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Summary of Supervised Learning Models

Three main categories (either parametric or non-parametric):

1 Those learning the discriminant functions f 's (no probability
interpretation)

E.g., perceptron, kNN, etc.

2 Those based on probability and learn p(r |x) directly

E.g., linear regression, logistic regression, etc.
p(r |x ;θ) with θ (constant) estimated from X

Methods in 1 and 2 are called discriminative methods

3 Those learn p(r |x) indirectly from p(x |r)p(r)

To be discussed later
These are called generative methods, as p(x |r)p(r) explains how x
(and X) is generated
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Probabilistic Modeling

By assuming the target follows some probability distribution

Pros and cons?

Perform well only when the assumption holds

Essentially solves a problem (i.e., distribution estimation) harder than
discrimination

E.g., in generative models, if we let p(x |r) ∼ N(µ,Σ), then we can plot
the contour of each class in addition to the decision boundary
Less e�cient; but more descriptive
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More About Probabilistic Modeling (1)

The roles of θ in the prediction function p(r ′|x ′):

Constant, from ML estimation of θ:

θML = argmaxθ p(X|θ)
p(r |x ′) := p(r |x ′;θML)

Constant, from MAP estimation of θ:

θMAP = argmaxθ p(θ|X) = argmaxθ p(X|θ)p(θ)
p(r |x) := p(r |x ;θMAP )

Random variable, for full Bayesian treatment:

p(y |x ,X) =
∫
p(y ,θ|x ′,X)dθ
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More About Probabilistic Modeling (2)

Can we analyze the generation performance more easily with the aid of
distribution assumption?
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More About Probabilistic Modeling (3)

Generative models

Shan-Hung Wu (CS, NTHU) Probabilistic Modeling NetDB-ML, Spring 2015 7 / 40



The Roles of θ

The roles of θ in the discrimination function p(r ′|x ′):

Constant, from ML estimation of θ:

θML = argmaxθ p(X|θ)
p(r ′|x ′) := p(r |x ;θML)

Constant, from MAP estimation of θ:

θMAP = argmaxθ p(θ|X) = argmaxθ p(X|θ)p(θ)
p(r ′|x ′) := p(r ′|x ′;θMAP )

Random variable, for full Bayesian treatment of r ′:

p(r ′|x ′,X) =
∫
p(r ′,θ|x ′,X)dθ
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ML Estimator for θ

The estimators we discussed so far (e.g., ρi , mi , and S i in
classi�cation and w in regression) are called the Maximum
Likelihood (ML) estimators since they are derived from
θML = argθmaxp(X|θ)

E.g., in linear regression where θ=w , given a new instance x ′, the
prediction can be made by
y ′ = argy maxp(y |x ′;wML) = argy maxN(y |w>MLx

′,β−1) =w>MLx
′
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MAP Estimator for θ

If we have the prior knowledge about θ (i.e., P(θ)), we can obtain the
Maximum A Posteriori (MAP) estimators based on
θMAP = argθmaxP(θ|X) = argθmaxp(X|θ)P(θ)

If we assume that w ∼ N(0,α−1I ) in linear regression, we have
logp(w |X) = logp(X|w)+ logp(w)∝
−β

2

∑N
t=1

(
r (t)−w>x(t)

)2
− α

2
w>w [Proof]

We e�ectively �nd wMAP that minimizes∑N
t=1

(
r(t)−w>x(t)

)2
+λw>w , where λ= α/β

In addition to minimizing the SSE, we regularize the norm of w to
prevent a highly complex model, thereby reducing the generalization
error
y ′ = argy maxp(y |x ′;wMAP ) = argy maxN(y |w>MAPx

′,β−1) =w>MAPx
′
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Bayesian Estimator for r
′

