Probabilistic Modeling

Shan-Hung Wu
shwu@cs.nthu.edu.tw
Department of Computer Science,
National Tsing Hua University, Taiwan

NetDB-ML, Spring 2015

Outline

(1) More About Probabilistic Modeling
(2) MAP and Bayesian Estimation
(3) The Bias/Variance Dilemma
(4) Generative Methods

- Univariate Classification
- Maximum Likelihood Estimation
- Multivariate Classification
- Tuning the Model Complexity

Summary of Supervised Learning Models

- Three main categories (either parametric or non-parametric):
(1) Those learning the discriminant functions f's (no probability interpretation)
- E.g., perceptron, $k N N$, etc.
(2) Those based on probability and learn $p(r \mid \boldsymbol{x})$ directly
- E.g., linear regression, logistic regression, etc.
- $p(r \mid \boldsymbol{x} ; \theta)$ with θ (constant) estimated from X
- Methods in 1 and 2 are called discriminative methods
(3) Those learn $p(r \mid \boldsymbol{x})$ indirectly from $p(\boldsymbol{x} \mid r) p(r)$
- To be discussed later
- These are called generative methods, as $p(\boldsymbol{x} \mid r) p(r)$ explains how \boldsymbol{x} (and X) is generated

Probabilistic Modeling

- By assuming the target follows some probability distribution - Pros and cons?

Probabilistic Modeling

- By assuming the target follows some probability distribution
- Pros and cons?
- Perform well only when the assumption holds
- Essentially solves a problem (i.e., distribution estimation) harder than discrimination
- E.g., in generative models, if we let $p(\boldsymbol{x} \mid r) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then we can plot the contour of each class in addition to the decision boundary
- Less efficient; but more descriptive

More About Probabilistic Modeling (1)

- The roles of θ in the prediction function $p\left(r^{\prime} \mid x^{\prime}\right)$:
- Constant, from ML estimation of θ :
- $\theta_{M L}=\operatorname{argmax}_{\theta} p(X \mid \theta)$
- $p\left(r \mid \boldsymbol{x}^{\prime}\right):=p\left(r \mid \boldsymbol{x}^{\prime} ; \theta_{M L}\right)$
- Constant, from MAP estimation of θ :
- $\theta_{M A P}=\arg \max _{\theta} p(\theta \mid X)=\arg \max _{\theta} p(X \mid \theta) p(\theta)$
- $p(r \mid x):=p\left(r \mid \boldsymbol{x} ; \theta_{\text {MAP }}\right)$
- Random variable, for full Bayesian treatment:
- $p(y \mid x, X)=\int p\left(y, \theta \mid x^{\prime}, X\right) d \theta$

More About Probabilistic Modeling (2)

- Can we analyze the generation performance more easily with the aid of distribution assumption?

More About Probabilistic Modeling (3)

- Generative models

The Roles of θ

- The roles of θ in the discrimination function $p\left(r^{\prime} \mid x^{\prime}\right)$:
- Constant, from ML estimation of θ :
- $\theta_{M L}=\arg _{\max }^{\theta} \boldsymbol{p}(X \mid \theta)$
- $p\left(r^{\prime} \mid x^{\prime}\right):=p\left(r \mid x ; \theta_{M L}\right)$
- Constant, from MAP estimation of θ :
- $\theta_{M A P}=\arg \max _{\theta} p(\theta \mid X)=\arg \max _{\theta} p(X \mid \theta) p(\theta)$
- $p\left(r^{\prime} \mid \boldsymbol{x}^{\prime}\right):=p\left(r^{\prime} \mid \boldsymbol{x}^{\prime} ; \theta_{\text {MAP }}\right)$
- Random variable, for full Bayesian treatment of r^{\prime} :
- $p\left(r^{\prime} \mid \boldsymbol{x}^{\prime}, X\right)=\int p\left(r^{\prime}, \theta \mid \boldsymbol{x}^{\prime}, X\right) d \theta$

ML Estimator for θ

- The estimators we discussed so far (e.g., $\rho_{i}, \boldsymbol{m}_{\boldsymbol{i}}$, and $\boldsymbol{S}_{\boldsymbol{i}}$ in classification and \boldsymbol{w} in regression) are called the Maximum Likelihood (ML) estimators since they are derived from $\theta_{M L}=\arg _{\theta} \max p(X \mid \theta)$
- E.g., in linear regression where $\theta=\boldsymbol{w}$, given a new instance \boldsymbol{x}^{\prime}, the prediction can be made by

$$
y^{\prime}=\arg _{y} \max p\left(y \mid \boldsymbol{x}^{\prime} ; \boldsymbol{w}_{M L}\right)=\arg _{y} \max \mathcal{N}\left(y \mid \boldsymbol{w}_{M L}^{\top} \boldsymbol{x}^{\prime}, \beta^{-1}\right)=\boldsymbol{w}_{M L}^{\top} \boldsymbol{x}^{\prime}
$$

