Probabilistic Modeling

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Spring 2015

Shan-Hung Wu (CS, NTHU)

Probabilistic Modeling

Net DB-ML, Spring 2015 1 / 40

1 More About Probabilistic Modeling

- 2 MAP and Bayesian Estimation
- The Bias/Variance Dilemma

Generative Methods

- Univariate Classification
- Maximum Likelihood Estimation
- Multivariate Classification
- Tuning the Model Complexity

Summary of Supervised Learning Models

- Three main categories (either parametric or non-parametric):
- Those learning the *discriminant functions* f's (no probability interpretation)
 - E.g., perceptron, *k*NN, etc.
- 2 Those based on probability and learn $p(r|\mathbf{x})$ directly
 - E.g., linear regression, logistic regression, etc.
 - $p(r|\mathbf{x}; \theta)$ with θ (constant) estimated from \mathcal{X}
 - Methods in 1 and 2 are called *discriminative methods*
- Those learn p(r|x) indirectly from p(x|r)p(r)
 - To be discussed later
 - These are called *generative methods*, as p(x|r)p(r) explains how x (and X) is generated

Probabilistic Modeling

- By assuming the target follows some probability distribution
- Pros and cons?

Probabilistic Modeling

- By assuming the target follows some probability distribution
- Pros and cons?
- Perform well only when the assumption holds
- Essentially solves a problem (i.e., distribution estimation) harder than discrimination
 - E.g., in generative models, if we let $p(\mathbf{x}|r) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then we can plot the contour of each class in addition to the decision boundary
 - Less efficient; but more descriptive

- The roles of θ in the prediction function $p(r'|\mathbf{x}')$:
 - Constant, from ML estimation of θ :
 - $\theta_{ML} = \arg \max_{\theta} p(\mathcal{X}|\theta)$
 - $p(r|\mathbf{x}') := p(r|\mathbf{x}'; \theta_{ML})$
 - Constant, from MAP estimation of θ :
 - $\theta_{MAP} = \arg \max_{\theta} p(\theta | \mathcal{X}) = \arg \max_{\theta} p(\mathcal{X} | \theta) p(\theta)$
 - $p(r|\mathbf{x}) := p(r|\mathbf{x}; \theta_{MAP})$
 - **Random variable**, for full Bayesian treatment:

•
$$p(y|\mathbf{x}, \mathcal{X}) = \int p(y, \theta | \mathbf{x'}, \mathcal{X}) d\theta$$

More About Probabilistic Modeling (2)

• Can we analyze the generation performance more easily with the aid of distribution assumption?

More About Probabilistic Modeling (3)

• Generative models

- The roles of θ in the discrimination function p(r'|x'):
 - Constant, from ML estimation of θ :
 - $\theta_{ML} = \arg \max_{\theta} p(\mathcal{X}|\theta)$
 - $p(r'|\mathbf{x}') := p(r|\mathbf{x}; \theta_{ML})$
 - Constant, from MAP estimation of θ :

•
$$\theta_{MAP} = \arg \max_{\theta} p(\theta|X) = \arg \max_{\theta} p(X|\theta)p(\theta)$$

• $p(r'|x') := p(r'|x'; \theta_{MAP})$

• **Random variable**, for full Bayesian treatment of r':

•
$$p(r'|\mathbf{x}', \mathfrak{X}) = \int p(r', \theta | \mathbf{x}', \mathfrak{X}) d\theta$$

- The estimators we discussed so far (e.g., ρ_i , m_i , and S_i in classification and w in regression) are called the *Maximum Likelihood (ML) estimators* since they are derived from $\theta_{ML} = \arg_{\theta} \max p(\mathcal{X}|\theta)$
 - E.g., in linear regression where $\theta = \boldsymbol{w}$, given a new instance \boldsymbol{x}' , the prediction can be made by $y' = \arg_y \max p(y|\boldsymbol{x}'; \boldsymbol{w}_{ML}) = \arg_y \max \mathcal{N}(y|\boldsymbol{w}_{ML}^{\top}\boldsymbol{x}', \beta^{-1}) = \boldsymbol{w}_{ML}^{\top}\boldsymbol{x}'$

