Supervised Learning Regression and Classification

Shan-Hung Wu
shwu@cs.nthu.edu.tw
Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Spring 2015

Outline

(1) Regression

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation
(2) Two-Class Classification
- Logistic Regression
- Perceptron
(3) Multiclass Classification
- Wrapper Methods
- Direct Models
(4) Non-Parametric Methods

Outline

(1) Regression

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation
(2) Two-Class Classification
- Logistic Regression
- Perceptron
(3) Multiclass Classification
- Wrapper Methods
- Direct Models

(4) Non-Parametric Methods

The Regression Problem

- Given
- a training dataset $X=\left\{\left(\boldsymbol{x}^{(t)}, \boldsymbol{r}^{(t)}\right)\right\}_{t=1}^{N}$, where $\boldsymbol{x}^{(t)} \in \mathbb{R}^{d}$'s are examples (or instances or observations) consisting of attributes (or inputs or features) and $r^{(t)} \in \mathbb{R}$'s are labels, and
- a testing instance \boldsymbol{x}^{\prime},
predict the label y^{\prime} of \boldsymbol{x}^{\prime}
- Example: stock price forecasting

ML Process Revisited

(1) Data collection and preprocessing (e.g., integration, cleaning, etc.)
(2) Model development
(1) Assume a model that represents the posteriori knowledge we want to discover. The model has parameters
(2) Define an objective that measures "how good the model with a particular combination of parameters can explain the data"
(3) Training: employ an algorithm that optimizes the objective by finding the best (or good enough) parameters
(1) Testing: evaluate the model performance on hold-out data
(3) Using the model

Modeling a Regressor

- Model: Let the model be a collection of functions, called hypothesis class and denoted as $\mathcal{H}=\{h: \mathcal{J} \times \Theta \rightarrow \mathbb{R}\}$, where \mathcal{J} is the input space (or feature space) and Θ is the set of all possible parameters
- A particular $\theta \in \Theta$ instantiates a hypothesis h that makes the prediction (or output) $y^{\prime}=h\left(x^{\prime} ; \theta\right)>0$
- Objective: $\arg _{\theta} \min \sum_{t=1}^{N} l\left(h\left(\boldsymbol{x}^{(t)} ; \theta\right), r^{(t)}\right)$, where l is some loss function which penalizes the error of predictions made on the training dataset
- We want the hypothesis to have the minimal empirical error: $\operatorname{emp}(\theta ; \mathcal{X})=\sum_{t=1}^{N} l\left(h\left(\boldsymbol{x}^{(t)} ; \theta\right), r^{(t)}\right)$

The Objective

- Common choice: $\arg _{\theta} \min \sum_{t=1}^{N}\left[r^{(t)}-h\left(\boldsymbol{x}^{(t)} ; \theta\right)\right]^{2}$
- emp $(\theta ; \mathcal{X})=\sum_{t=1}^{N}\left[r^{(t)}-h\left(\boldsymbol{x}^{(t)} ; \theta\right)\right]^{2}$ has a specific name called the Sum of Square Errors (SSE)
- Alternatively, the objective can be formed using the absolute error: $\arg _{\theta} \min \sum_{t=1}^{N}\left|r^{(t)}-h\left(\boldsymbol{x}^{(t)} ; \theta\right)\right|$
- What is the difference? [Homework]

Outline

(1) Regression

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation
(2) Two-Class Classification
- Logistic Regression
- Perceptron
(3) Multiclass Classification
- Wrapper Methods
- Direct Models

4 Non-Parametric Methods

Linear Regression

- Suppose \boldsymbol{x} is a scalar and h is a line, i.e., $h(x ; \theta)=w_{1} x+w_{0}$, we have the objective:
- To find w_{0} and w_{1} that minimizes

$$
\operatorname{emp}(\theta ; \mathcal{X})=\sum_{t=1}^{N}\left(r^{(t)}-\boldsymbol{w}^{\top}\left[\begin{array}{c}
1 \\
x^{(t)}
\end{array}\right]\right)^{2}
$$

- where $\boldsymbol{w}=\left[w_{0}, w_{1}\right]^{\top} \in \mathbb{R}^{2}$

Training: Analytic Solution (1)

- We take the partial derivatives of emp with respect to w_{0} and w_{1} and set them to 0
- We have a system of linear equations

$$
\begin{gathered}
\left\{\begin{array}{l}
\sum_{t=1}^{N} r^{(t)}=N w_{0}+w_{1} \sum_{t=1}^{N} x^{(t)} \\
\sum_{t=1}^{N} x^{(t)} r^{(t)}=w_{0} \sum_{t=1}^{N} x^{(t)}+w_{1} \sum_{t=1}^{N}\left(x^{(t)}\right)^{2}
\end{array}\right. \\
\text { - Let } \boldsymbol{A}=\left[\begin{array}{cc}
N & \sum_{t=1}^{N} x^{(t)} \\
\sum_{t=1}^{N} x^{(t)} & \sum_{t=1}^{N}\left(x^{(t)}\right)^{2}
\end{array}\right], \boldsymbol{w}=\left[\begin{array}{l}
w_{0} \\
w_{1}
\end{array}\right], \text { and } \\
\boldsymbol{y}=\left[\begin{array}{c}
\sum_{t=1}^{N} r^{(t)} \\
\sum_{t=1}^{N} r^{(t)} x^{(t)}
\end{array}\right], \text { we can solve } \boldsymbol{w} \text { by } \boldsymbol{w}=\boldsymbol{A}^{-1} \boldsymbol{y}
\end{gathered}
$$