MAP Estimator for θ

- If we have the prior knowledge about θ (i.e., $P(\theta)$), we can obtain the Maximum A Posteriori (MAP) estimators based on $\theta_{M A P}=\arg _{\theta} \max P(\theta \mid X)=\arg _{\theta} \max p(X \mid \theta) P(\theta)$
- If we assume that $\boldsymbol{w} \sim \mathcal{N}\left(\mathbf{0}, \alpha^{-1} \boldsymbol{I}\right)$ in linear regression, we have $\log p(\boldsymbol{w} \mid X)=\log p(X \mid \boldsymbol{w})+\log p(\boldsymbol{w}) \propto$
$-\frac{\beta}{2} \sum_{t=1}^{N}\left(r^{(t)}-\boldsymbol{w}^{\top} \boldsymbol{x}^{(t)}\right)^{2}-\frac{\alpha}{2} \boldsymbol{w}^{\top} \boldsymbol{w}$ [Proof]
- We effectively find $\boldsymbol{w}_{\text {MAP }}$ that minimizes

$$
\sum_{t=1}^{N}\left(r^{(t)}-\boldsymbol{w}^{\top} \boldsymbol{x}^{(t)}\right)^{2}+\lambda \boldsymbol{w}^{\top} \boldsymbol{w} \text {, where } \lambda=\alpha / \beta
$$

- In addition to minimizing the SSE, we regularize the norm of \boldsymbol{w} to prevent a highly complex model, thereby reducing the generalization error
- $y^{\prime}=\arg _{y} \max p\left(y \mid \boldsymbol{x}^{\prime} ; \boldsymbol{w}_{M A P}\right)=\arg _{y} \max \mathcal{N}\left(y \mid \boldsymbol{w}_{M A P}^{\top} \boldsymbol{x}^{\prime}, \beta^{-1}\right)=\boldsymbol{w}_{M A P}^{\top} \boldsymbol{x}^{\prime}$

Bayesian Estimator for r^{\prime}

- The above methods thread θ as a deterministic value when making predictions
- Another technique, called the Bayesian estimation of r^{\prime}, treats θ as a random variable, and considers all possible values of θ when estimating r^{\prime} :
- $y^{\prime}=\arg _{y} \max p\left(y \mid x^{\prime}, X\right)=\int p\left(y, \theta \mid x^{\prime}, X\right) d \theta$
- E.g., in linear regression,

$$
y^{\prime}=\arg _{y} \max p\left(y \mid \boldsymbol{x}^{\prime}, X\right)=\arg _{y} \max \int p\left(y, \boldsymbol{w} \mid \boldsymbol{x}^{\prime}, X\right) d \boldsymbol{w}
$$

- No separated estimation phase for θ
- We will discuss how to solve y^{\prime} in the lecture of graphical models

Regression Revisited (1)

- Given $X=\left\{\boldsymbol{x}^{(t)}, r^{(t)}\right\}_{t=1}^{N}$, where $r^{(t)} \in \mathbb{R}$. Assume
- $\left(\boldsymbol{x}^{(t)}, r^{(t)}\right)$ are i.i.d samples drawn from some joint distribution of \boldsymbol{x} and r (otherwise can never learn r from \boldsymbol{x})
- In particular, $r^{(t)}=f\left(\boldsymbol{x}^{(t)} ; \theta\right)+\epsilon, \epsilon \sim \mathcal{N}\left(0, \beta^{-1}\right)$ for some hyperparameter (i.e., constant fixed during the objective solving) β
- The marginal distribution $p(r \mid \boldsymbol{x})$ follows: $p(r \mid \boldsymbol{x})=p_{N_{h(x ; \theta), \beta^{-1}}}(r)$
- We want to estimate f using X
- Hypothesis: $h\left(\boldsymbol{x} ; w_{0}, w_{1}, \cdots, w_{d}\right)=w_{0}+w_{1} x_{1}+\cdots+w_{d} x_{d}$, a line
- Once getting $w_{0}, w_{1}, \cdots, w_{d}$, we can predict the unknown r^{\prime} of a new instance \boldsymbol{x}^{\prime} by

$$
y^{\prime}=\arg _{y} \max p\left(y \mid x^{\prime}\right)=\arg _{y} \max p_{N_{h\left(x^{\prime} ; \theta\right), \beta_{1}-1}}(y)=h\left(x^{\prime} ; \theta\right)
$$

- Note that we don't need to know β to make prediction

Regression Revisited (2)

- How to obtain the estimate h of f ? How to obtain θ ?
- We can pick θ maximizing $p(\theta \mid \mathcal{X})$, the posterior probability
- Or, by Baye's theorem, θ maximizing the likelihood $p(X \mid \theta)$ (if we assume $p(\theta)$ remains the same for all θ)
- Or, θ maximizing the log likelihood $\log p(X \mid \theta)=$ $\log \left(\prod_{t=1}^{N} p\left(\boldsymbol{x}^{(t)}, r^{(t)} \mid \theta\right)\right)=\log \left(\prod_{t=1}^{N} p\left(r^{(t)} \mid \boldsymbol{x}^{(t)}, \theta\right) p\left(\boldsymbol{x}^{(t)} \mid \theta\right)\right)=$ $\log \left(\prod_{t=1}^{N} p\left(h\left(\boldsymbol{x}^{(t)} ; \theta\right)+\epsilon \mid \boldsymbol{x}^{(t)}, \theta\right) p\left(\boldsymbol{x}^{(t)} \mid \theta\right)\right)$
- Ignoring $p\left(\boldsymbol{x}^{(t)} \mid \theta\right)=p\left(\boldsymbol{x}^{(t)}\right)$ (since it is irrelevant to θ) and constants we have $\log p(X \mid \theta) \propto-N \log \left(\sqrt{\frac{2 \pi}{\beta}}\right)-\frac{\beta}{2} \sum_{t=1}^{N}\left(r^{(t)}-h\left(\boldsymbol{x}^{(t)} ; \theta\right)\right)^{2}$
- Dropping the first term and constants we have $\log p(X \mid \theta) \propto-\sum_{t=1}^{N}\left(r^{(t)}-h\left(x^{(t)} ; \theta\right)\right)^{2}$; that is, we seek for θ minimizing the SSE (sum of square errors)