MAP Estimator for θ

- If we have the prior knowledge about θ (i.e., $P(\theta)$), we can obtain the *Maximum A Posteriori (MAP) estimators* based on $\theta_{MAP} = \arg_{\theta} \max P(\theta|\mathcal{X}) = \arg_{\theta} \max p(\mathcal{X}|\theta)P(\theta)$
 - If we assume that $\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{0}, \alpha^{-1}\boldsymbol{I})$ in linear regression, we have $\log p(\boldsymbol{w}|\mathcal{X}) = \log p(\mathcal{X}|\boldsymbol{w}) + \log p(\boldsymbol{w}) \propto$ $-\frac{\beta}{2} \sum_{t=1}^{N} (r^{(t)} - \boldsymbol{w}^{\top} \boldsymbol{x}^{(t)})^2 - \frac{\alpha}{2} \boldsymbol{w}^{\top} \boldsymbol{w}$ [Proof]
 - We effectively find \boldsymbol{w}_{MAP} that minimizes $\sum_{t=1}^{N} \left(r^{(t)} - \boldsymbol{w}^{\top} \boldsymbol{x}^{(t)} \right)^2 + \lambda \boldsymbol{w}^{\top} \boldsymbol{w}, \text{ where } \lambda = \alpha/\beta$
 - In addition to minimizing the SSE, we regularize the norm of w to prevent a highly complex model, thereby reducing the generalization error

•
$$y' = \arg_y \max p(y|\mathbf{x}'; \mathbf{w}_{MAP}) = \arg_y \max \mathcal{N}(y|\mathbf{w}_{MAP}^{\top}\mathbf{x}', \beta^{-1}) = \mathbf{w}_{MAP}^{\top}\mathbf{x}'$$

- The above methods thread θ as a deterministic value when making predictions
- Another technique, called the *Bayesian estimation* of r', treats θ as a random variable, and considers all possible values of θ when estimating r':

•
$$y' = \arg_y \max p(y|x', \mathcal{X}) = \int p(y, \theta|x', \mathcal{X}) d\theta$$

- E.g., in linear regression, $y' = \arg_y \max p(y|x', \mathcal{X}) = \arg_y \max \int p(y, w|x', \mathcal{X}) dw$
- No separated estimation phase for $\boldsymbol{\theta}$

• We will discuss how to solve y' in the lecture of graphical models

• Given
$$\mathcal{X} = \{ \mathbf{x}^{(t)}, r^{(t)} \}_{t=1}^{N}$$
, where $r^{(t)} \in \mathbb{R}$. Assume

- (x^(t), r^(t)) are i.i.d samples drawn from some joint distribution of x and r (otherwise can never learn r from x)
- In particular, r^(t) = f(x^(t); θ) + ε, ε ~ N(0, β⁻¹) for some hyperparameter (i.e., constant fixed during the objective solving) β
- The marginal distribution $p(r|\mathbf{x})$ follows: $p(r|\mathbf{x}) = p_{N_{h(\mathbf{x}:\theta),\beta}-1}(r)$
- We want to estimate f using ${\mathfrak X}$
 - Hypothesis: $h(\mathbf{x}; w_0, w_1, \cdots, w_d) = w_0 + w_1 x_1 + \cdots + w_d x_d$, a line
 - Once getting w_0, w_1, \dots, w_d , we can predict the unknown r' of a new instance x' by

$$y' = \arg_y \max p(y|\mathbf{x}') = \arg_y \max p_{N_{h(\mathbf{x}';\theta),\beta}-1}(y) = h(\mathbf{x}';\theta)$$

 \bullet Note that we don't need to know β to make prediction

- How to obtain the estimate h of f? How to obtain θ ?
- We can pick θ maximizing $p(\theta|\mathcal{X})$, the **posterior** probability
- Or, by Baye's theorem, θ maximizing the *likelihood* $p(\mathfrak{X}|\theta)$ (if we assume $p(\theta)$ remains the same for all θ)
- Or, θ maximizing the *log likelihood* $\log p(\mathcal{X}|\theta) = \log\left(\prod_{t=1}^{N} p(\mathbf{x}^{(t)}, r^{(t)}|\theta)\right) = \log\left(\prod_{t=1}^{N} p(r^{(t)}|\mathbf{x}^{(t)}, \theta) p(\mathbf{x}^{(t)}|\theta)\right) = \log\left(\prod_{t=1}^{N} p(h(\mathbf{x}^{(t)}; \theta) + \epsilon | \mathbf{x}^{(t)}, \theta) p(\mathbf{x}^{(t)}|\theta)\right)$
- Ignoring $p(\mathbf{x}^{(t)}|\theta) = p(\mathbf{x}^{(t)})$ (since it is irrelevant to θ) and constants we have $\log p(\mathcal{X}|\theta) \propto -N \log \left(\sqrt{\frac{2\pi}{\beta}}\right) \frac{\beta}{2} \sum_{t=1}^{N} \left(r^{(t)} h(\mathbf{x}^{(t)};\theta)\right)^2$
- Dropping the first term and constants we have $\log p(\mathcal{X}|\theta) \propto -\sum_{t=1}^{N} (r^{(t)} h(\mathbf{x}^{(t)};\theta))^2$; that is, we seek for θ minimizing the SSE (sum of square errors)

