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Summary of Supervised Learning Models

@ Three main categories (either parametric or non-parametric):

© Those learning the discriminant functions f's (no probability
interpretation)

o E.g., perceptron, kNN, etc.
@ Those based on probability and learn p(r|x) directly

o E.g., linear regression, logistic regression, etc.
o p(r|x;0) with 6 (constant) estimated from X
e Methods in 1 and 2 are called discriminative methods

© Those learn p(r|x) indirectly from p(x|r)p(r)

o To be discussed later
o These are called generative methods, as p(x|r)p(r) explains how x
(and X) is generated
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Probabilistic Modeling

@ By assuming the target follows some probability distribution
@ Pros and cons?
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Probabilistic Modeling

By assuming the target follows some probability distribution

°
@ Pros and cons?

@ Perform well only when the assumption holds
°

Essentially solves a problem (i.e., distribution estimation) harder than
discrimination

e E.g., in generative models, if we let p(x|r) ~N(u,X), then we can plot
the contour of each class in addition to the decision boundary
o Less efficient; but more descriptive

e
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More About Probabilistic Modeling (1)

@ The roles of 0 in the prediction function p(r’|x’):
o Constant, from ML estimation of O:

o Opy = argmaxg p(X|0)
o p(rlx") = p(rlx";0pm1)

o Constant, from MAP estimation of 0:

@ Opap = argmaxg p(6|X) = argmaxg p(X|0)p(0)
o p(rlx) = p(rlx;0map)

e Random variable, for full Bayesian treatment:

o plylx,X) = [ ply,0lx",X)do
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More About Probabilistic Modeling (2)

@ Can we analyze the generation performance more easily with the aid of
distribution assumption?
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More About Probabilistic Modeling (3)

@ Generative models
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The Roles of 0

@ The roles of 0 in the discrimination function p(r’|x’):
o Constant, from ML estimation of O:

@ Opy = argmaxg p(X|0)
o p(r'lx") = p(rlx;OpmL)

o Constant, from MAP estimation of 0:

@ Opap = argmaxg p(6|X) = argmaxg p(X|0)p(0)
o p(r'lx"):=p(r'Ix";0pmap)

e Random variable, for full Bayesian treatment of r’:

o p(r'Ix',X) = [p(r’,Blx",X)dO
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ML Estimator for 0

@ The estimators we discussed so far (e.g., p;, m;, and S; in
classification and w in regression) are called the Maximum
Likelihood (ML) estimators since they are derived from
O m = argg maxp(X[0)

e E.g., in linear regression where 8 = w, given a new instance x’, the
prediction can be made by

y' =arg, maxp(y|x';wm) =arg, maxN(ylw, x',B~1) = wj, x’
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MAP Estimator for 0

o If we have the prior knowledge about 6 (i.e., P(8)), we can obtain the
Maximum A Posteriori (MAP) estimators based on
Omap = argg max P(0]X) = argg max p(X[|0)P(0)
o If we assume that w ~N(0, x 1) in linear regression, we have
log p(w|X) = log p(X|w) +log p(w) o
—% SV, (rte) — wa("“])2 —%w " w [Proof]
o We effectively find wpjap that minimizes
Z{LVZI (r(t) —wa(t))2+7\wTw, where A = o/
@ In addition to minimizing the SSE, we regularize the norm of w to

prevent a highly complex model, thereby reducing the generalization
error

o y' =arg, maxp(ylx’;wmap) =arg, maxN(ylw j,px’, B 1) =w i \px’
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Bayesian Estimator for r’

@ The above methods thread 0 as a deterministic value when making
predictions

@ Another technique, called the Bayesian estimation of r’, treats 0 as
a random variable, and considers all possible values of 8 when
estimating r’:

o y' =arg, maxp(ylx’,X) = [ p(y,0|x", X)d6
o E.g., in linear regression,

y' =arg, maxp(y|x’, X) = arg, max | p(y, wix’,X)dw
o No separated estimation phase for 0

@ We will discuss how to solve y’ in the lecture of graphical models
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Regression Reuvisited (1)

o Given X :{x(t),r(”}?’:l, where r(t) € R. Assume

o (x) r(t)) are i.i.d samples drawn from some joint distribution of x
and r (otherwise can never learn r from x)

o In particular, r't) = f(x(1):0)+¢€, e ~N(0, 1) for some
hyperparameter (i.e., constant fixed during the objective solving)

o The marginal distribution p(r|x) follows: p(r|x) = PNyo)p1 (r)