The Bias/Variance Dilemma (1/4)

- The likelihood-based classification and regression share the same idea that the estimators $h\left(x ; \theta_{x}\right)$ are obtained by $\theta_{x}=\arg _{\theta} \max p(X \mid \theta)$
- In classification, $h\left(x ; \theta_{x}\right)$ estimates the discriminant of a class; in regression, $h(x ; \theta x)$ estimates f
- Given a new instance x^{\prime} where r^{\prime} is unknown, the expected square error (over the joint distribution of (x, r)) of our prediction can be written as

$$
\begin{aligned}
E\left[\left(r-h\left(x^{\prime} ; \theta x\right)\right)^{2} \mid x^{\prime}\right] & =\int\left(r-h\left(x^{\prime} ; \theta x\right)\right)^{2} p\left(r \mid x^{\prime}\right) d r \\
& =\int\left[\left(r-E\left[r \mid x^{\prime}\right]\right)+\left(E\left[r \mid x^{\prime}\right]-h\left(x^{\prime} ; \theta x\right)\right]^{2} p\left(r \mid x^{\prime}\right) d r\right. \\
& =\int\left(r-E\left[r \mid x^{\prime}\right]\right)^{2} p\left(r \mid x^{\prime}\right) d r+\left(E\left[r \mid x^{\prime}\right]-h\left(x^{\prime} ; \theta_{x}\right)\right)^{2} \int p\left(r \mid x^{\prime}\right) d r-2 \cdot 0 \\
& =E\left[\left(r-E\left[r \mid x^{\prime}\right]\right)^{2} \mid x^{\prime}\right]+\left(E\left[r \mid x^{\prime}\right]-h\left(x^{\prime} ; \theta_{x}\right)\right)^{2}
\end{aligned}
$$

- The first term does not depend on h but the assumption of the joint distribution of (x, r)

The Bias/Variance Dilemma (2/4)

- The second term changes as we vary our hypothesis h and its complexity
- Note that in regression, $E\left[r \mid x^{\prime}\right]=E\left[f\left(x^{\prime}\right)+\epsilon \mid x^{\prime}\right]=f\left(x^{\prime}\right)+E\left[\epsilon \mid x^{\prime}\right]=f\left(x^{\prime}\right)$ so the second term measures how our estimator h is difference from its target f
- The similar argument applies to the case of classification
- Recall that we can measure how good the estimator h is by using the mean square error $E_{X}\left[(h-f)^{2}\right]$ over all possible X of the same size ${ }^{1}$
- Since h and f are functions, we can rewrite the mean square error as follows given an instance x^{\prime} :

$$
\begin{aligned}
E_{X}\left[\left(h\left(x^{\prime} ; \theta x\right)-E\left[r \mid x^{\prime}\right]\right)^{2} \mid x^{\prime}\right] & =\text { bias }^{2}+\text { variance } \\
& =\left(E_{X}\left[h\left(x^{\prime} ; \theta_{x}\right)\right]-E\left[r \mid x^{\prime}\right]\right)^{2}+E_{X}\left[\left(h\left(x^{\prime} ; \theta_{x}\right)-E_{X}\left[h\left(x^{\prime} ; \theta_{x}\right)\right]\right)^{2}\right]
\end{aligned}
$$

${ }^{1}$ Here we distinguish E_{X} (over X) from E (over the joint distribution of (x, r))

The Bias/Variance Dilemma (3/4)

Figure : (a) A function $f(x)=2 \sin (1.5 x)$ and a noisy training set $\left(\epsilon=_{\text {s.t. }} N_{0,1}\right)$ consisting of 20 examples. There are totally 5 training sets $X_{i}, 1 \leqslant i \leqslant 5$, generated to calculate E_{X}. (b), (c), and (d) are 5 polynomial fits, namely $h\left(x ; \theta x_{i}\right)$ of order 1,3 , and 5 respectively. For each case, the dotted line shows the average of the 5 fits, namely $E_{x_{i}}\left[h\left(x ; \theta_{x_{i}}\right)\right]$.

The Bias/Variance Dilemma (4/4)

- As we can see, a complex (i.e., high order) hypothesis h has
- Low bias, as the average of the 5 fits is close to f
- But high variance, as its shape is affected by noise
- The variance decreases as N increase, since when N is large the different training sets X_{i} look similar
- This is a mathematical way to justify: generalization error \propto empirical error + (model complexity / N)
- Empirical error corresponds to the bias
- The second term corresponds to the variance

Model Selection

- The right order of h can be determined using the cross validation technique
- Given the validation results at right (the dotted line), which order should we take?

Figure: Cross validation results of 8 hypotheses with orders 1 to 8 . Both the training and cross validation sets contain 50 instances.

Model Selection

- The right order of h can be determined using the cross validation technique
- Given the validation results at right (the dotted line), which order should we take? 3
- Why not 4? Occam's razor tells us that we should choose the simplest hypothesis provided that its error is comparable
- Note the validation results may not be as V-shaped as we might expect when N is large

Figure: Cross validation results of 8 hypotheses with orders 1 to 8 . Both the training and cross validation sets contain 50 instances.