The Bias/Variance Dilemma (1/4)

- The likelihood-based classification and regression share the same idea that the estimators $h(x; \theta_{\mathcal{X}})$ are obtained by $\theta_{\mathcal{X}} = \arg_{\theta} \max p(\mathcal{X}|\theta)$
 - In classification, $h(x; \theta_{\mathcal{X}})$ estimates the discriminant of a class; in regression, $h(x; \theta_{\mathcal{X}})$ estimates f
- Given a new instance x' where r' is unknown, the expected square error (over the joint distribution of (x, r)) of our prediction can be written as

$$E[(r - h(x'; \theta_{\mathcal{X}}))^{2} | x'] = \int (r - h(x'; \theta_{\mathcal{X}}))^{2} p(r | x') dr$$

$$= \int [(r - E[r | x']) + (E[r | x'] - h(x'; \theta_{\mathcal{X}})]^{2} p(r | x') dr$$

$$= \int (r - E[r | x'])^{2} p(r | x') dr + (E[r | x'] - h(x'; \theta_{\mathcal{X}}))^{2} \int p(r | x') dr - 2 \cdot 0$$

$$= E[(r - E[r | x'])^{2} | x'] + (E[r | x'] - h(x'; \theta_{\mathcal{X}}))^{2}$$

• The first term does not depend on *h* but the assumption of the joint distribution of (*x*, *r*)

Shan-Hung Wu (CS, NTHU)

The Bias/Variance Dilemma (2/4)

- The second term changes as we vary our hypothesis *h* and its complexity
- Note that in regression,

 $E[r|x'] = E[f(x') + \epsilon |x'] = f(x') + E[\epsilon |x'] = f(x')$ so the second term measures how our estimator h is difference from its target f

• The similar argument applies to the case of classification

- Recall that we can measure how good the estimator h is by using the mean square error $E_{\mathcal{X}}[(h-f)^2]$ over all possible \mathcal{X} of the same size¹
- Since *h* and *f* are functions, we can rewrite the mean square error as follows given an instance *x'* :

 $E_{\mathcal{X}}[(h(x'; \theta_{\mathcal{X}}) - E[r|x'])^2|x'] = bias^2 + variance$

$$= \left(E_{\mathcal{X}}[h(x';\theta_{\mathcal{X}})] - E[r|x'] \right)^{2} + E_{\mathcal{X}}\left[\left(h(x';\theta_{\mathcal{X}}) - E_{\mathcal{X}}[h(x';\theta_{\mathcal{X}})] \right)^{2} \right]$$

15 / 40

¹Here we distinguish E_{χ} (over χ) from E (over the joint distribution of (x, r)) Shan-Hung Wu (CS, NTHU) Probabilistic Modeling NetDB-ML, Spring 2015

The Bias/Variance Dilemma (3/4)

Figure: (a) A function $f(x) = 2\sin(1.5x)$ and a noisy training set $(e =_{s.t.} N_{0,1})$ consisting of 20 examples. There are totally 5 training sets \mathcal{X}_i , $1 \le i \le 5$, generated to calculate $E_{\mathcal{X}}$. (b), (c), and (d) are 5 polynomial fits, namely $h(x; \theta_{\mathcal{X}_i})$ of order 1, 3, and 5 respectively. For each case, the dotted line shows the average of the 5 fits, namely $E_{\mathcal{X}_i}[h(x; \theta_{\mathcal{X}_i})]$.

• As we can see, a complex (i.e., high order) hypothesis h has

- Low bias, as the average of the 5 fits is close to f
- But high variance, as its shape is affected by noise
- The variance decreases as N increase, since when N is large the different training sets X_i look similar
- This is a mathematical way to justify: generalization error \propto empirical error + (model complexity / N)
 - Empirical error corresponds to the bias
 - The second term corresponds to the variance

Model Selection

- The right order of *h* can be determined using the cross validation technique
- Given the validation results at right (the dotted line), which order should we take?