The above methods thread θ as a deterministic value when making
predictions

Another technique, called the Bayesian estimation of r ′, treats θ as
a random variable, and considers all possible values of θ when
estimating r ′:

y ′ = argy maxp(y |x ′,X) =
∫
p(y ,θ|x ′,X)dθ

E.g., in linear regression,
y ′ = argy maxp(y |x ′,X) = argy max

∫
p(y ,w |x ′,X)dw

No separated estimation phase for θ

We will discuss how to solve y ′ in the lecture of graphical models
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Regression Revisited (1)

Given X= {x(t), r (t)}Nt=1, where r (t) ∈ R. Assume

(x(t), r (t)) are i.i.d samples drawn from some joint distribution of x
and r (otherwise can never learn r from x)
In particular, r (t) = f (x(t);θ)+ε, ε ∼ N(0,β−1) for some
hyperparameter (i.e., constant �xed during the objective solving) β
The marginal distribution p(r |x) follows: p(r |x) = pN

h(x ;θ),β−1
(r)

We want to estimate f using X

Hypothesis: h(x ;w0,w1, · · · ,wd) = w0+w1x1+ · · ·+wdxd , a line
Once getting w0,w1, · · · ,wd , we can predict the unknown r ′ of a new
instance x ′ by
y ′ = argy maxp(y |x ′) = argy maxpN

h(x ′;θ),β−1
(y) = h(x ′;θ)

Note that we don't need to know β to make prediction
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Regression Revisited (2)

How to obtain the estimate h of f ? How to obtain θ?

We can pick θ maximizing p(θ|X), the posterior probability

Or, by Baye's theorem, θ maximizing the likelihood p(X|θ) (if we
assume p(θ) remains the same for all θ)

Or, θ maximizing the log likelihood logp(X|θ) =

log
(∏N

t=1 p(x
(t), r (t)|θ)

)
= log

(∏N
t=1 p(r

(t)|x(t),θ)p(x(t)|θ)
)
=

log
(∏N

t=1 p(h(x
(t);θ)+ε|x(t),θ)p(x(t)|θ)

)
Ignoring p(x(t)|θ) = p(x(t)) (since it is irrelevant to θ) and constants

we have logp(X|θ)∝−N log
(√

2π
β

)
− β

2

∑N
t=1

(
r (t)−h(x(t);θ)

)2
Dropping the �rst term and constants we have

logp(X|θ)∝−
∑N

t=1

(
r (t)−h(x(t);θ)

)2
; that is, we seek for θ

minimizing the SSE (sum of square errors)
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The Bias/Variance Dilemma (1/4)

The likelihood-based classi�cation and regression share the same idea
that the estimators h(x ;θX) are obtained by θX = argθmaxp(X|θ)

In classi�cation, h(x ;θX) estimates the discriminant of a class; in
regression, h(x ;θX) estimates f

Given a new instance x ′ where r ′ is unknown, the expected square
error (over the joint distribution of (x , r)) of our prediction can be
written as

E [(r−h(x ′;θX))
2|x ′] =

∫
(r−h(x ′;θX))

2p(r |x ′)dr

=

∫ [
(r−E [r |x ′])+(E [r |x ′]−h(x ′;θX)

]2
p(r |x ′)dr

=

∫
(r−E [r |x ′])2p(r |x ′)dr+(E [r |x ′]−h(x ′;θX))

2

∫
p(r |x ′)dr−2 ·0

= E [(r−E [r |x ′])2|x ′]+(E [r |x ′]−h(x ′;θX))
2

The �rst term does not depend on h but the assumption of the joint
distribution of (x , r)
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The Bias/Variance Dilemma (2/4)

The second term changes as we vary our hypothesis h and its
complexity

Note that in regression,
E [r |x ′] = E [f (x ′)+ε|x ′] = f (x ′)+E [ε|x ′] = f (x ′) so the second term
measures how our estimator h is di�erence from its target f

The similar argument applies to the case of classi�cation

Recall that we can measure how good the estimator h is by using the
mean square error EX[(h− f )2] over all possible X of the same
size1