@ We want to estimate f using X

o Hypothesis: h(x;wg, w1, -+, wg) =wp+wixy + -+ wgxg, a line
e Once getting wy, wy, -+, Wy, we can predict the unknown r’ of a new
instance x’ by

y' = arg, maxplylx') =arg, maxpw, . (y) = h(x';0)
o Note that we don't need to know 3 to make prediction
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Regression Revisited (2)

@ How to obtain the estimate h of 7 How to obtain 07
@ We can pick 0 maximizing p(0|X), the posterior probability

@ Or, by Baye's theorem, 0 maximizing the likelihood p(X|0) (if we
assume p(0) remains the same for all 0)

e Or, 0 maximizing the log likelihood log p(X|0) =
log (Tt p(x®),r(4)10) ) =log (TTi; p(r©)Ix(0),0)p(x(V]6) )=
log (1! p(A( x( >;e)+e|x(f),e)p(x(ﬂ|e))
e Ignoring p(x(1)]0) = p(x(t)) (since it is irrelevant to 6) and constants
27 _ (t).9))?
we have log p(X|0) oc —Nlog (,/ ) Byl (r'—h(x1);0))
@ Dropping the first term and constants we have

log p(X]0) x — 3 I (rlt —h(x“);e))z; that is, we seek for 0
minimizing the SSE (sum of square errors)
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The Bias/Variance Dilemma (1/4)

@ The likelihood-based classification and regression share the same idea
that the estimators h(x;0x) are obtained by 6y = argg max p(X|0)

o In classification, h(x;0+) estimates the discriminant of a class; in
regression, h(x;0+) estimates f

@ Given a new instance x’ where r’ is unknown, the expected square
error (over the joint distribution of (x,r)) of our prediction can be
written as

Ellr—hix's0x))2x') = [(r = hix's0))2p(rlx)dr
[(r—Elrlx"1) + (Elrlx'] — h(x";0x)]* p(r|x")dr

- J(r— Elrlx'1)2p(rlx")dr + (Elrlx'] —h(X’;Gx))ZJP(fIX’)df—ZO

=E[(r—E[r|Ix'1)?|x']1+ (Elr|x']— h(x";06x))?

@ The first term does not depend on h but the assumption of the joint
distribution of (x, r)
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The Bias/Variance Dilemma (2/4)

@ The second term changes as we vary our hypothesis h and its
complexity

@ Note that in regression,
Elrix'l = Elf(x')+€|x’] = f(x")+ Ele|x'] = f(x’) so the second term
measures how our estimator h is difference from its target f

o The similar argument applies to the case of classification

@ Recall that we can measure how good the estimator h is by using the
mean square error Ex[(h—f)?] over all possible X of the same
size!

@ Since h and f are functions, we can rewrite the mean square error as
follows given an instance x’ :

Ex[(h(x';0x) — Elr|x'])?|x"] = bias? + variance

= (Exlh(x';02)]— Elrlx'])* + Ex [ (h(x'; 0x0) — Ex[h(x';02)])°

1Here we distinguish Ey (over X) from E (over the joint distribution of (x,r))
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The Bias/Variance Dilemma (3/4)

(a) Function and data (b) Order 1
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Figure : (a) A function f(x) =2sin(1.5x) and a noisy training set (€ =5 Ng1)
consisting of 20 examples. There are totally 5 training sets X;, 1 <i <5,
generated to calculate Ex. (b), (c), and (d) are 5 polynomial fits, namely
h(x;0x;) of order 1, 3, and 5 respectively. For each case, the dotted line shows
the average of the 5 fits, namely Ex; [h(x;0x;)] .
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The Bias/Variance Dilemma (4/4)

@ As we can see, a complex (i.e., high order) hypothesis h has

o Low bias, as the average of the 5 fits is close to f

o But high variance, as its shape is affected by noise

o The variance decreases as N increase, since when N is large the
different training sets X; look similar

@ This is a mathematical way to justify: generalization error o empirical
error + (model complexity / N)

o Empirical error corresponds to the bias
o The second term corresponds to the variance
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Model Selection

@ The right order of h can be
determined using the cross
validation technique

@ Given the validation results at
right (the dotted line), which
order should we take?