Training: Analytic Solution (2)

- A bit of arithmetic leads to

$$
\left\{\begin{array}{l}
w_{0}=\bar{r}-w_{1} \bar{x} \\
w_{1}=\left(\sum_{t=1}^{N} x^{(t)} r^{(t)}-\overline{x r} N\right) /\left(\sum_{t=1}^{N}\left(x^{(t)}\right)^{2}-N \bar{x}^{2}\right),
\end{array}\right.
$$

where $\bar{x}=\frac{1}{N} \sum_{t=1}^{N} x^{(t)}$ and $\bar{r}=\frac{1}{N} \sum_{t=1}^{N} r^{(t)}$ [Proof]

Multivariate Linear Regression

- Given $\boldsymbol{x} \in \mathbb{R}^{d}$, suppose h is linear: $h(\boldsymbol{x} ; \theta)=\boldsymbol{w}^{\top}\left[\begin{array}{c}1 \\ \boldsymbol{x}^{(t)}\end{array}\right]$, where $\boldsymbol{w}=\left[w_{0}, w_{1}, \cdots, w_{d}\right]^{\top} \in \mathbb{R}^{d+1}$
- We can solve \boldsymbol{w} by $\boldsymbol{w}=\boldsymbol{A}^{-1} \boldsymbol{y}$, where $\boldsymbol{y}=\left[\begin{array}{c}\sum_{t=1}^{N} r^{(t)} \\ \sum_{t=1}^{N} r^{(t)} x_{1}^{(t)} \\ \vdots \\ \sum_{t=1}^{N} r^{(t)} x_{d}^{(t)}\end{array}\right]$ and

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
N & \sum_{t=1}^{N} x_{1}^{(t)} & \cdots & \sum_{t=1}^{N} x_{d}^{(t)} \\
\sum_{t=1}^{N} x_{1}^{(t)} & \sum_{t=1}^{N} x_{1}^{(t) 2} & \cdots & \sum_{t=1}^{N} x_{1}^{(t)} x_{d}^{(t)} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{t=1}^{N} x_{d}^{(t)} & \sum_{t=1}^{N} x_{d}^{(t)} x_{1}^{(t)} & \cdots & \sum_{t=1}^{N} x_{d}^{(t) 2}
\end{array}\right] \text { [Proof] }
$$

From Least Squares to Linear Regression

- Let $\boldsymbol{X}=\left[\begin{array}{cccc}1 & x_{1}^{(1)} & \cdots & x_{d}^{(1)} \\ 1 & x_{1}^{(2)} & \cdots & x_{d}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1}^{(N)} & \cdots & x_{d}^{(N)}\end{array}\right], \boldsymbol{w}=\left[w_{0}, w_{1}, \cdots, w_{d}\right]^{\top}$, and

$$
\boldsymbol{r}=\left[r^{(1)}, r^{(2)}, \cdots, r^{(N)}\right]^{\top} .
$$

- Ideally, we want to solve \boldsymbol{w} such that $\boldsymbol{X} \boldsymbol{w}=\boldsymbol{r}$, but impossible if $N>d$
- We can instead solve the "closet approximation:" $\arg \min _{w}\|\boldsymbol{r}-\boldsymbol{X} \boldsymbol{w}\|^{2}$
- $\|\boldsymbol{r}-\boldsymbol{X} \boldsymbol{w}\|^{2}$ is exactly the SSE!
- The least square problem: find \boldsymbol{w} such that $\|\boldsymbol{r}-\boldsymbol{X} \boldsymbol{w}\|^{2}$ is minimized. Solution?

From Least Squares to Linear Regression

- Let $\boldsymbol{X}=\left[\begin{array}{cccc}1 & x_{1}^{(1)} & \cdots & x_{d}^{(1)} \\ 1 & x_{1}^{(2)} & \cdots & x_{d}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1}^{(N)} & \cdots & x_{d}^{(N)}\end{array}\right], \boldsymbol{w}=\left[w_{0}, w_{1}, \cdots, w_{d}\right]^{\top}$, and

$$
\boldsymbol{r}=\left[r^{(1)}, r^{(2)}, \cdots, r^{(N)}\right]^{\top} .
$$

- Ideally, we want to solve \boldsymbol{w} such that $\boldsymbol{X} \boldsymbol{w}=\boldsymbol{r}$, but impossible if $N>d$
- We can instead solve the "closet approximation:" $\arg \min _{w}\|\boldsymbol{r}-\boldsymbol{X} \boldsymbol{w}\|^{2}$
- $\|\boldsymbol{r}-\boldsymbol{X} \boldsymbol{w}\|^{2}$ is exactly the SSE!
- The least square problem: find \boldsymbol{w} such that $\|\boldsymbol{r}-\boldsymbol{X} \boldsymbol{w}\|^{2}$ is minimized. Solution?
- $\boldsymbol{w}^{*}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{r}$ if \boldsymbol{X} is full column rank (remember the normal equations?)
- $\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}$ and $\boldsymbol{X}^{\top} \boldsymbol{r}$ are exactly \boldsymbol{A}^{-1} and \boldsymbol{y} seen previously

Analytic Solution Revisited

- What if \boldsymbol{X} is not full column rank?