Since h and f are functions, we can rewrite the mean square error as
follows given an instance x ′ :

EX[(h(x
′;θX)−E [r |x ′])2|x ′] = bias2+variance

=
(
EX[h(x

′;θX)]−E [r |x ′]
)2

+EX

[(
h(x ′;θX)−EX[h(x

′;θX)]
)2]

1Here we distinguish EX (over X) from E (over the joint distribution of (x , r))
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The Bias/Variance Dilemma (3/4)

0 1 2 3 4 5
−5

0

5
(a) Function and data

0 1 2 3 4 5
−5

0

5
(b) Order 1

0 1 2 3 4 5
−5

0

5
(c) Order 3

0 1 2 3 4 5
−5

0

5
(d) Order 5

Figure : (a) A function f (x) = 2sin(1.5x) and a noisy training set (ε=s.t. N0,1)
consisting of 20 examples. There are totally 5 training sets Xi , 16 i 6 5,
generated to calculate EX. (b), (c), and (d) are 5 polynomial �ts, namely
h(x ;θXi

) of order 1, 3, and 5 respectively. For each case, the dotted line shows
the average of the 5 �ts, namely EXi

[
h(x ;θXi

)
]
.
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The Bias/Variance Dilemma (4/4)

As we can see, a complex (i.e., high order) hypothesis h has

Low bias, as the average of the 5 �ts is close to f

But high variance, as its shape is a�ected by noise
The variance decreases as N increase, since when N is large the
di�erent training sets Xi look similar

This is a mathematical way to justify: generalization error ∝ empirical
error + (model complexity / N)

Empirical error corresponds to the bias
The second term corresponds to the variance
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Model Selection

The right order of h can be
determined using the cross
validation technique

Given the validation results at
right (the dotted line), which
order should we take?

3

Why not 4? Occam's razor
tells us that we should choose
the simplest hypothesis
provided that its error is
comparable
Note the validation results
may not be as V-shaped as we
might expect when N is large

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5
(a) Data and fitted polynomials

1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

3
(b) Error vs. polynomial order

 

 
Training
Validation

Figure : Cross validation results of 8
hypotheses with orders 1 to 8. Both the
training and cross validation sets contain
50 instances.
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Univariate Classi�cation

Given a training set X= {x(t),r (t)}Nt=1, where r
(t)
i = 1 if x(t) ∈ Ci and

0 otherwise, we �nd the discriminant fi (x) = P(Ci |x) for each class Ci ,
and then classify a new instance x ′ as Cy ′ if y

′ = argi maxP(Ci |x)

Based on the generative assumption and Bayes' rule, we pick Ci such
that fi (x

′) = log (p(x ′|Ci )P(Ci )) = logp(x ′|Ci )+ logP(Ci ) is
maximized

To be able to make prediction given all possible x ′

We estimate the prior P(Ci ) by P̂[Ci ] =
∑N

t=1 r
(t)
i

N

By assuming that instances of the same class are normally distributed,

we estimate the likelihood p(x |Ci ) by p̂(x |Ci ) =
1√
2πs2

i

exp
(
−(x−mi )

2

2s2
i

)
,

where mi =
∑N

t=1 x
(t)r

(t)
i∑N

t=1 r
(t)
i

and s2i =
∑N

t=1(x
(t)−mi )

2r
(t)
i∑N

t=1 r
(t)
i

−1
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Maximum Likelihood Estimation

Why P̂(Ci ) =
∑N

t=1 r
(t)
i

N
and p̂(x |Ci ) =

1√
2πs2i

exp
(
−(x−mi)

2

2s2i

)
are good

choices?