Figure : Cross validation results of 8 hypotheses with orders 1 to 8. Both the training and cross validation sets contain 50 instances.

Model Selection

- The right order of *h* can be determined using the cross validation technique
- Given the validation results at right (the dotted line), which order should we take?3
 - Why not 4? Occam's razor tells us that we should choose the simplest hypothesis provided that its error is comparable
 - Note the validation results may not be as V-shaped as we might expect when N is large

Figure : Cross validation results of 8 hypotheses with orders 1 to 8. Both the training and cross validation sets contain 50 instances.

1 More About Probabilistic Modeling

2 MAP and Bayesian Estimation

3 The Bias/Variance Dilemma

Generative Methods

- Univariate Classification
- Maximum Likelihood Estimation
- Multivariate Classification
- Tuning the Model Complexity

Univariate Classification

- Given a training set $\mathcal{X} = \{x^{(t)}, \mathbf{r}^{(t)}\}_{t=1}^{N}$, where $r_i^{(t)} = 1$ if $x^{(t)} \in C_i$ and 0 otherwise, we find the discriminant $f_i(x) = P(C_i|x)$ for each class C_i , and then classify a new instance x' as $C_{y'}$ if $y' = \arg_i \max P(C_i|x)$
- Based on the generative assumption and Bayes' rule, we pick C_i such that f_i(x') = log(p(x'|C_i)P(C_i)) = log p(x'|C_i) + log P(C_i) is maximized
- To be able to make prediction given all possible x'
 - We estimate the prior $P(C_i)$ by $\widehat{P}[C_i] = \frac{\sum_{i=1}^{N} r_i^{(t)}}{N}$

• By assuming that instances of the same class are normally distributed, we estimate the likelihood $p(x|C_i)$ by $\hat{p}(x|C_i) = \frac{1}{\sqrt{2\pi s_i^2}} exp\left(\frac{-(x-m_i)^2}{2s_i^2}\right)$, where $m_i = \frac{\sum_{t=1}^{N} x^{(t)} r_i^{(t)}}{\sum_{t=1}^{N} r_i^{(t)}}$ and $s_i^2 = \frac{\sum_{t=1}^{N} (x^{(t)} - m_i)^2 r_i^{(t)}}{\sum_{t=1}^{N} r_i^{(t)} - 1}$

1 More About Probabilistic Modeling

2 MAP and Bayesian Estimation

3 The Bias/Variance Dilemma

Generative Methods

- Univariate Classification
- Maximum Likelihood Estimation
- Multivariate Classification
- Tuning the Model Complexity

Maximum Likelihood Estimation

• Why
$$\widehat{P}(C_i) = \frac{\sum_{i=1}^{N} r_i^{(t)}}{N}$$
 and $\widehat{p}(x|C_i) = \frac{1}{\sqrt{2\pi s_i^2}} exp\left(\frac{-(x-m_i)^2}{2s_i^2}\right)$ are good choices?

- Why $\widehat{P}(C_i) = \frac{\sum_{t=1}^{N} r_i^{(t)}}{N}$ and $\widehat{p}(x|C_i) = \frac{1}{\sqrt{2\pi s_i^2}} exp\left(\frac{-(x-m_i)^2}{2s_i^2}\right)$ are good choices?
 - It turns out that each of these estimators maximizes the likelihood $p(\mathcal{X}|\theta)$, where θ is the parameters of the distribution used to model the target probability ($P(C_i)$ and $p(x|C_i)$ respectively)
- When we talk about the likelihood-based classification, the "likelihood" actually refers to the one $(p(X|\theta))$ of θ given Xrather than that $(p(x'|C_i))$ of C_i given x'

- To estimate P(C_i), we first assume that P(C_i) has the Bernoulli distribution parametrized by θ = ρ_i and can be written as P(C_i) = P(C_i; θ)
 - Let X_i be a random variable where X_i = 1 if the event "the outcome of a toss is C_i and X_i = 0 if "the outcome is not C_i"
 - Let ρ_i be the probability that $X_i = 1$, we have $P(X_i = c; \theta) = \rho_i^c (1 \rho_i)^{1-c}, c \in \{0, 1\}$
- Now the problem estimating $P(C_i|\theta) = P(X_i = 1; \theta) = \rho_i$ can be reduced to estimating $\theta = \rho_i$

ML Estimation for $P(C_i)$ (2/2)