Analytic Solution Revisited

- What if \boldsymbol{X} is not full column rank?
(1) Anyone in the set $\boldsymbol{X}^{\dagger} \boldsymbol{r}+\mathcal{N}(\boldsymbol{X})$ is the solution (remember the SVD solution to least squares?)
(2) Make \boldsymbol{X} full column rank by changing the objective (to be explained later)

Training: Numeric Methods

- Machine learning solutions need not be accurate
- Close-to-optimal solutions enough for making good predictions
- Numeric methods suffice
- E.g., gradient descent:

Repeat until convergence \{
$\boldsymbol{w}:=\boldsymbol{w}-\eta \nabla \operatorname{emp}(\boldsymbol{w} ; \mathcal{X})=\boldsymbol{w}+2 \eta \sum_{t=1}^{N}\left(r^{(t)}-\boldsymbol{w}^{\top}\left[\begin{array}{c}1 \\ \boldsymbol{x}^{(t)}\end{array}\right]\right)\left[\begin{array}{c}1 \\ \boldsymbol{x}^{(t)}\end{array}\right] ;$
\}

- The step size η is called the learning rate

Outline

(1) Regression

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation
(2) Two-Class Classification
- Logistic Regression
- Perceptron
(3) Multiclass Classification
- Wrapper Methods
- Direct Models

4 Non-Parametric Methods

Interpolation vs. Regression (1)

- Instead of regression, we can perform the interpolation that fits a hypothesis $h: \mathbb{R} \times \Theta \rightarrow \mathbb{R}$ to examples, i.e., $h\left(x^{(t)} ; \theta\right)=r^{(t)}$
- In polynomial interpolation, we can always fit a polynomial of degree ($N-1$) to N 1-D points
- Let $\theta=\left(w_{0}, \cdots, w_{N-1}\right)$ and $h(x ; \theta)=w_{0}+w_{1} x+\cdots+w_{N-1} x^{N-1}, x \in \mathbb{R}$
- Obtain θ by solving

$$
\left[\begin{array}{ccc}
\left(x^{(1)}\right)^{0} & \cdots & \left(x^{(1)}\right)^{N-1} \\
\vdots & \ddots & \vdots \\
\left(x^{(N)}\right)^{0} & \cdots & \left(x^{(N)}\right)^{N-1}
\end{array}\right]\left[\begin{array}{c}
w_{0} \\
\vdots \\
w_{N-1}
\end{array}\right]=\left[\begin{array}{c}
r^{(1)} \\
\vdots \\
r^{(N)}
\end{array}\right]
$$

- The label of a new instance x^{\prime} can be predicted by $y^{\prime}=h\left(x^{\prime} ; \theta\right)$

Interpolation vs. Regression (2)

- Given 7 examples, the right shows the regression results using polynomials of degrees 1 , 2 , and 6
- $x^{(t)}$ is the mileage of a used car and $r^{(t)}$ is the price
- It is unlikely that the real curve shapes like the 6th-order polynomial

Interpolation vs. Regression (3)

- In the presence of noise, we don't need an exact fitting
- The target of regression is to catch the trend
- Differs from interpolation in finding a "simple" hypothesis (e.g., low degree polynomial) that is "close enough" to the examples

How About Nonlinear Trend/Regression?

- In the case of univariate regression (where x 's are scalars), we can assume a polynomial hypothesis with an arbitrary degree k :

$$
h(x ; \theta)=w_{0}+w_{1} x+\cdots+w_{k} x^{k}
$$

- We can solve $\boldsymbol{w}=\left[\begin{array}{c}w_{0} \\ \vdots \\ w_{k}\end{array}\right]$
by $\boldsymbol{w}=\boldsymbol{A}^{-1} \boldsymbol{y}$, where

$$
\begin{aligned}
& \boldsymbol{A}=\left[\begin{array}{cccc}
N & \sum_{t=1}^{N} x^{(t)} & \cdots & \sum_{t=1}^{N} x^{(t) k} \\
\sum_{t=1}^{N} x^{(t)} & \sum_{t=1}^{N} x^{(t) 2} & \cdots & \sum_{t=1}^{N} x^{(t)(k+1)} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{t=1}^{N} x^{(t) k} & \sum_{t=1}^{N} x^{(t)(k+1)} & \cdots & \sum_{t=1}^{N} x^{(t) 2 k}
\end{array}\right], \\
& \boldsymbol{w}=\left[\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{k}
\end{array}\right], \text { and } \boldsymbol{y}=\left[\begin{array}{c}
\sum_{t=1}^{N} r^{(t)} \\
\sum_{t=1}^{N} r^{(t)} x^{(t)} \\
\vdots \\
\sum_{t=1}^{N} r^{(t)} x^{(t) k}
\end{array}\right] \text { [Proof] }
\end{aligned}
$$

How About Nonlinear Trend/Regression? (2)

- In multivariate regression, we seldom assume h to be a polynomial with degree higher than 1
- Why?