Outline

(1) More About Probabilistic Modeling

(2) MAP and Bayesian Estimation
(3) The Bias/Variance Dilemma
4) Generative Methods

- Univariate Classification
- Maximum Likelihood Estimation
- Multivariate Classification
- Tuning the Model Complexity

Univariate Classification

- Given a training set $X=\left\{x^{(t)}, \boldsymbol{r}^{(t)}\right\}_{t=1}^{N}$, where $r_{i}^{(t)}=1$ if $x^{(t)} \in C_{i}$ and 0 otherwise, we find the discriminant $f_{i}(x)=P\left(C_{i} \mid x\right)$ for each class C_{i}, and then classify a new instance x^{\prime} as $C_{y^{\prime}}$ if $y^{\prime}=\arg _{i} \max P\left(C_{i} \mid x\right)$
- Based on the generative assumption and Bayes' rule, we pick C_{i} such that $f_{i}\left(x^{\prime}\right)=\log \left(p\left(x^{\prime} \mid C_{i}\right) P\left(C_{i}\right)\right)=\log p\left(x^{\prime} \mid C_{i}\right)+\log P\left(C_{i}\right)$ is maximized
- To be able to make prediction given all possible x^{\prime}
- We estimate the prior $P\left(C_{i}\right)$ by $\widehat{P}\left[C_{i}\right]=\frac{\sum_{t=1}^{N} r_{i}^{(t)}}{N}$
- By assuming that instances of the same class are normally distributed, we estimate the likelihood $p\left(x \mid C_{i}\right)$ by $\widehat{p}\left(x \mid C_{i}\right)=\frac{1}{\sqrt{2 \pi s_{i}^{2}}} \exp \left(\frac{-\left(x-m_{i}\right)^{2}}{2 s_{i}^{2}}\right)$, where $m_{i}=\frac{\sum_{t=1}^{N} x^{(t)} r_{i}^{(t)}}{\sum_{t=1}^{N} r_{i}^{(t)}}$ and $s_{i}^{2}=\frac{\sum_{t=1}^{N}\left(x^{(t)}-m_{i}\right)^{2} r_{i}^{(t)}}{\sum_{t=1}^{N} r_{i}^{(t)}-1}$

Outline

(1) More About Probabilistic Modeling
(2) MAP and Bayesian Estimation
(3) The Bias/Variance Dilemma

4 Generative Methods

- Univariate Classification
- Maximum Likelihood Estimation
- Multivariate Classification
- Tuning the Model Complexity

Maximum Likelihood Estimation

- Why $\widehat{P}\left(C_{i}\right)=\frac{\sum_{t=1}^{N} r_{i}^{(t)}}{N}$ and $\widehat{p}\left(x \mid C_{i}\right)=\frac{1}{\sqrt{2 \pi s_{i}^{2}}} \exp \left(\frac{-\left(x-m_{i}\right)^{2}}{2 s_{i}^{2}}\right)$ are good choices?

Maximum Likelihood Estimation

- Why $\widehat{P}\left(C_{i}\right)=\frac{\sum_{t=1}^{N} r_{i}^{(t)}}{N}$ and $\widehat{p}\left(x \mid C_{i}\right)=\frac{1}{\sqrt{2 \pi s_{i}^{2}}} \exp \left(\frac{-\left(x-m_{i}\right)^{2}}{2 s_{i}^{2}}\right)$ are good choices?
- It turns out that each of these estimators maximizes the likelihood $p(X \mid \theta)$, where θ is the parameters of the distribution used to model the target probability $\left(P\left(C_{i}\right)\right.$ and $p\left(x \mid C_{i}\right)$ respectively)
- When we talk about the likelihood-based classification, the "likelihood" actually refers to the one $(p(X \mid \theta))$ of θ given X rather than that $\left(p\left(x^{\prime} \mid C_{i}\right)\right.$) of C_{i} given x^{\prime}

ML Estimation for $P\left(C_{i}\right)(1 / 2)$

- To estimate $P\left(C_{i}\right)$, we first assume that $P\left(C_{i}\right)$ has the Bernoulli distribution parametrized by $\theta=\rho_{i}$ and can be written as $P\left(C_{i}\right)=P\left(C_{i} ; \theta\right)$
- Let X_{i} be a random variable where $X_{i}=1$ if the event "the outcome of a toss is C_{i} and $X_{i}=0$ if "the outcome is not C_{i} "
- Let ρ_{i} be the probability that $X_{i}=1$, we have

$$
P\left(X_{i}=c ; \theta\right)=\rho_{i}^{c}\left(1-\rho_{i}\right)^{1-c}, c \in\{0,1\}
$$

- Now the problem estimating $P\left(C_{i} \mid \theta\right)=P\left(X_{i}=1 ; \theta\right)=\rho_{i}$ can be reduced to estimating $\theta=\rho_{i}$

ML Estimation for $P\left(C_{i}\right)(2 / 2)$

- Given the training set X, a good estimate of θ is the one that maximizes $P(\theta \mid \mathcal{X})$
- From Bayes' rule, we can instead pick $\widehat{\theta}$ maximizing $P(X \mid \theta)$ if we don't have prior reason to favor certain θ
- Equivalently, we pick $\widehat{\theta}$ maximizing $\log P(X \mid \theta)$
- We have $\log P(X \mid \theta)=\log \left(\prod_{t=1}^{N} \rho_{i}^{r_{i}^{(t)}}\left(1-\rho_{i}\right)^{1-r_{i}^{(t)}}\right)$
- Solving $\frac{d(\log P(x \mid \theta))}{d \rho}=0$ we obtain the Maximum Likelihood (ML) estimator $\widehat{\rho}_{i}=\frac{\sum_{t=1}^{N} r_{i}^{(t)}}{N}$ [Proof]
- $\widehat{P}\left[C_{i}\right]=P\left(C_{i} \mid \widehat{\theta}\right)=\widehat{\rho_{i}}$
- Note we can also consider all classes together and assume that $P\left(C_{i}\right)$ follows the Multinomial distribution parametrized by $\theta=\left(\rho_{1}, \cdots, \rho_{K}\right)$ with constrains $\sum_{i=1}^{K} \rho_{i}=1$
- The ML estimator for each ρ_{i} will be the same as the above [Homework]