- Given the training set X, a good estimate of θ is the one that maximizes P(θ|X)
 - From Bayes' rule, we can instead pick $\hat{\theta}$ maximizing $P(\mathfrak{X}|\theta)$ if we don't have prior reason to favor certain θ
 - Equivalently, we pick $\widehat{\theta}$ maximizing log $P(\mathfrak{X}|\theta)$
 - We have $\log P(\mathcal{X}|\theta) = \log \left(\prod_{t=1}^{N} \rho_i^{r_i^{(t)}} (1-\rho_i)^{1-r_i^{(t)}}\right)$
 - Solving $\frac{d(\log P(X|\theta))}{d\rho} = 0$ we obtain the *Maximum Likelihood (ML)* estimator $\hat{\rho_i} = \frac{\sum_{t=1}^{N} r_i^{(t)}}{N}$ [Proof]
- $\widehat{P}[C_i] = P(C_i|\widehat{\theta}) = \widehat{\rho}_i$
- Note we can also consider all classes together and assume that $P(C_i)$ follows the Multinomial distribution parametrized by $\theta = (\rho_1, \cdots, \rho_K)$ with constrains $\sum_{i=1}^{K} \rho_i = 1$
 - The ML estimator for each ρ_i will be the same as the above [Homework]

Shan-Hung Wu (CS, NTHU)

ML Estimation for $p(x|C_i)$ (1/2)

• We assume that $p(x|C_i)$ is normal and can be written as $p(x|C_i) = p(x|C_i;\theta)$ with some $\theta = (\mu_i, \sigma_i)$

•
$$p(x|C_i;\theta) = p_{N_{\mu_i,\sigma^2}}(x) = \frac{1}{\sqrt{2\pi\sigma_i^2}} exp\left(\frac{-(x-\mu_i)^2}{2\sigma_i^2}\right)$$

- Now the problem estimating $p(x|C_i; \theta)$ cane be reduced to estimating $\theta = (\mu_i, \sigma_i)$
- Given the training set X, a good estimate of θ is the one that maximizes log p(X|θ)

• We have
$$\log p(\mathcal{X}|\theta) = \log \left(\prod_{t=1}^{N} \left(\frac{1}{\sqrt{2\pi\sigma_i^2}} exp\left(\frac{-(x^{(t)} - \mu_i)^2}{2\sigma_i^2} \right) \right)^{r_i^{(t)}} \right)$$

• Taking the partial derivatives of $\log p(\mathcal{X}|\theta)$ in terms of μ_i and σ_i and setting them equal to 0 we obtain the estimators $m_i = \frac{\sum_{t=1}^{N} x^{(t)} r_i^{(t)}}{\sum_{t=1}^{N} r_i^{(t)}}$ and

$$s_i^2 = \frac{\sum_{t=1}^{N} (x^{(t)} - m_i)^2 r_i^{(t)}}{\sum_{t=1}^{N} r_i^{(t)}} \text{ respectively [Proof]}$$

Shan-Hung Wu (CS, NTHU)

- Recall that $s_i^2 = \frac{\sum_{t=1}^N (x^{(t)} m_i)^2 r_i^{(t)}}{\sum_{t=1}^N r_i^{(t)}}$ is a bias estimator, we can replace the denominator with $\sum_{t=1}^N r_i^{(t)} 1$
 - This step is optional
 - The difference, actually, is negligible when N is large

•
$$\widehat{p}(x|C_i) = p(x|C_i,\widehat{\theta}) = \frac{1}{\sqrt{2\pi s_i^2}} exp\left(\frac{-(x-m_i)^2}{2s_i^2}\right)$$

1 More About Probabilistic Modeling

- 2 MAP and Bayesian Estimation
- 3 The Bias/Variance Dilemma

Generative Methods

- Univariate Classification
- Maximum Likelihood Estimation
- Multivariate Classification
- Tuning the Model Complexity

- Let's go back to a higher dimensional feature space
 - We are given a training set $\mathcal{X} = \{\mathbf{x}^{(t)}, \mathbf{r}^{(t)}\}_{t=1}^{N}$ where $\mathbf{x}^{(t)} \in \mathbb{R}^{d}$ and $(\mathbf{x}^{(t)}, \mathbf{r}^{(t)})$ are i.i.d. samples drawn from some unknown (multivariate) distribution
 - Typically, the features of $x^{(t)}$ are correlated (otherwise we can discuss each attribute individually using the univariate methods)
- It might be a good idea to review the multivariate distributions now