How About Nonlinear Trend/Regression? (2)

- In multivariate regression, we seldom assume h to be a polynomial with degree higher than 1
- Why?
(1) Analytical simplicity
(2) More descriptive model:
- The sign of w_{j} tells whether x_{j} has positive or negative effect on the prediction
- The absolute value of w_{j} indicates how important the feature is (provided that features are in the same range); if w_{j} is close to 0 , the feature can even be removed
(3) We can instead augment the inputs to achieve the effect of nonlinear regression (to be explained later)

Outline

(1) Regression

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation

2) Two-Class Classification

- Logistic Regression
- Perceptron
(3) Multiclass Classification
- Wrapper Methods
- Direct Models

4 Non-Parametric Methods

Probability Interpretation (1)

- Given $X=\left\{\boldsymbol{x}^{(t)}, r^{(t)}\right\}_{t=1}^{N}$, where $r^{(t)} \in \mathbb{R}$. Assume
- $\left(\boldsymbol{x}^{(t)}, \boldsymbol{r}^{(t)}\right)$ are i.i.d samples drawn from some joint distribution of \boldsymbol{x} and r (otherwise can never learn r from \boldsymbol{x})
- In particular, $r^{(t)}=f\left(\boldsymbol{x}^{(t)} ; \theta\right)+\epsilon, \epsilon \sim \mathcal{N}\left(0, \beta^{-1}\right)$ for some hyperparameter (i.e., constant fixed during the objective solving) β
- The marginal distribution $p(r \mid \boldsymbol{x})$ follows: $p(r \mid \boldsymbol{x})=p_{N_{h(x ; \theta), \beta^{-1}}}(r)$
- We want to estimate f using X
- Hypothesis: $h\left(\boldsymbol{x} ; w_{0}, w_{1}, \cdots, w_{d}\right)=w_{0}+w_{1} x_{1}+\cdots+w_{d} x_{d}$, a line
- Once getting $w_{0}, w_{1}, \cdots, w_{d}$, we can predict the unknown r^{\prime} of a new instance \boldsymbol{x}^{\prime} by $y^{\prime}=\arg _{y} \max p\left(y \mid \boldsymbol{x}^{\prime}\right)=\arg _{y} \max _{p_{h\left(x^{\prime} ; \theta\right), \beta^{-1}}}(y)=h\left(\boldsymbol{x}^{\prime} ; \theta\right)$
- Note that we don't need to know β to make prediction

Probability Interpretation (2)

- How to obtain the estimate h of f ? How to obtain θ ?
- Now let θ be a random variable, we can pick θ maximizing $p(\theta \mid X)$, the posterior probability
- Or, by Baye's theorem, θ maximizing the likelihood $p(X \mid \theta)$ (if we assume $p(\theta)$ remains the same for all θ)
- Or, θ maximizing the log likelihood $\log p(X \mid \theta)=$
$\log \left(\prod_{t=1}^{N} p\left(\boldsymbol{x}^{(t)}, r^{(t)} \mid \theta\right)\right)=\log \left(\prod_{t=1}^{N} p\left(r^{(t)} \mid \boldsymbol{x}^{(t)}, \theta\right) p\left(\boldsymbol{x}^{(t)} \mid \theta\right)\right)=$ $\log \left(\prod_{t=1}^{N} p\left(h\left(\boldsymbol{x}^{(t)} ; \theta\right)+\epsilon \mid \boldsymbol{x}^{(t)}, \theta\right) p\left(\boldsymbol{x}^{(t)} \mid \theta\right)\right)$
- Ignoring $p\left(\boldsymbol{x}^{(t)} \mid \theta\right)=p\left(\boldsymbol{x}^{(t)}\right)$ (since it is irrelevant to θ) and constants we have $\log p(X \mid \theta) \propto-N \log \left(\sqrt{\frac{2 \pi}{\beta}}\right)-\frac{\beta}{2} \sum_{t=1}^{N}\left(r^{(t)}-h\left(\boldsymbol{x}^{(t)} ; \theta\right)\right)^{2}$
- Dropping the first term and constants we have $\log p(X \mid \theta) \propto-\sum_{t=1}^{N}\left(r^{(t)}-h\left(x^{(t)} ; \theta\right)\right)^{2}$; that is, we seek for θ minimizing the SSE (sum of square errors)!