Shan-Hung Wu (CS, NTHU)
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(a) Data and fitted polynomials

(b) Error vs. polynomial order

- Training
— — —Validation

Figure : Cross validation results of 8
hypotheses with orders 1 to 8. Both the
training and cross validation sets contain
50 instances.

NetDB-ML, Spring 2015

18 / 40



Model Selection

(a) Data and fitted polynomials

@ The right order of h can be
determined using the cross
validation technique

@ Given the validation results at
right (the dotted line), which
order should we take?3

o Why not 4?7 Occam'’s razor
tells us that we should choose
the simplest hypothesis
provided that its error is
comparable

o Note the validation results
may not be as V-shaped as we
might expect when N is large

(b) Error vs. polynomial order

- Training
— — —Validation

Figure : Cross validation results of 8
hypotheses with orders 1 to 8. Both the
training and cross validation sets contain
50 instances.
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© Generative Methods
@ Univariate Classification
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Univariate Classification

o Given a training set X ={x(t) r }t 1+ Where r J_1ifx(t) ¢ C; and
0 otherwise, we find the discriminant f;(x) = (C |x) for each class C;,
and then classify a new instance x" as C, if y’ = arg;maxP(Cjlx)

@ Based on the generative assumption and Bayes’ rule, we pick C; such
that fi(x') =log (p(x'|Ci)P(C;)) = log p(x'|C;) +log P(C;) is

maximized

@ To be able to make prediction given all possible x’

~ N (t)
o We estimate the prior P(C;) by P[Cj] = Z’:Tlr’
e By assuming that instances of the same class are normally distributed,

we estimate the likelihood p(x|C;) by B(x|C;) = \/;Tsexp (—(X—’"ﬂz),

2s?
1
Z{y:lx(t)”i[t) 2 _ Zt 1(x t)—'" )2

Y ’;m ! pan 1’ -

where m; =
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© Generative Methods

@ Maximum Likelihood Estimation
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Maximum Likelihood Estimation

P N (1)
o Why P(C) = 2215 and B(x|C;) = \/;?exp(‘“;s;"f)z) are good

choices?
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Maximum Likelihood Estimation

P N (1)
o Why P(C) = 2215 and B(x|C;) = \/;I?exp<_(x2_s£n")z> are good

choices?

o It turns out that each of these estimators maximizes the likelihood
p(X|0), where 0 is the parameters of the distribution used to model the
target probability (P(C;) and p(x|C;) respectively)

@ When we talk about the likelihood-based classification, the
“likelihood” actually refers to the one (p(X|0)) of © given X
rather than that (p(x’|C;)) of C; given x’
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ML Estimation for P(C;) (1/2)

@ To estimate P((;), we first assume that P(C;) has the Bernoulli
distribution parametrized by 6 = p; and can be written as
P(C) =P(C;;0)
o Let X; be a random variable where X; =1 if the event “the outcome of
a toss is C; and X; =0 if “the outcome is not C;”
o Let p; be the probability that X; =1, we have
P(Xi=c;0)=pf(1—p;)' ¢ ce{0,1}
@ Now the problem estimating P(C;|0) = P(X; =1,0) = p; can be
reduced to estimating 6 = p;
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ML Estimation for P(C;) (2/2)

@ Given the training set X, a good estimate of 0 is the one that
maximizes P(0]X)

o From Bayes' rule, we can instead pick 0 maximizing P(X|0) if we don’t
have prior reason to favor certain 0
o Equivalently, we pick 8 maximizing log P(X|0)

o) (t)
o We have log P(X|0) =log (H?’Zl p; (l—p,-)lf’;t )
e Solving %’W =0 we obtain the Maximum Likelihood (ML)

: ~ ZQ’:l A
estimator p; = =5~— [Proof]
o P[C]=P(Cil0) =0p;
@ Note we can also consider all classes together and assume that P((;)
follows the Multinomial distribution parametrized by 6 = (py, -+, pk)
with constrains Z,K:1 pi=1

o The ML estimator for each p; will be the same as the above
[Homework]
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ML Estimation for p(x|C;) (1/2)

@ We assume that p(x|C;) is normal and can be written as
p(x|Ci) = p(x|Cj; 8) with some 0 = (p;, 0;)