ML Estimation for $p\left(x \mid C_{i}\right)(1 / 2)$

- We assume that $p\left(x \mid C_{i}\right)$ is normal and can be written as $p\left(x \mid C_{i}\right)=p\left(x \mid C_{i} ; \theta\right)$ with some $\theta=\left(\mu_{i}, \sigma_{i}\right)$
- $p\left(x \mid C_{i} ; \theta\right)=p_{N_{\mu_{i}, \sigma^{2}}}(x)=\frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(\frac{-\left(x-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)$
- Now the problem estimating $p\left(x \mid C_{i} ; \theta\right)$ cane be reduced to estimating $\theta=\left(\mu_{i}, \sigma_{i}\right)$
- Given the training set X, a good estimate of θ is the one that maximizes $\log p(X \mid \theta)$
- We have $\log p(X \mid \theta)=\log \left(\prod_{t=1}^{N}\left(\frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(\frac{-\left(x^{(t)}-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)\right)^{r_{i}^{(t)}}\right)$
- Taking the partial derivatives of $\log p(X \mid \theta)$ in terms of μ_{i} and σ_{i} and setting them equal to 0 we obtain the estimators $m_{i}=\frac{\sum_{t=1}^{N} x^{(t)} r_{i}^{(t)}}{\sum_{t=1}^{N} r_{i}^{(t)}}$ and $s_{i}^{2}=\frac{\sum_{t=1}^{N}\left(x^{(t)}-m_{i}\right)^{2} r_{i}^{(t)}}{\sum_{t=1}^{N} r_{i}^{(t)}}$ respectively [Proof]

ML Estimation for $p\left(x \mid C_{i}\right)(2 / 2)$

- Recall that $s_{i}^{2}=\frac{\sum_{t=1}^{N}\left(x^{(t)}-m_{i}\right)^{2} r_{i}^{(t)}}{\sum_{t=1}^{N} r_{i}^{(t)}}$ is a bias estimator, we can replace the denominator with $\sum_{t=1}^{N} r_{i}^{(t)}-1$
- This step is optional
- The difference, actually, is negligible when N is large
- $\widehat{p}\left(x \mid C_{i}\right)=p\left(x \mid C_{i}, \widehat{\theta}\right)=\frac{1}{\sqrt{2 \pi s_{i}^{2}}} \exp \left(\frac{-\left(x-m_{i}\right)^{2}}{2 s_{i}^{2}}\right)$

Outline

(1) More About Probabilistic Modeling
(2) MAP and Bayesian Estimation
(3) The Bias/Variance Dilemma
(4) Generative Methods

- Univariate Classification
- Maximum Likelihood Estimation
- Multivariate Classification
- Tuning the Model Complexity

Multivariate Data

- Let's go back to a higher dimensional feature space
- We are given a training set $X=\left\{\boldsymbol{x}^{(t)}, \boldsymbol{r}^{(t)}\right\}_{t=1}^{N}$ where $\boldsymbol{x}^{(t)} \in \mathbb{R}^{d}$ and $\left(\boldsymbol{x}^{(t)}, \boldsymbol{r}^{(t)}\right)$ are i.i.d. samples drawn from some unknown (multivariate) distribution
- Typically, the features of $\boldsymbol{x}^{(t)}$ are correlated (otherwise we can discuss each attribute individually using the univariate methods)
- It might be a good idea to review the multivariate distributions now

Multivariate Classification

- The idea remains the same: given a new instance $x^{\prime} \in \mathbb{R}^{d}$, we make prediction by picking the class C_{i} if its discriminant $f_{i}\left(\boldsymbol{x}^{\prime}\right)=P\left(C_{i} \mid \boldsymbol{x}^{\prime}\right)$ is maximized
- Generative assumption: pick C_{i} if $f_{i}\left(\boldsymbol{x}^{\prime}\right)=\log p\left(\boldsymbol{x}^{\prime} \mid C_{i}\right)+\log P\left(C_{i}\right)$ is maximized
- It's common to assume that $p\left(\boldsymbol{x} \mid C_{i}\right)$ follows the multivariate normal distribution, i.e.,

$$
p\left(\boldsymbol{x} \mid C_{i}\right)=p_{\boldsymbol{N}_{\mu_{i}, \Sigma_{i}}}(\boldsymbol{x})=\frac{1}{(2 \pi)^{d / 2} \operatorname{det}\left(\boldsymbol{\Sigma}_{\boldsymbol{i}}\right)^{1 / 2}} \exp \left[-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{i}\right)^{\top} \boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{i}\right)\right]
$$

- Why?
- Major reason: analytical simplicity
- Studies also show that the model is robust to datasets departing from normality