Outline

(1) Regression

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation
(2) Two-Class Classification
- Logistic Regression
- Perceptron
(3) Multiclass Classification
- Wrapper Methods
- Direct Models

4 Non-Parametric Methods

Two-Class Classification Problem

- Given a training dataset $X=\left\{\left(\boldsymbol{x}^{(t)}, r^{(t)}\right)\right\}_{t=1}^{N}$, where $r^{(t)} \in\{1,-1\}$, and a testing instance \boldsymbol{x}^{\prime}, predict the label of \boldsymbol{x}^{\prime}
- Model (or hypothesis class): $\mathcal{H}=\{h: \mathcal{J} \times \Theta \rightarrow\{1,-1\}\}$
- Or $\mathcal{H}=\{h: \mathcal{J} \times \Theta \rightarrow \mathbb{R}\}$ with prediction $\operatorname{sgn}\left(h\left(\boldsymbol{x}^{\prime} ; \theta\right)\right)$
- Objective: $\arg _{\theta} \min \sum_{t=1}^{N} l\left(h\left(\boldsymbol{x}^{(t)} ; \theta\right), r^{(t)}\right)$ with some loss function l
- Example: the 0-1 loss function: $l(a, b)=1$ if $a \neq b ; 0$ otherwise

Outline

(1) Regression

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation
(2) Two-Class Classification
- Logistic Regression
- Perceptron
(3) Multiclass Classification
- Wrapper Methods
- Direct Models

4 Non-Parametric Methods

Logistic Function

- The logistic function (a special case of sigmoid functions) is defined as

$$
g(z)=\frac{e^{z}}{e^{z}+1}=\frac{1}{1+e^{-z}}
$$

- Always gives values between
 $(0,1)$
- The larger the z, the higher the $g(z)$
- The smaller the z, the higher the $1-g(z)$

Logistic Regression

- In regression, we learn $p(r \mid x ; \theta)$ from X and make predictions by $y^{\prime}=\arg \max _{y} p\left(y \mid \boldsymbol{x}^{\prime} ; \theta\right)$
- In logistic regression everything is the same except that $P(r \mid x ; \theta)$ is modeled by a Bernoulli distribution parametrized by ϕ :

$$
P(r \mid x ; \theta)=\left\{\begin{array}{cl}
\phi, & \text { if } r=1 \\
1-\phi, & \text { otherwise }
\end{array}\right.
$$

- We can simply write $P(r \mid x ; \theta)=\phi^{q}(1-\phi)^{(1-q)}$, where $q=\frac{r+1}{2}$
- Furthermore, $\phi=\pi(\boldsymbol{x} ; \boldsymbol{\beta})=\frac{e^{\beta^{\top} \tilde{x}}}{e^{\beta^{\top} \tilde{x}+1}}=\frac{1}{1+e^{-\boldsymbol{\beta}^{\top} \tilde{x}}}$ is a deterministic function, where $\widetilde{\boldsymbol{x}}=[1, \boldsymbol{x}]^{\top}$
- So the larger the projection of $\tilde{\boldsymbol{x}}$ onto a line, the higher the ϕ
- Prediction: $y^{\prime}=\arg \max _{y} p\left(y \mid \boldsymbol{x}^{\prime} ; \theta\right)=\arg \max _{y}\{\phi, 1-\phi\}=$ $\operatorname{sgn}\left(\boldsymbol{\beta}^{\top} \tilde{\boldsymbol{x}}^{\prime}\right)=\operatorname{sgn}\left(\boldsymbol{w}^{\top} \boldsymbol{x}^{\prime}+b\right)$

Fitting Logistic Regression Models (1)

- How to obtain β ?

Fitting Logistic Regression Models (1)

- How to obtain β ?
- By $\boldsymbol{\beta}$ maximizing $p(\boldsymbol{\beta} \mid X)$
- Or, by Bayes' Rule and assuming uniform $p(\boldsymbol{\beta}), \boldsymbol{\beta}$ maximizing $p(\mathcal{X} \mid \boldsymbol{\beta})$
- Log-likelihood:

$$
\begin{aligned}
l(\boldsymbol{\beta}) & =\log \prod_{t=1}^{N} p\left(\boldsymbol{x}^{(t)}, r^{(t)} \mid \boldsymbol{\beta}\right) \\
& =\log \prod_{t=1}^{N} P\left(r^{(t)} \mid \boldsymbol{x}^{(t)}, \boldsymbol{\beta}\right) p\left(\boldsymbol{x}^{(t)} \mid \boldsymbol{\beta}\right) \\
& \propto \log \prod_{t=1}^{N} \pi\left(\boldsymbol{x}^{(t)} ; \boldsymbol{\beta}\right)^{q^{(t)}}\left(1-\pi\left(\boldsymbol{x}^{(t)} ; \boldsymbol{\beta}\right)\right)^{\left(1-q^{(t)}\right)}
\end{aligned}
$$

- $p\left(\boldsymbol{x}^{(t)} \mid \boldsymbol{\beta}\right)=p\left(\boldsymbol{x}^{(t)}\right)$ can be dropped
- $l(\boldsymbol{\beta})=\sum_{t=1}^{N}\left\{q^{(t)} \log \pi\left(\boldsymbol{x}^{(t)} ; \boldsymbol{\beta}\right)+\left(1-q^{(t)}\right) \log \left(1-\pi\left(\boldsymbol{x}^{(t)} ; \boldsymbol{\beta}\right)\right)\right\}=$ $\sum_{t=1}^{N}\left\{q^{(t)} \boldsymbol{\beta}^{\top} \widetilde{\boldsymbol{x}}^{(t)}-\log \left(1+e^{\beta^{\top} \widetilde{\boldsymbol{x}}^{(t)}}\right)\right\}$ [Homework]

Fitting Logistic Regression Models (2)

- To maximize the log-likelihood, we set its derivative to zero:

$$
\frac{\partial l(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}=\sum_{t=1}^{N} \widetilde{\boldsymbol{x}}^{(t) \top}\left(q^{(t)}-\pi\left(\boldsymbol{x}^{(t)} ; \boldsymbol{\beta}\right)\right)=\mathbf{0}^{\top}
$$

- Unlike the linear regression, we cannot solve β analytically in a closed-form
- How to obtain β ?