It turns out that each of these estimators maximizes the likelihood
p(X|θ), where θ is the parameters of the distribution used to model the
target probability (P(Ci ) and p(x |Ci ) respectively)

When we talk about the likelihood-based classi�cation, the
�likelihood� actually refers to the one (p(X|θ)) of θ given X

rather than that (p(x ′|Ci )) of Ci given x ′
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ML Estimation for P(Ci) (1/2)

To estimate P(Ci ), we �rst assume that P(Ci ) has the Bernoulli
distribution parametrized by θ= ρi and can be written as
P(Ci ) = P(Ci ;θ)

Let Xi be a random variable where Xi = 1 if the event �the outcome of
a toss is Ci and Xi = 0 if �the outcome is not Ci �
Let ρi be the probability that Xi = 1, we have
P(Xi = c;θ) = ρci (1−ρi )

1−c , c ∈ {0,1}

Now the problem estimating P(Ci |θ) = P(Xi = 1;θ) = ρi can be
reduced to estimating θ= ρi
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ML Estimation for P(Ci) (2/2)

Given the training set X, a good estimate of θ is the one that
maximizes P(θ|X)

From Bayes' rule, we can instead pick θ̂ maximizing P(X|θ) if we don't
have prior reason to favor certain θ
Equivalently, we pick θ̂ maximizing logP(X|θ)

We have logP(X|θ) = log

(∏N
t=1ρ

r
(t)
i
i (1−ρi )

1−r
(t)
i

)
Solving

d(logP(X|θ))
dρ = 0 we obtain the Maximum Likelihood (ML)

estimator ρ̂i =
∑N

t=1 r
(t)
i

N
[Proof]

P̂[Ci ] = P(Ci |θ̂) = ρ̂i

Note we can also consider all classes together and assume that P(Ci )
follows the Multinomial distribution parametrized by θ= (ρ1, · · · ,ρK )
with constrains

∑K
i=1ρi = 1

The ML estimator for each ρi will be the same as the above
[Homework]
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ML Estimation for p(x |Ci) (1/2)

We assume that p(x |Ci ) is normal and can be written as
p(x |Ci ) = p(x |Ci ;θ) with some θ= (µi ,σi )

p(x |Ci ;θ) = pN
µi ,σ

2 (x) =
1√
2πσ2

i

exp
(
−(x−µi )

2

2σ2
i

)
Now the problem estimating p(x |Ci ;θ) cane be reduced to estimating
θ= (µi ,σi )

Given the training set X, a good estimate of θ is the one that
maximizes logp(X|θ)

We have logp(X|θ) = log

∏N
t=1

(
1√
2πσ2

i

exp
(
−(x(t)−µi )

2

2σ2
i

))r
(t)
i


Taking the partial derivatives of logp(X|θ) in terms of µi and σi and

setting them equal to 0 we obtain the estimators mi =
ΣN
t=1x

(t)r
(t)
i

ΣN
t=1r

(t)
i

and

s2i =
∑N

t=1(x
(t)−mi )

2r
(t)
i∑N

t=1 r
(t)
i

respectively [Proof]
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ML Estimation for p(x |Ci) (2/2)

Recall that s2i =
∑N

t=1(x
(t)−mi)

2r
(t)
i∑N

t=1 r
(t)
i

is a bias estimator, we can replace

the denominator with
∑N

t=1 r
(t)
i −1

This step is optional
The di�erence, actually, is negligible when N is large

p̂(x |Ci ) = p(x |Ci , θ̂) =
1√
2πs2i

exp
(
−(x−mi)

2

2s2i

)
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Multivariate Data

Let's go back to a higher dimensional feature space

We are given a training set X= {x(t),r (t)}Nt=1 where x(t) ∈ Rd and
(x(t),r (t)) are i.i.d. samples drawn from some unknown (multivariate)
distribution
Typically, the features of x(t) are correlated (otherwise we can discuss
each attribute individually using the univariate methods)

It might be a good idea to review the multivariate distributions now
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Multivariate Classi�cation

The idea remains the same: given a new instance x ′ ∈ Rd , we make
prediction by picking the class Ci if its discriminant fi (x

′) = P(Ci |x
′)

is maximized

Generative assumption: pick Ci if fi (x
′) = logp(x ′|Ci )+ logP(Ci ) is

maximized

It's common to assume that p(x |Ci ) follows the multivariate normal
distribution, i.e.,
p(x |Ci ) = pNµi ,Σi

(x) = 1
(2π)d/2det(Σi)1/2

exp
[
−1

2(x −µi )
>Σ−1

i (x −µi )
]

Why?