- The idea remains the same: given a new instance $\mathbf{x}' \in \mathbb{R}^d$, we make prediction by picking the class C_i if its discriminant $f_i(\mathbf{x}') = P(C_i|\mathbf{x}')$ is maximized
 - Generative assumption: pick C_i if $f_i(\mathbf{x}') = \log p(\mathbf{x}'|C_i) + \log P(C_i)$ is maximized
- It's common to assume that $p(\mathbf{x}|C_i)$ follows the multivariate normal distribution, i.e., $p(\mathbf{x}|C_i) = p_{\mathbf{N}_{\mu_i, \Sigma_i}}(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} det(\Sigma_i)^{1/2}} exp\left[-\frac{1}{2}(\mathbf{x}-\mu_i)^\top \Sigma_i^{-1}(\mathbf{x}-\mu_i)\right]$
- Why?
 - Major reason: analytical simplicity
 - Studies also show that the model is robust to datasets departing from normality

• The ML estimators of $P(C_i)$ is $\widehat{P}[C_i] = \sum_{t=1}^{N} r_i^{(t)} / N$

• We have seen this in the univariate cases before

• The ML estimators of
$$p(\mathbf{x}|C_i)$$
 is
 $\frac{1}{(2\pi)^{d/2}det(\mathbf{S}_i)^{1/2}}exp\left[-\frac{1}{2}(\mathbf{x}-\mathbf{m}_i)^{\top}\mathbf{S}_i^{-1}(\mathbf{x}-\mathbf{m}_i)\right]$, where
 $\mathbf{m}_i = \frac{\sum_{t=1}^{N} \mathbf{x}^{(t)} r_i^{(t)}}{\sum_{t=1}^{N} r_i^{(t)}}$ and
 $\mathbf{S}_i = \frac{\sum_{t=1}^{N} (\mathbf{x}^{(t)} - \mathbf{m}_i) (\mathbf{x}^{(t)} - \mathbf{m}_i)^{\top} r_i^{(t)}}{\sum_{t=1}^{N} r_i^{(t)}}$

Why?

• The ML estimators of $P(C_i)$ is $\widehat{P}[C_i] = \sum_{t=1}^{N} r_i^{(t)} / N$

• We have seen this in the univariate cases before

• The ML estimators of
$$p(\mathbf{x}|C_i)$$
 is

$$\frac{1}{(2\pi)^{d/2} det(\mathbf{S}_i)^{1/2}} exp\left[-\frac{1}{2}(\mathbf{x}-\mathbf{m}_i)^{\top} \mathbf{S}_i^{-1}(\mathbf{x}-\mathbf{m}_i)\right], \text{ where}$$

$$\mathbf{m}_i = \frac{\sum_{t=1}^{N} \mathbf{x}^{(t)} r_i^{(t)}}{\sum_{t=1}^{N} r_i^{(t)}} \text{ and}$$

$$\mathbf{S}_i = \frac{\sum_{t=1}^{N} (\mathbf{x}^{(t)} - \mathbf{m}_i) (\mathbf{x}^{(t)} - \mathbf{m}_i)^{\top} r_i^{(t)}}{\sum_{t=1}^{N} r_i^{(t)}}$$

Why? It's a good idea to review the matrix calculus now

ML Estimator of μ_i

• Let
$$\theta = (\mu_i, \Sigma_i)$$
, we have the likelihood $\log p(\mathcal{X}|\theta) = \log \left(\prod_{t=1}^{N} \left(\frac{1}{(2\pi)^{d/2} det(\Sigma_i)^{1/2}} e^{-\frac{1}{2} (\mathbf{x}^{(t)} - \mu_i)^\top \Sigma_i^{-1} (\mathbf{x}^{(t)} - \mu_i)} \right)^{r_i^{(t)}} \right) = -\frac{N_i d}{2} \log(2\pi) - \frac{N_i}{2} \log(det(\Sigma_i)) - \frac{1}{2} \sum_{t=1}^{N} r_i^{(t)} (\mathbf{x}^{(t)} - \mu_i)^\top \Sigma_i^{-1} (\mathbf{x}^{(t)} - \mu_i)$, where $N_i = \sum_{t=1}^{N} r_i^{(t)}$

• Recall that for any $\boldsymbol{a} \in \mathbb{R}^n$ and $\boldsymbol{A} \in \mathbb{R}^{n \times n}$,

•
$$\frac{\partial}{\partial x}(\boldsymbol{a}^{\top}\boldsymbol{x}) = \frac{\partial}{\partial x}(\boldsymbol{x}^{\top}\boldsymbol{a}) = \boldsymbol{a}^{\top}$$