Fitting Logistic Regression Models (2)

- To maximize the log-likelihood, we set its derivative to zero:

$$
\frac{\partial l(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}=\sum_{t=1}^{N} \widetilde{\boldsymbol{x}}^{(t) \top}\left(q^{(t)}-\pi\left(\boldsymbol{x}^{(t)} ; \boldsymbol{\beta}\right)\right)=\mathbf{0}^{\top}
$$

- Unlike the linear regression, we cannot solve β analytically in a closed-form
- How to obtain β ? Iterative algorithms
- Gradient descent:

Repeat until convergence \{
$\boldsymbol{\beta}:=\boldsymbol{\beta}+\eta \nabla l(\boldsymbol{\beta})=\boldsymbol{\beta}+\eta \sum_{t=1}^{N} \widetilde{\boldsymbol{x}}^{(t) \top}\left(q^{(t)}-\pi\left(\boldsymbol{x}^{(t)} ; \boldsymbol{\beta}\right)\right) ;$
\}

- Observe that $l(\beta)$ is concave [Homework]
- So iterative algorithms approach to global optimal

Newton's Method for Logistic Regression*

Update rule: $\beta:=\beta-\left(\nabla^{2}-l(\beta)\right)^{-1} \nabla-l(\boldsymbol{\beta})=\beta-\left(\nabla^{2} l(\boldsymbol{\beta})\right)^{-1} \nabla l(\boldsymbol{\beta})$

- Given $\boldsymbol{q} \in \mathbb{R}^{N}$ the vector of $q^{(t)}$'s, $\boldsymbol{X} \in \mathbb{R}^{N \times(d+1)}$ the row matrix of $\widetilde{\boldsymbol{x}}^{(t)}$'s, $\boldsymbol{\pi} \in \mathbb{R}^{N}$ with the t th element $\pi\left(\boldsymbol{x}^{(t)} ; \boldsymbol{\beta}\right)$, and $\boldsymbol{W} \in \mathbb{R}^{N \times N}$ a diagonal matrix with the t th diagonal element $\pi\left(\boldsymbol{x}^{(t)} ; \boldsymbol{\beta}\right)\left(1-\pi\left(\boldsymbol{x}^{(t)} ; \boldsymbol{\beta}\right)\right)$, then

$$
\begin{aligned}
\nabla l(\boldsymbol{\beta}) & =\left(\frac{\partial l(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}\right)^{\top}=\boldsymbol{X}^{\top}(\boldsymbol{q}-\boldsymbol{\pi}), \\
\nabla^{2} l(\boldsymbol{\beta}) & =\left(\frac{\partial \nabla l(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}\right)^{\top}=\left(\frac{\partial \sum_{t=1}^{N} \widetilde{\boldsymbol{x}}^{(t)}\left(q^{(t)}-\pi\left(\boldsymbol{x}^{(t)} ; \boldsymbol{\beta}\right)\right)}{\partial \boldsymbol{\beta}}\right)^{\top} \\
& =\left(-\sum_{t=1}^{N} \widetilde{\boldsymbol{x}}^{(t)} \pi\left(\boldsymbol{x}^{(t)} ; \boldsymbol{\beta}\right)\left(1-\pi\left(\boldsymbol{x}^{(t)} ; \boldsymbol{\beta}\right)\right) \boldsymbol{x}^{(t) \top}\right)^{\top}=-\boldsymbol{X}^{\top} \boldsymbol{W} \boldsymbol{X}
\end{aligned}
$$

- Note that $g^{\prime}(z)=\frac{1}{\left(1+e^{-z}\right)^{2}} e^{-z}=\frac{1}{1+e^{-z}}\left(1-\frac{1}{1+e^{-z}}\right)=g(z)(1-g(z))$.

Outline

(1) Regression

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation
(2) Two-Class Classification
- Logistic Regression
- Perceptron
(3) Multiclass Classification
- Wrapper Methods
- Direct Models

4 Non-Parametric Methods

Perceptron (1)

- Recall that in logistic regression, we make prediction by $y^{\prime}=$ $\arg \max _{y} p\left(y \mid \boldsymbol{x}^{\prime} ; \theta\right)=\arg \max _{y}\{\phi, 1-\phi\}=\operatorname{sgn}\left(\boldsymbol{\beta}^{\top} \widetilde{\boldsymbol{x}^{\prime}}\right)=\operatorname{sgn}\left(\boldsymbol{w}^{\top} \boldsymbol{x}^{\prime}+b\right)$
- Why not just making prediction based on $\operatorname{sgn}\left(\boldsymbol{w}^{\top} \boldsymbol{x}^{\prime}+b\right)$ directly?