Major reason: analytical simplicity
Studies also show that the model is robust to datasets departing from
normality
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Maximum Likelihood Estimation

The ML estimators of P(Ci ) is P̂[Ci ] =
∑N

t=1 r
(t)
i /N

We have seen this in the univariate cases before

The ML estimators of p(x |Ci ) is
1

(2π)d/2det(S i)1/2
exp
[
−1

2(x −mi )
>S−1

i (x −mi )
]
, where

mi =
∑N

t=1 x
(t)r

(t)
i∑N

t=1 r
(t)
i

and

S i =
∑N

t=1(x
(t)−mi)(x

(t)−mi)
>r

(t)
i∑N

t=1 r
(t)
i

Why?

It's a good idea to review the matrix calculus now
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ML Estimator of µi

Let θ= (µi ,Σi ), we have the likelihood logp(X|θ) =

log

(∏N
t=1

(
1

(2π)d/2det(Σi)1/2
e−

1
2 (x

(t)−µi)
>Σ−1

i (x(t)−µi)
)r (t)i

)
=

−Nid
2 log(2π)− Ni

2 log(det(Σi ))−
1
2

∑N
t=1 r

(t)
i (x(t)−µi )

>Σ−1
i (x(t)−

µi ), where Ni =
∑N

t=1 r
(t)
i

Recall that for any a ∈ Rn and A ∈ Rn×n,
∂
∂x (a

>x) = ∂
∂x (x

>a) = a>

∂
∂x (x

>Ax) = x>(A+A>)

Taking the partial derivative of logp(X|θ) with respect to µi and

setting it to zero, we get
∑N

t=1 r
(t)
i (x(t)−µi )

>Σ−1
i = 0> [Proof]

So mi =
∑N

t=1 x
(t)r

(t)
i∑N

t=1 r
(t)
i
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ML Estimator of Σi (1/2)

logp(X|θ) = −Nid
2 log(2π)− Ni

2 log(det(Σi ))−
1
2

∑N
t=1 r

(t)
i (x(t)−

µi )
>Σ−1

i (x(t)−µi )

Note log(det(Σ−1
i )) = − log(det(Σi ))

Also, (x(t)−µi )
>Σ−1

i (x(t)−µi ) = tr
(
Σ−1
i (x(t)−µi )(x

(t)−µi )
>)

[Proof]

We can rewrite the likelihood as logp(X|θ) = −Nid
2 log(2π)+

Ni

2 log(det(Σ−1
i ))− 1

2

∑N
t=1 r

(t)
i tr

(
Σ−1
i (x(t)−µi )(x

(t)−µi )
>)
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ML Estimator of Σi (2/2)

Given any function f (x), let g(x) = f ( 1
x
) for any x > 0, then x∗ is a

stationary point of g i� 1
x∗ is a stationary point of f

The matrix version g(A) = f (A−1) applies when A is positive de�nite

We can seek for the partial derivative of logp(X|θ) with respect to
Σ−1
i

Recall that ∂
∂A ln(det(A)) = (A−1)>, and ∂

∂A tr(AB) = B>

Taking the partial derivative of logp(X|θ) with respect to Σ−1
i and

setting it to zero, we get
Ni

2 Σi −
1
2

∑N
t=1 r

(t)
i (x(t)−µi )(x

(t)−µi )
> =O [Proof]

Therefore, S i =
∑N

t=1(x
(t)−mi)(x

(t)−mi)
>r

(t)
i∑N

t=1 r
(t)
i
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Quadratic Discrimination