Maximum Likelihood Estimation

- The ML estimators of $P\left(C_{i}\right)$ is $\widehat{P}\left[C_{i}\right]=\sum_{t=1}^{N} r_{i}^{(t)} / N$
- We have seen this in the univariate cases before
- The ML estimators of $p\left(x \mid C_{i}\right)$ is

$$
\frac{1}{(2 \pi)^{d / 2} \operatorname{det}\left(\boldsymbol{S}_{i}\right)^{1 / 2}} \exp \left[-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{m}_{\boldsymbol{i}}\right)^{\top} \boldsymbol{S}_{\boldsymbol{i}}^{-1}\left(\boldsymbol{x}-\boldsymbol{m}_{\boldsymbol{i}}\right)\right], \text { where }
$$

$$
\boldsymbol{m}_{i}=\frac{\sum_{t=1}^{N} \boldsymbol{x}^{(t)} r_{i}^{(t)}}{\sum_{N=1}^{N} r_{t}^{(t)}} \text { and }
$$

$$
S_{i}=\frac{\sum_{t=1}^{N}\left(\boldsymbol{x}^{(t)}-\boldsymbol{m}_{i}\right)\left(\boldsymbol{x}^{(t)}-\boldsymbol{m}_{i}\right)^{\top} r_{i}^{(t)}}{\sum_{t=1}^{N} r_{i}^{(t)}}
$$

- Why?

Maximum Likelihood Estimation

- The ML estimators of $P\left(C_{i}\right)$ is $\widehat{P}\left[C_{i}\right]=\sum_{t=1}^{N} r_{i}^{(t)} / N$
- We have seen this in the univariate cases before
- The ML estimators of $p\left(x \mid C_{i}\right)$ is

$$
\frac{1}{(2 \pi)^{d / 2} \operatorname{det}\left(\boldsymbol{S}_{\boldsymbol{i}}\right)^{1 / 2}} \exp \left[-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{m}_{\boldsymbol{i}}\right)^{\top} \boldsymbol{S}_{\boldsymbol{i}}^{-1}\left(\boldsymbol{x}-\boldsymbol{m}_{\boldsymbol{i}}\right)\right], \text { where }
$$

$$
\boldsymbol{m}_{i}=\frac{\sum_{t=1}^{N} \boldsymbol{x}^{(t)} r_{i}^{(t)}}{\sum_{=N=1}^{N} r_{t}^{(t)}} \text { and }
$$

$$
\boldsymbol{S}_{i}=\frac{\sum_{t=1}^{N}\left(\boldsymbol{x}^{(t)}-\boldsymbol{m}_{i}\right)\left(\boldsymbol{x}^{(t)}-\boldsymbol{m}_{i}\right)^{\top} r_{i}^{(t)}}{\sum_{t=1}^{N} r_{i}^{(t)}}
$$

- Why? It's a good idea to review the matrix calculus now

ML Estimator of μ_{i}

- Let $\theta=\left(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right)$, we have the likelihood $\log p(\mathcal{X} \mid \theta)=$
$\log \left(\prod_{t=1}^{N}\left(\frac{1}{(2 \pi)^{d / 2} \operatorname{det}\left(\boldsymbol{\Sigma}_{i}\right)^{1 / 2}} e^{-\frac{1}{2}\left(\boldsymbol{x}^{(t)}-\mu_{i}\right)^{\top} \boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}^{(t)}-\mu_{i}\right)}\right)^{r_{i}^{(t)}}\right)=$
$-\frac{N_{i} d}{2} \log (2 \pi)-\frac{N_{i}}{2} \log \left(\operatorname{det}\left(\boldsymbol{\Sigma}_{i}\right)\right)-\frac{1}{2} \sum_{t=1}^{N} r_{i}^{(t)}\left(\boldsymbol{x}^{(t)}-\boldsymbol{\mu}_{i}\right)^{\top} \boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}^{(t)}-\right.$
$\left.\mu_{i}\right)$, where $N_{i}=\sum_{t=1}^{N} r_{i}^{(t)}$
- Recall that for any $\boldsymbol{a} \in \mathbb{R}^{n}$ and $\boldsymbol{A} \in \mathbb{R}^{n \times n}$,

$$
\begin{aligned}
& \text { - } \frac{\partial}{\partial x}\left(\boldsymbol{a}^{\top} \boldsymbol{x}\right)=\frac{\partial}{\partial x}\left(\boldsymbol{x}^{\top} \boldsymbol{a}\right)=\boldsymbol{a}^{\top} \\
& \text { - } \frac{\partial}{\partial x}\left(\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}\right)=\boldsymbol{x}^{\top}\left(\boldsymbol{A}+\boldsymbol{A}^{\top}\right)
\end{aligned}
$$

- Taking the partial derivative of $\log p(X \mid \theta)$ with respect to μ_{i} and setting it to zero, we get $\sum_{t=1}^{N} r_{i}^{(t)}\left(\boldsymbol{x}^{(t)}-\mu_{i}\right)^{\top} \Sigma_{i}^{-1}=\mathbf{0}^{\top}$ [Proof]
- So $\boldsymbol{m}_{i}=\frac{\sum_{t=1}^{N} x^{(t)} r_{i}^{(t)}}{\sum_{t=1}^{N} r_{i}^{(t)}}$