• $\frac{\partial}{\partial x}(\boldsymbol{x}^{\top}\boldsymbol{A}\boldsymbol{x}) = \boldsymbol{x}^{\top}(\boldsymbol{A} + \boldsymbol{A}^{\top})$

• Taking the partial derivative of log $p(\mathcal{X}|\theta)$ with respect to μ_i and setting it to zero, we get $\sum_{t=1}^{N} r_i^{(t)} (\mathbf{x}^{(t)} - \mu_i)^\top \mathbf{\Sigma}_i^{-1} = \mathbf{0}^\top$ [Proof]

• So
$$m_i = \frac{\sum_{t=1}^{N} x^{(t)} r_i^{(t)}}{\sum_{t=1}^{N} r_i^{(t)}}$$

- $\log p(\mathcal{X}|\theta) = -\frac{N_i d}{2} \log(2\pi) \frac{N_i}{2} \log(\det(\Sigma_i)) \frac{1}{2} \sum_{t=1}^{N} r_i^{(t)}(\mathbf{x}^{(t)} \mu_i)^\top \Sigma_i^{-1}(\mathbf{x}^{(t)} \mu_i)$
- Note $\log(det(\Sigma_i^{-1})) = -\log(det(\Sigma_i))$
- Also, $(\mathbf{x}^{(t)} \mu_i)^{\top} \Sigma_i^{-1} (\mathbf{x}^{(t)} \mu_i) = tr \left(\Sigma_i^{-1} (\mathbf{x}^{(t)} \mu_i) (\mathbf{x}^{(t)} \mu_i)^{\top} \right)$ [Proof]
- We can rewrite the likelihood as $\log p(\mathcal{X}|\theta) = -\frac{N_i d}{2} \log(2\pi) + \frac{N_i}{2} \log(\det(\Sigma_i^{-1})) \frac{1}{2} \sum_{t=1}^{N} r_i^{(t)} tr\left(\Sigma_i^{-1}(\mathbf{x}^{(t)} \boldsymbol{\mu}_i)(\mathbf{x}^{(t)} \boldsymbol{\mu}_i)^{\top}\right)$

• Given any function f(x), let $g(x) = f(\frac{1}{x})$ for any x > 0, then x^* is a stationary point of g iff $\frac{1}{x^*}$ is a stationary point of f

• The matrix version $g(A) = f(A^{-1})$ applies when A is positive definite

- We can seek for the partial derivative of $\log p(\mathcal{X}|\theta)$ with respect to Σ_i^{-1}
- Recall that $\frac{\partial}{\partial A} \ln(det(A)) = (A^{-1})^{\top}$, and $\frac{\partial}{\partial A} tr(AB) = B^{\top}$
- Taking the partial derivative of log p(X|θ) with respect to Σ_i⁻¹ and setting it to zero, we get

 M_iΣ_i 1/2 Σ_{t=1}^N r_i^(t) (x^(t) μ_i)(x^(t) μ_i)^T = O [Proof]

 Therefore, S_i = Σ_{t=1}^N (x^(t) m_i)(x^(t) m_i)^T r_i^(t)/Σ_{t=1}^N r_i^(t)/Σ_{t=1}^N r_i^(t)/Σ_{t=1}^N r_i^(t)

- Ignoring the constant terms we have the discriminant $f_i(\mathbf{x}) = -\frac{1}{2}\log(det(\mathbf{S}_i)) - \frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^\top \mathbf{S}_i^{-1}(\mathbf{x} - \mathbf{m}_i) + \log \widehat{P}[C_i]$, which can be rewritten as $f_i(\mathbf{x}) = \mathbf{x}^\top \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^\top \mathbf{x} + w_i$, where $\mathbf{W}_i = -\frac{1}{2}\mathbf{S}_i^{-1}$, $\mathbf{w}_i = \mathbf{S}_i^{-1}\mathbf{m}_i$, and $w_i = -\frac{1}{2}\mathbf{m}_i^\top \mathbf{S}_i^{-1}\mathbf{m}_i - \frac{1}{2}\log(det(\mathbf{S}_i)) + \log \widehat{P}[C_i]$ [Proof]
 - The classification is done via *quadratic discrimination*
 - The decision boundary between any two classes is quadratic too [Proof]

Multivariate Classification (3/3)

1 More About Probabilistic Modeling

- 2 MAP and Bayesian Estimation
- 3 The Bias/Variance Dilemma

Generative Methods

- Univariate Classification
- Maximum Likelihood Estimation
- Multivariate Classification
- Tuning the Model Complexity

Simplifications (1/2)

- Quadratic discrimination:
 - Attributes in different classes have different covariance matrices S_i ({x : p(x|C_i) = c} are ellipsoids)

• Linear discrimination.