—(x—u; 2

i

@ Now the problem estimating p(x|C;;0) cane be reduced to estimating
0 = (ui, o)

@ Given the training set X, a good estimate of 0 is the one that
maximizes log p(X|0)

2\ \ 7
o We have log p(X]6) = log [ TT"., (\/ziozexf’< ) ) ))

o Taking the partial derivatives of log p(X|6) in terms of y; and o; and

zi\lﬂx(t]r;tl

Zt=1" i  apd
S

setting them equal to O we obtain the estimators m; =

2_ Zt 1(X(t m] ri(t)
' Zt 17 =

respectively [Proof]
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ML Estimation for p(x|C;) (

N (82,0
2 Zt:I(X m;)°r;

o Recall that s7 = SN0 ;

t=1"j

the denominator with 3" I | rl-(t) -1

is a bias estimator, we can replace

o This step is optional
o The difference, actually, is negligible when N is large

~ ~ —(x—m;)?
o BXIC) = plxICi.0) = e (")
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© Generative Methods

@ Multivariate Classification
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Multivariate Data

@ Let’s go back to a higher dimensional feature space

o We are given a training set X :{x“),r(”}i":1 where x(t) € R9 and
(x(), r(t)) are i.i.d. samples drawn from some unknown (multivariate)
distribution

o Typically, the features of x(*) are correlated (otherwise we can discuss
each attribute individually using the univariate methods)

@ It might be a good idea to review the multivariate distributions now
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Multivariate Classification

@ The idea remains the same: given a new instance x’ € R, we make
prediction by picking the class C; if its discriminant £(x’) = P(Ci|x’)
is maximized

o Generative assumption: pick G if f;(x') =logp(x’|C;) +log P(C;) is
maximized

@ It's common to assume that p(x|C;) follows the multivariate normal
distribution, i.e.,
p(x|C) = PNy, 5, (x) = mexp [—%(X— Hi)Tzfl (x— Hi)]
o Why?
e Major reason: analytical simplicity

o Studies also show that the model is robust to datasets departing from
normality
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Maximum Likelihood Estimation

o The ML estimators of P(C;)is P[Cl =Y V¥, r,
o We have seen this in the univariate cases before

@ The ML estimators of p(xIC) i
mexp[ (X m,)TS (X—m,')], Where

N ()t
m; = 7251" i and
t=17 i
S. = Zt 1 ) —mj) (x (t)*mi)—rri(t)
i =
Zt:l i
o Why?
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Maximum Likelihood Estimation

o The ML estimators of P(C;)is P[Cl =Y V¥, r,
o We have seen this in the univariate cases before

@ The ML estimators of p(xIC) i
mexp[ (X m,)TS (X—m,')], Where

N (1), (t)
_1X r.
m; = 72‘*1 tﬂ and
Zt 1 l
S. = Zt 1 ) —m;) (xt )*mi)—rri(t)
i =
Zt:l i

@ Why? It's a good idea to review the matrix calculus now
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ML Estimator of u;

@ Let 6 =(p;,Z;), we have the likelihood logp(X[0) =

()
Ll T 0 )\ i
log (Ht 1(Wt()1/2e 2O m) )Z

— 142 log(2m) — & log(det(£:)) — § Tty rf ) (x(®) — ) T2 (x (1) —
u;), where N; = Zivzl ri(t)

@ Recall that for any 2 € R” and A € R"*",

° %(a—'—x) = %(XTB) —al

o Z(xTAx)=xT(A+AT)

@ Taking the partial derivative of log p(X|0) with respect to p; and
setting it to zero, we get Zf,v:l r,-(t)(x“) —u;)TE; =0T [Proof]

Zt lxt ,’f)

e Som; = N
t:ll
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ML Estimator of X; (1/2)

° |ogp(%|9)=—%d|og(2ﬂ) Iog(det 2Zt 1fi (x1) —
u) TZ 7 (x —y)
o Note log(det(Z; 1)) = Iog(det( i)

o Also, (xV) —p) TZ A (x(®) — ;) = tr (Z (x “)—u,-)(x(”—uf)T)
[Proof]

o We can rewrite the Iikelihood as log p(X10) = — i log(27r) +
Bitog(det(Z; 1) — 33 ¥y, (Zfl(x(”fu;)(x(”*u;)T)
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ML Estimator of X; (2/2)

e Given any function f(x), let g(x) = f(%) for any x >0, then x* is a
stationary point of g iff % is a stationary point of f

o The matrix version g(A) =f(A™1) applies when A is positive definite

@ We can seek for the partial derivative of logp(X|0) with respect to
It

o Recall that %ln(det(A)) =(A™HT, and %tr(AB) =B

o Taking the partial derivative of log p(X|0) with respect to Zi_l and
setting it to zero, we get
B -1 Y (x1 — ) (x O — ) T = O [Proof]