Perceptron (2)

- Model: $\mathcal{H}=$
$\left\{f: f: \mathbb{R}^{d} \rightarrow \mathbb{R}, f(\boldsymbol{x} ; \theta)=\boldsymbol{w}^{\top} \boldsymbol{x}+b\right\}$
$\Theta=\left\{\boldsymbol{w}, b: \boldsymbol{w} \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}$
- A collection of hyperplanes
- Prediction: $y^{\prime}=\operatorname{sgn}\left(f\left(\boldsymbol{x}^{\prime}\right)\right)$
- Objective 1: any $f \in \mathcal{H}$ such that
- $\boldsymbol{w}^{\top} \boldsymbol{x}^{(t)}+b>0$ if $r^{(t)}=1$;
$\boldsymbol{w}^{\top} \boldsymbol{x}^{(t)}+b<0$ otherwise
- or simply $r^{(t)}\left(\boldsymbol{w}^{\top} \boldsymbol{x}^{(t)}+b\right)>0$, $\forall t$

Non Separable Datasets

- What if the examples are not separable by a hyperplane?

Non Separable Datasets

- What if the examples are not separable by a hyperplane?

- Don't insist perfect separation as in Objective 1

Slacks

- Objective 2 :

$$
\begin{gathered}
\arg \min _{w, b, \xi} \sum_{t=1}^{N} \xi_{t} \\
\text { subject to } r^{(t)}\left(\boldsymbol{w}^{\top} \boldsymbol{x}^{(t)}+b\right)>-\xi_{t} \text { and } \xi_{t} \geqslant 0, \forall t=1, \cdots, N
\end{gathered}
$$

- ξ_{t} 's are called the slacks
- We minimize $\sum_{t=1}^{N} \xi_{t}$ instead of $\sum_{t=1}^{N} \xi_{t}^{2}$ to make the hypothesis robust to outliers
- Alternative form: $\arg \min _{w, b} \sum_{t=1}^{N} \max \left(0,-r^{(t)}\left(\boldsymbol{w}^{\top} \boldsymbol{x}^{(t)}+b\right)\right)$
- No slack to solve, no constraint, convex
- $l\left(h\left(\boldsymbol{x}^{(t)} ; \theta\right), r^{(t)}\right):=\max \left(0,-r^{(t)}\left(\boldsymbol{w}^{\top} \boldsymbol{x}^{(t)}+b\right)\right)$ is called the hinge loss function (why?)
- $\operatorname{emp}(\theta ; \mathcal{X})=\sum_{t=1}^{N} l\left(h\left(\boldsymbol{x}^{(t)} ; \theta\right), r^{(t)}\right)$

Training the Perceptron Classifier

- Let $\widetilde{\boldsymbol{x}}^{(t)}=\left[\begin{array}{c}\boldsymbol{x}^{(t)} \\ 1\end{array}\right]$ and $\widetilde{\boldsymbol{w}}^{(t)}=\left[\begin{array}{l}\boldsymbol{w} \\ b\end{array}\right]$, we need to solve

$$
\arg \min _{\widetilde{\boldsymbol{w}}} \operatorname{emp}(\widetilde{\boldsymbol{w}}):=\sum_{t=1}^{N} \max \left(0,-r^{(t)} \widetilde{\boldsymbol{w}}^{\top} \widetilde{\boldsymbol{x}}^{(t)}\right)
$$

- Let's consider the Gradient descent method due to its simplicity
- $\nabla e m p(\widetilde{\boldsymbol{w}})=\sum_{t=1}^{N} \nabla l^{(t)}(\widetilde{\boldsymbol{w}})$, where

$$
\nabla l^{(t)}(\widetilde{\boldsymbol{w}})= \begin{cases}0, & \text { if } r^{(t)} \widetilde{\boldsymbol{w}}^{\top} \widetilde{\boldsymbol{x}}^{(t)}>0 \\ -r^{(t)} \widetilde{\boldsymbol{x}}^{(t)}, & \text { otherwise }\end{cases}
$$

- Can be also written as $\operatorname{\nabla emp}(\widetilde{\boldsymbol{w}})=-\frac{1}{2} \sum_{t=1}^{N} \widetilde{\boldsymbol{x}}^{(t) \top}\left(r^{(t)}-\operatorname{sgn}\left(\widetilde{\boldsymbol{w}}^{\top} \widetilde{\boldsymbol{x}}\right)\right)$

Repeat until convergence \{

$$
\widetilde{\boldsymbol{w}}:=\widetilde{\boldsymbol{w}}-\eta \nabla \operatorname{emp}(\widetilde{\boldsymbol{w}})
$$

$=\widetilde{\boldsymbol{w}}+\eta^{\prime} \sum_{t=1}^{N} \widetilde{\boldsymbol{x}}^{(t) \top}\left(r^{(t)}-\operatorname{sgn}\left(\widetilde{\boldsymbol{w}}^{\top} \widetilde{\boldsymbol{x}}\right)\right)$,
where $\eta^{\prime}=\eta / 2$
\}

Remarks (1)

- A model for how individual neurons in human brain work

Inputs

- Not good at recognizing non-linear classes/patterns
- E.g., identifying an object in an image
- Improvements:
- Chained to form a neural network
- Make instances linearly separable (to be discussed later)

Remarks (2)

- If positive and negative examples are not linearly separable by $\operatorname{sgn}\left(\beta^{\top} \widetilde{x^{\prime}}\right)$, the training algorithm will not converge

- Solution?