- Attributes in different classes share the same correlation S_i = S (ellipsoids with the same shape/orientation)
- Attributes in each classes are independent $S_i = S = D$ (axis-aligned ellipsoids with the same shape/orientation)
- Attributes in each classes has the same variance S_i = S = s²I (equal-sized spheres)

Simplifications (2/2)

• Linear discrimination models seem to be oversimplified, but why are they popular in real applications?

Simplifications (2/2)

- Linear discrimination models seem to be oversimplified, but why are they popular in real applications?
- Quadratic discrimination has lower bias, but higher variance
- Experience tells us that *when we have a small dataset*, it may be better to assume a shared and simplified covariance matrix
 - $\boldsymbol{S}_i = \boldsymbol{S}$ can be estimated using all examples in a dataset together
 - S = D if we do not have enough data to estimate the covariance between attributes accurately
 - $D = s^2 I$ if attributes are *z*-normalized
- Linear discrimination is *not* necessarily linear
 - We can augment the inputs (e.g., $x_{d+1} = exp(x_1 + x_4)$) to build a higher dimensional feature space, if we believe this is useful
 - Linear discrimination in the augmented feature space corresponds to a nonlinear model in the original input space
- We can perform the cross validation to decide which assumption is the best

Shan-Hung Wu (CS, NTHU)

Linear Discrimination $(S_i = S)$

- The discriminant for each class is $f_i(\mathbf{x}) = \mathbf{x}^\top \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^\top \mathbf{x} + w_i$, where $\mathbf{W}_i = -\frac{1}{2} \mathbf{S}_i^{-1}$, $\mathbf{w}_i = \mathbf{S}_i^{-1} \mathbf{m}_i$, and $w_i = -\frac{1}{2} \mathbf{m}_i^\top \mathbf{S}_i^{-1} \mathbf{m}_i - \frac{1}{2} \log(\det(\mathbf{S}_i)) + \log \widehat{P}[C_i]$
- We can replace S_i with S, the estimator of Σ of all instances in the training set
 - The level sets {**x** : $p(\mathbf{x}|C_i) = c$ } are ellipsoids with the same shape/orientation
- Ignoring the constant terms, the discriminant now becomes $f_i(\mathbf{x}) = \mathbf{w}_i^\top \mathbf{x} + w_i$, where $\mathbf{w}_i = \mathbf{S}^{-1} \mathbf{m}_i$ and $w_i = -\frac{1}{2} \mathbf{m}_i^\top \mathbf{S}^{-1} \mathbf{m}_i + \log \widehat{P}[C_i]$ [Proof]

Naive Bayes Classifiers $(S_i = S = D)$

- We can further assume that attributes are independent with each other, i.e., $\boldsymbol{S}_i = \boldsymbol{S} = \begin{bmatrix} s_0^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & s_d^2 \end{bmatrix}$ are diagonal
 - Likelihood-based classifiers using this strong (naive) independence assumption are called the *naive Bayes' classifiers*

• The level sets
$$\{x : p(x|C_i) = c\}$$
 are axis-aligned ellipsoids

•
$$f_i(\mathbf{x}) = -\frac{1}{2} \sum_{j=1}^d \left(\frac{m_{i,j}^2 - 2x_j m_{i,j}}{s_j^2} \right) + \log \widehat{P}[C_i]$$
 [Proof]

- If we further assume that that attributes have the same variance, i.e., $\boldsymbol{S}_i = \boldsymbol{S} = s \boldsymbol{I}$
 - The level sets $\{x : p(x|C_i) = c\}$ degenerate into spheres

•
$$f_i(\mathbf{x}) = -\frac{1}{2s^2} \left(\|\mathbf{m}_i\|^2 - 2\mathbf{m}_i^\top \mathbf{x} \right) + \log \widehat{P}[C_i] \text{ (or } f_i(\mathbf{x}) = -\frac{1}{2s^2} \|\mathbf{x} - \mathbf{m}_i\|^2 + \log \widehat{P}[C_i] \text{ [Proof]} \right)$$

• If we drop $\log P[C_i]$, we obtain a *nearest mean classifier*