cross-validation to exploit the labeled
data both for training and other holdout tasks

Applicable to either model selection or generalization performance
evaluation

For example, for model selection:

Split the training set evenly into K subsets (folds)
Given a particular combination of hyperparameters, train K hypotheses
h1, · · · ,hK where each hi is trained on all but the ith fold
Calculate error of each hi made on the ith fold, and average the errors
of hi 's to obtain the cross-validation error

Pick the combination of hyperparameters that results in the least
cross-validation error

Similar for generalization performance evaluation
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Cross-Validation (2)

How many folds (K ) we need?

The cross-validation error is an average of the estimators of the true
errors on di�erent folds

The mean square error between each estimator and its true error can
be expressed as (bias)2+ variance (see appendix: Statistics)

With a large K , the cross-validation error tends to have a small bias
but large variance

Small bias since each hi is trained on more examples
Large variance because training samples are more similar and the hi 's
are more positively correlated

Conversely, with a small K , the cross-validation error tends to have a
large bias but small variance

Usually, K = 5 or 10

For very small dataset (where error is dominated by bias), we can
choose K = N, which we call the leave-one-out cross-validation
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Rationale

There is no single learning algorithm that in any domain always
induces the most accurate learner.

By suitably combining multiple base-learners, the accuracy can be
improved.
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Voting

The simplest way to combine multiple classi�ers is by voting, which
corresponds to taking a linear combination of the learners:

yi =
∑
j

wjdji where wj > 0,
∑
j

wj = 1.

In the simplest case, all learners are given equal weight wj = 1/L and
we have simple voting called plurality voting that corresponds to
taking an average.

Rule Fusion function f (·)
Sum yi =

1
L

∑L
j=1 dji

Weighted sum yi =
∑

j wjdji ,wj > 0,
∑

j wj = 1

Median yi =medianjdji
Minimum yi =minj dji
Maximum yi =maxj dji
Product yi =

∏
j dji

Table : Classi�er combination rules
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Expected Value and Variance (1/2)

Let's assume that dj are i.i.d. with expected value E [dj ] and variance
Var (dj). When wj = 1/L, the expected value and variance of the
output are

E [y ] = E

∑
j

1

L
dj

=
1

L
LE
[
dj
]
= E

[
dj
]

Var (y) = Var

∑
j

1

L
dj

=
1

L2
Var

∑
j

dj

=
1

L2
L×Var

(
dj
)
=

1

L
Var

(
dj
)

We see that the expected value doesn't change, so the bias doesn't
change.
But variance, and therefore mean square error, decreases as the
number of independent voters, L, increases.
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Expected Value and Variance (2/2)

In the general case where dj are not i.i.d.,

Var (y) =
1

L2
Var

∑
j

dj

=
1

L2

∑
j

Var (dj)+2
∑
j

∑
i<j

Cov (dj ,di )


which implies that if learners are positively correlated, variance
increases.
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Outline

1 Data Preprocessing

Why?
Data Cleaning
Data Transformation
Data Reduction
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Metrics for Regression

3 Generalizability and Model Selection

4 Cross-Validation

5 Ensemble Methods

Voting
Bagging
Boosting
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Bagging

Bagging is a voting method whereby base-learners are made di�erent
by training them over slightly di�erent training sets.

1 Generating L slightly di�erent samples from a given sample is done by
bootstrap, where given a training set X of size N, we draw N

instances randomly from X with replacement

Because sampling is done with replacement, it is possible that some
instances are drawn more than once and that certain instances are not
drawn at all.

2 When L samples Xj , j = 1, . . . ,L, are generated, the base-learners dj
are trained with these L samples in Xj .
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Boosting

In bagging, generating complementary base-learners is left to chance
and to the unstability of the learning method.

In boosting, we actively try to generate complementary base-learners
by training the next learner on the mistakes of the previous learners.

The original boosting algorithm combines three weak learners to
generate a strong learner.

A weak learner has error probability less than 1/2, which makes it
better than random guessing on a two-class problem, and a strong

learner has arbitrarily small error probability.
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The Original Boosting Algorithm

1 Given a large training set, randomly divide it into three.

2 Use X1 to train d1 and feed X2 to d1.

3 Use all instances misclassi�ed by d1 and also as many instances on
which d1 is correct from X2 to train d2. Then feed X3 to d1 and d2.

4 Use the instances on which d1 and d2 disagree to train d3.

5 During testing, given an instance, give it to d1 and d2. If they agree,
that is the response, otherwise the response of d3 is taken.

The disadvantage is that it requires a very large training sample.
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AdaBoost (1/2)

We can instead use AdaBoost which uses the same training set over
and over and thus need not be large.

The idea is to modify the probabilities of drawing the instances as a
function of the error.

Let ptj denote the probability that the instance pair (x t , r t) is drawn to
train the jth base-learner and let εj denote the error rate of dj on the
dataset used at step j .
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AdaBoost (2/2)

Training

1 Initialize pt1 = 1/N, t = 1, · · · ,N.

2 Start from j = 1:

1 Randomly draw Xj from X with probabilities ptj to train dj .
2 Since AdaBoost requires εj < 1/2, we stop adding new base-learners if

not.
3 De�ne βj = εj/(1−εj)< 1 and set ptj+1

= βjp
t
j if dj correctly classi�es

x t . Otherwise, ptj+1
= ptj .

4 Normalize ptj+1
by
∑

t p
t
j+1

.

Testing

1 Given x , calculate dj (x) for all j .

2 Calculate class outputs, i = 1, · · · ,K : yi =
∑

j

(
log 1

βj

)
dji (x).
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Example
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Large Margin Perspective

When adding a new base-learner, we increase the probability of
drawing a misclassi�ed instance. Thus dj+1 focuses more on instances
misclassi�ed by dj .

Given an instance, all dj take a weighted vote where wj = log (1/βj) is
proportional to the base-learner's accuracy.

It can been shown that AdaBoost can increase the margin, whose aim
is similar to that of the SVM.

Shan-Hung Wu (CS, NTHU) Experiments NetDB-ML, Spring 2015 58 / 58


	Data Preprocessing
	Why?
	Data Cleaning
	Data Transformation
	Data Reduction

	Performance Measures
	Metrics for Classification
	Metrics for Regression

	Generalizability and Model Selection
	Cross-Validation
	Ensemble Methods
	Voting
	Bagging
	Boosting