ML Estimator of $\Sigma_{i}(1 / 2)$

- $\log p(X \mid \theta)=-\frac{N_{i} d}{2} \log (2 \pi)-\frac{N_{i}}{2} \log \left(\operatorname{det}\left(\boldsymbol{\Sigma}_{i}\right)\right)-\frac{1}{2} \sum_{t=1}^{N} r_{i}^{(t)}\left(\boldsymbol{x}^{(t)}-\right.$ $\left.\boldsymbol{\mu}_{i}\right)^{\top} \boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}^{(t)}-\boldsymbol{\mu}_{i}\right)$
- Note $\log \left(\operatorname{det}\left(\Sigma_{i}^{-1}\right)\right)=-\log \left(\operatorname{det}\left(\Sigma_{i}\right)\right)$
- Also, $\left(\boldsymbol{x}^{(t)}-\mu_{i}\right)^{\top} \Sigma_{i}^{-1}\left(x^{(t)}-\mu_{i}\right)=\operatorname{tr}\left(\Sigma_{i}^{-1}\left(x^{(t)}-\mu_{i}\right)\left(x^{(t)}-\mu_{i}\right)^{\top}\right)$ [Proof]
- We can rewrite the likelihood as $\log p(\mathcal{X} \mid \theta)=-\frac{N_{i} d}{2} \log (2 \pi)+$ $\frac{N_{i}}{2} \log \left(\operatorname{det}\left(\Sigma_{i}^{-1}\right)\right)-\frac{1}{2} \sum_{t=1}^{N} r_{i}^{(t)} \operatorname{tr}\left(\boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}^{(t)}-\boldsymbol{\mu}_{i}\right)\left(\boldsymbol{x}^{(t)}-\boldsymbol{\mu}_{i}\right)^{\top}\right)$

ML Estimator of $\Sigma_{i}(2 / 2)$

- Given any function $f(x)$, let $g(x)=f\left(\frac{1}{x}\right)$ for any $x>0$, then x^{*} is a stationary point of g iff $\frac{1}{x^{*}}$ is a stationary point of f
- The matrix version $g(\boldsymbol{A})=f\left(\boldsymbol{A}^{-1}\right)$ applies when \boldsymbol{A} is positive definite
- We can seek for the partial derivative of $\log p(X \mid \theta)$ with respect to Σ_{i}^{-1}
- Recall that $\frac{\partial}{\partial \boldsymbol{A}} \ln (\operatorname{det}(\boldsymbol{A}))=\left(\boldsymbol{A}^{-1}\right)^{\top}$, and $\frac{\partial}{\partial \boldsymbol{A}} \operatorname{tr}(\boldsymbol{A B})=\boldsymbol{B}^{\top}$
- Taking the partial derivative of $\log p(X \mid \theta)$ with respect to Σ_{i}^{-1} and setting it to zero, we get

$$
\frac{N_{i}}{2} \Sigma_{i}-\frac{1}{2} \sum_{t=1}^{N} r_{i}^{(t)}\left(\boldsymbol{x}^{(t)}-\boldsymbol{\mu}_{i}\right)\left(\boldsymbol{x}^{(t)}-\boldsymbol{\mu}_{i}\right)^{\top}=\boldsymbol{O} \text { [Proof] }
$$

- Therefore, $\boldsymbol{S}_{i}=\frac{\sum_{t=1}^{N}\left(\boldsymbol{x}^{(t)}-\boldsymbol{m}_{i}\right)\left(\boldsymbol{x}^{(t)}-\boldsymbol{m}_{i}\right)^{\top} r_{i}^{(t)}}{\sum_{t=1}^{N} r_{i}^{(t)}}$

Quadratic Discrimination

- Ignoring the constant terms we have the discriminant $f_{i}(\boldsymbol{x})=-\frac{1}{2} \log \left(\operatorname{det}\left(\boldsymbol{S}_{i}\right)\right)-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{m}_{\boldsymbol{i}}\right)^{\top} \boldsymbol{S}_{\boldsymbol{i}}^{-1}\left(\boldsymbol{x}-\boldsymbol{m}_{\boldsymbol{i}}\right)+\log \widehat{P}\left[C_{i}\right]$, which can be rewritten as $f_{i}(\boldsymbol{x})=\boldsymbol{x}^{\top} \boldsymbol{W}_{i} \boldsymbol{x}+\boldsymbol{w}_{i}^{\top} \boldsymbol{x}+w_{i}$, where $\boldsymbol{W}_{i}=-\frac{1}{2} S_{i}^{-1}$,
$\boldsymbol{w}_{\boldsymbol{i}}=\boldsymbol{S}_{i}^{-1} \boldsymbol{m}_{i}$, and
$w_{i}=-\frac{1}{2} \boldsymbol{m}_{i}^{\top} \boldsymbol{S}_{i}^{-1} \boldsymbol{m}_{i}-\frac{1}{2} \log \left(\operatorname{det}\left(\boldsymbol{S}_{i}\right)\right)+\log \widehat{P}\left[C_{i}\right]$ [Proof]
- The classification is done via quadratic discrimination
- The decision boundary between any two classes is quadratic too [Proof]

Multivariate Classification (3/3)

Figure: (a) The graphs of $p\left(x \mid C_{i}\right)$ for two classes with different covariance matrices. (b) The graph of posterior $P\left(C_{1} \mid \boldsymbol{x}\right)$. (c) Level sets of $p\left(\boldsymbol{x} \mid C_{i}\right)$ and the decision boundary.