,)(x(t)_m’,)Tri(t]

N (t)_

_1(X m

@ Therefore, S; = Lel N5
thl ’i
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Quadratic Discrimination

@ Ignoring the constant terms we have the discriminant
fi(x) = —% log(det(S;)) — %(x— m,-)—'—SIT1 (x —m;) +log /I5[C,-], which
can be rewritten as
filx)=x"W;x+ W,-Tx + w;, where
W;=-1s:1,
w; = S,-_21m,-, and
w; = —im] S7 m; — Llog(det(S;)) +log P[Ci] [Proof]

o The classification is done via quadratic discrimination
e The decision boundary between any two classes is quadratic too [Proof]
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Multivariate Classification

o

Figure : (a) The graphs of
p(x|C;) for two classes
with different covariance
matrices. (b) The graph of
posterior P(Ci|x). (c)
Level sets of p(x|C;) and

x x the decision boundary.
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© Generative Methods

@ Tuning the Model Complexity
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Simplifications (1/2)

Population likelihoods and posteriors

@ Quadratic discrimination:

o Attributes in different classes have
different covariance matrices S;
({x : p(x|C;) = c} are ellipsoids)

o Linear discrimination:

o Attributes in different classes share the
same correlation §; = S (ellipsoids
with the same shape/orientation)

e Attributes in each classes are
independent §; =S = D (axis-aligned
ellipsoids with the same
shape/orientation)

o Attributes in each classes has the same
variance §; = S = 5?1 (equal-sized
spheres)
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Simplifications (2/2)

@ Linear discrimination models seem to be oversimplified, but why are
they popular in real applications?
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Simplifications (2/2)

@ Linear discrimination models seem to be oversimplified, but why are
they popular in real applications?

@ Quadratic discrimination has lower bias, but higher variance

o Experience tells us that when we have a small dataset, it may be
better to assume a shared and simplified covariance matrix

o §; =5 can be estimated using all examples in a dataset together

o S =D if we do not have enough data to estimate the covariance
between attributes accurately

o D =21 if attributes are z-normalized

@ Linear discrimination is not necessarily linear

o We can augment the inputs (e.g., x4+1 = exp(x1 +x4)) to build a
higher dimensional feature space, if we believe this is useful

o Linear discrimination in the augmented feature space corresponds to a
nonlinear model in the original input space

@ We can perform the cross validation to decide which assumption is the
best
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Linear Discrimination (S; = S)

@ The discriminant for each class is fj(x) = x " Wx + w,-Tx+ w;, where
W;= —%1571,
w;=S; m;, and
w; = —%miTS,Tlm,- — % log(det(S;)) +log PIC;]
@ We can replace S; with S, the estimator of X of all instances in the
training set
o The level sets {x: p(x|C;) = c} are ellipsoids with the same
shape/orientation

@ Ignoring the constant terms, the discriminant now becomes
fi(x) = w,-Tx+ w;j, where
w; =S 'm; and
wj = —%miTS_lm,- +log P[C/] [Proof]
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Naive Bayes Classifiers (S; =S = D)

@ We can further assume that attributes are independent with each
sg e 0
other, ie., §;=8=| : . are diagonal
2
0 - s2
o Likelihood-based classifiers using this strong (naive) independence

assumption are called the naive Bayes’ classifiers
o The level sets {x : p(x|C;) = c} are axis-aligned ellipsoids

Y .
o filx)=—13 Jd L (”;’”) +log P[C;] [Proof]
J

@ If we further assume that that attributes have the same variance, i.e.,
S;=S8=sl
o The level sets {x: p(x|C;) = c} degenerate into spheres
o fi(x) = 252 (Hm,|| —2m, x) +log PIC] (or
filx) =—5, 32 ||x mlH —HOgP il) [Proof]
o If we drop IogP[C ], we obtain a nearest mean classifier
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