Ignoring the constant terms we have the discriminant
fi (x) = −1

2 log(det(S i ))−
1
2(x −mi )

>S−1
i (x −mi )+ log P̂[Ci ], which

can be rewritten as
fi (x) = x>W ix +w>i x +wi , where
W i =−1

2S
−1
i ,

w i = S−1
i mi , and

wi =−1
2m
>
i S

−1
i mi −

1
2 log(det(S i ))+ log P̂[Ci ] [Proof]

The classi�cation is done via quadratic discrimination
The decision boundary between any two classes is quadratic too [Proof]
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Multivariate Classi�cation (3/3)
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Figure : (a) The graphs of
p(x |Ci ) for two classes
with di�erent covariance
matrices. (b) The graph of
posterior P(C1|x). (c)
Level sets of p(x |Ci ) and
the decision boundary.
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Simpli�cations (1/2)

Quadratic discrimination:

Attributes in di�erent classes have
di�erent covariance matrices S i

({x : p(x |Ci ) = c} are ellipsoids)

Linear discrimination:

Attributes in di�erent classes share the
same correlation S i = S (ellipsoids
with the same shape/orientation)
Attributes in each classes are
independent S i = S =D (axis-aligned
ellipsoids with the same
shape/orientation)
Attributes in each classes has the same
variance S i = S = s2I (equal-sized
spheres)
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Simpli�cations (2/2)

Linear discrimination models seem to be oversimpli�ed, but why are
they popular in real applications?

Quadratic discrimination has lower bias, but higher variance

Experience tells us that when we have a small dataset, it may be
better to assume a shared and simpli�ed covariance matrix

S i = S can be estimated using all examples in a dataset together
S =D if we do not have enough data to estimate the covariance
between attributes accurately
D = s2I if attributes are z-normalized

Linear discrimination is not necessarily linear

We can augment the inputs (e.g., xd+1 = exp(x1+ x4)) to build a
higher dimensional feature space, if we believe this is useful
Linear discrimination in the augmented feature space corresponds to a
nonlinear model in the original input space

We can perform the cross validation to decide which assumption is the
best
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Linear Discrimination (S i = S)

The discriminant for each class is fi (x) = x>W ix +w>i x +wi , where
W i =−1

2S
−1
i ,

w i = S−1
i mi , and

wi =−1
2m
>
i S

−1
i mi −

1
2 log(det(S i ))+ log P̂[Ci ]

We can replace S i with S , the estimator of Σ of all instances in the
training set

The level sets {x : p(x |Ci ) = c} are ellipsoids with the same
shape/orientation

Ignoring the constant terms, the discriminant now becomes
fi (x) =w>i x +wi , where
w i = S−1mi and
wi =−1

2m
>
i S

−1mi + log P̂[Ci ] [Proof]

Shan-Hung Wu (CS, NTHU) Probabilistic Modeling NetDB-ML, Spring 2015 39 / 40



Naive Bayes Classi�ers (S i = S =D)

We can further assume that attributes are independent with each

other, i.e., S i = S =

 s20 · · · 0
...

. . .
...

0 · · · s2d

 are diagonal

Likelihood-based classi�ers using this strong (naive) independence
assumption are called the naive Bayes' classi�ers
The level sets {x : p(x |Ci ) = c} are axis-aligned ellipsoids

fi (x) = − 1
2

∑d
j=1

(
m2

i ,j−2xjmi ,j

s2
j

)
+ log P̂[Ci ] [Proof]

If we further assume that that attributes have the same variance, i.e.,
S i = S = sI

The level sets {x : p(x |Ci ) = c} degenerate into spheres

fi (x) = − 1
2s2

(
‖mi‖2−2m>i x

)
+ log P̂[Ci ] (or

fi (x) = − 1
2s2
‖x −mi‖2+ log P̂[Ci ]) [Proof]

If we drop log P̂[Ci ], we obtain a nearest mean classi�er
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