Outline

(1) More About Probabilistic Modeling

(2) MAP and Bayesian Estimation
(3) The Bias/Variance Dilemma
(4) Generative Methods

- Univariate Classification
- Maximum Likelihood Estimation
- Multivariate Classification
- Tuning the Model Complexity

Simplifications (1/2)

- Quadratic discrimination:
- Attributes in different classes have different covariance matrices $\boldsymbol{S}_{\boldsymbol{i}}$ ($\left\{\boldsymbol{x}: p\left(\boldsymbol{x} \mid C_{i}\right)=c\right\}$ are ellipsoids)
- Linear discrimination:
- Attributes in different classes share the same correlation $\boldsymbol{S}_{\boldsymbol{i}}=\boldsymbol{S}$ (ellipsoids with the same shape/orientation)
- Attributes in each classes are independent $\boldsymbol{S}_{i}=\boldsymbol{S}=\boldsymbol{D}$ (axis-aligned ellipsoids with the same shape/orientation)
- Attributes in each classes has the same variance $\boldsymbol{S}_{i}=\boldsymbol{S}=s^{2} \boldsymbol{I}$ (equal-sized spheres)

Arbitrary covar.

Population likelihoods and posteriors

Shared covar.

Simplifications (2/2)

- Linear discrimination models seem to be oversimplified, but why are they popular in real applications?

Simplifications (2/2)

- Linear discrimination models seem to be oversimplified, but why are they popular in real applications?
- Quadratic discrimination has lower bias, but higher variance
- Experience tells us that when we have a small dataset, it may be better to assume a shared and simplified covariance matrix
- $\boldsymbol{S}_{\boldsymbol{i}}=\boldsymbol{S}$ can be estimated using all examples in a dataset together
- $\boldsymbol{S}=\boldsymbol{D}$ if we do not have enough data to estimate the covariance between attributes accurately
- $\boldsymbol{D}=s^{2} \boldsymbol{I}$ if attributes are z-normalized
- Linear discrimination is not necessarily linear
- We can augment the inputs (e.g., $x_{d+1}=\exp \left(x_{1}+x_{4}\right)$) to build a higher dimensional feature space, if we believe this is useful
- Linear discrimination in the augmented feature space corresponds to a nonlinear model in the original input space
- We can perform the cross validation to decide which assumption is the best

Linear Discrimination ($S_{i}=S$)

- The discriminant for each class is $f_{i}(\boldsymbol{x})=\boldsymbol{x}^{\top} \boldsymbol{W}_{i} \boldsymbol{x}+\boldsymbol{w}_{i}^{\top} \boldsymbol{x}+w_{i}$, where $\boldsymbol{W}_{i}=-\frac{1}{2} S_{i}^{-1}$,
$\boldsymbol{w}_{\boldsymbol{i}}=\boldsymbol{S}_{\boldsymbol{i}}^{-1} \boldsymbol{m}_{i}$, and
$w_{i}=-\frac{1}{2} \boldsymbol{m}_{i}^{\top} \boldsymbol{S}_{i}^{-1} \boldsymbol{m}_{i}-\frac{1}{2} \log \left(\operatorname{det}\left(\boldsymbol{S}_{i}\right)\right)+\log \widehat{P}\left[C_{i}\right]$
- We can replace \boldsymbol{S}_{i} with \boldsymbol{S}, the estimator of Σ of all instances in the training set
- The level sets $\left\{\boldsymbol{x}: p\left(\boldsymbol{x} \mid C_{i}\right)=c\right\}$ are ellipsoids with the same shape/orientation
- Ignoring the constant terms, the discriminant now becomes
$f_{i}(\boldsymbol{x})=\boldsymbol{w}_{i}^{\top} \boldsymbol{x}+w_{i}$, where
$\boldsymbol{w}_{i}=\boldsymbol{S}^{-1} \boldsymbol{m}_{i}$ and
$w_{i}=-\frac{1}{2} \boldsymbol{m}_{i}^{\top} \boldsymbol{S}^{-1} \boldsymbol{m}_{i}+\log \widehat{P}\left[C_{i}\right]$ [Proof]

Naive Bayes Classifiers $\left(S_{i}=S=D\right)$

- We can further assume that attributes are independent with each
other, i.e., $\boldsymbol{S}_{i}=\boldsymbol{S}=\left[\begin{array}{ccc}s_{0}^{2} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & s_{d}^{2}\end{array}\right]$ are diagonal
- Likelihood-based classifiers using this strong (naive) independence assumption are called the naive Bayes' classifiers
- The level sets $\left\{\boldsymbol{x}: p\left(\boldsymbol{x} \mid C_{i}\right)=c\right\}$ are axis-aligned ellipsoids
- $f_{i}(\boldsymbol{x})=-\frac{1}{2} \sum_{j=1}^{d}\left(\frac{m_{i, j}^{2}-2 x_{j} m_{i, j}}{s_{j}^{2}}\right)+\log \widehat{P}\left[C_{i}\right]$ [Proof]
- If we further assume that that attributes have the same variance, i.e., $\boldsymbol{S}_{\boldsymbol{i}}=\boldsymbol{S}=\boldsymbol{s} \boldsymbol{l}$
- The level sets $\left\{\boldsymbol{x}: p\left(\boldsymbol{x} \mid C_{i}\right)=c\right\}$ degenerate into spheres
- $\boldsymbol{f}_{i}(\boldsymbol{x})=-\frac{1}{2 s^{2}}\left(\left\|\boldsymbol{m}_{i}\right\|^{2}-2 \boldsymbol{m}_{i}^{\top} \boldsymbol{x}\right)+\log \widehat{P}\left[C_{i}\right]$ (or $\left.f_{i}(\boldsymbol{x})=-\frac{1}{2 s^{2}}\left\|\boldsymbol{x}-\boldsymbol{m}_{i}\right\|^{2}+\log \widehat{P}\left[C_{i}\right]\right)$ [Proof]
- If we drop $\log \widehat{P}\left[C_{i}\right]$, we obtain a nearest mean classifier