Remarks (2)

- If positive and negative examples are not linearly separable by $\operatorname{sgn}\left(\beta^{\top} \widetilde{x^{\prime}}\right)$, the training algorithm will not converge

- Solution?
- Limit the maximum number of iterations, or
- Stop if $\left|\operatorname{emp}\left(\widetilde{\boldsymbol{w}}^{(\text {new })}\right)-\operatorname{emp}\left(\widetilde{\boldsymbol{w}}^{(\text {old })}\right)\right|<\epsilon$

Update Rules: Perceptron vs. Logistic Regression

- If we "harden" the logistic function $\pi(\boldsymbol{x} ; \boldsymbol{\beta})=\frac{1}{1+e^{-\beta^{\top} \boldsymbol{x}}}$ to

$$
\pi(\boldsymbol{x} ; \boldsymbol{\beta})= \begin{cases}1, & \text { if } \beta^{\top} \widetilde{\boldsymbol{x}} \geqslant 0 \\ 0, & \text { otherwise }\end{cases}
$$

so that the gradient descent update rule becomes:
Repeat until convergence \{

$$
\begin{aligned}
\boldsymbol{\beta}:= & \boldsymbol{\beta}+\eta \nabla l(\boldsymbol{\beta})=\boldsymbol{\beta}+\eta \sum_{t=1}^{N} \widetilde{\boldsymbol{x}}^{(t) \top}\left(q^{(t)}-\pi\left(\boldsymbol{x}^{(t)} ; \boldsymbol{\beta}\right)\right) \\
= & \boldsymbol{\beta}+\eta^{\prime} \sum_{t=1}^{N} \tilde{\boldsymbol{x}}^{(t) \top}\left(r^{(t)}-\operatorname{sgn}\left(\boldsymbol{\beta}^{\top} \widetilde{\boldsymbol{x}}^{\prime}\right)\right), \\
& \text { where } q^{(t)}=\frac{r^{(t)}+1}{2} \text { and } \eta^{\prime}=\eta / 2
\end{aligned}
$$

\}

- Despite its cosmetic similarity with logistic regression, perceptron learning has no simple probabilistic interpretation

Outline

(1) Regression

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation
(2) Two-Class Classification
- Logistic Regression
- Perceptron
(3) Multiclass Classification
- Wrapper Methods
- Direct Models

4 Non-Parametric Methods

Learning Multiple Classes

- What if we have K classes instead of 2 ?
- Applications:
- OCR (Optical Character Recognition)
- Medical diagnosis
- Surveillance, etc.
- Training set: $X=\left\{\boldsymbol{x}^{(t)}, \boldsymbol{r}^{(t)}\right\}_{t=1}^{N}$, where $\boldsymbol{r}^{(t)} \in \mathbb{R}^{K}$ and $r_{i}^{(t)}=\left\{\begin{array}{cc}1, & \boldsymbol{x}^{(t)} \in C_{i} \\ -1, & \text { otherwise }\end{array}\right.$

Outline

(1) Regression

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation
(2) Two-Class Classification
- Logistic Regression
- Perceptron
(3) Multiclass Classification
- Wrapper Methods
- Direct Models

(4) Non-Parametric Methods

1 vs. All (1)

- Assume a model consisting of K hypotheses h_{i}
- There is no need to for these K hypotheses to belong to the same hypotheses class
- Perform the two-class
 classification K times
- Each time treat the examples of a certain class as positive and the rest as negative
- How to handle the cases of doubt?

1 vs. All (1)

- Assume a model consisting of K hypotheses h_{i}
- There is no need to for these K hypotheses to belong to the same hypotheses class
- Perform the two-class classification K times
- Each time treat the examples of a certain class as positive and the rest as negative
- How to handle the cases of doubt?
- Define decision boundaries, e.g., $y^{\prime}:=\arg \max _{i} h_{i}\left(\boldsymbol{x}^{\prime} ; \theta_{i}\right)$

1 vs. All (2)

- Pros:
- Easy to implement
- \# classifiers grows with K
- Cons:
- Time consuming (each of the K classifiers takes the whole dataset as input)
- Each classifier deals with imbalance dataset

1 vs 1

- Perform 1 vs. 1 classification $\binom{K}{2}$ times, and predict by voting
- Pros:
- Avoid creating imbalanced dataset for each classifier
- Faster and memory economic (each classifier takes only two classes in the dataset as input)
- Cons:
- \# classifiers grows with K^{2}, not suitable for datasets with massive classes

Wrappers based on Error-Correcting Codes

	h_{1}		\cdots		h_{L}
C_{1}	-1	-1	-1	-1	1
\vdots	1	-1	1	1	-1
C_{K}	1	1	-1	-1	1

- Rows: predefined codewords of length L
- Columns: a particular grouping of examples for training a two-class classifier
- To make prediction:
(1) Obtain a codeword for x^{\prime} based on the predictions of L classifiers
(2) Assign x^{\prime} to the label with the most similar codeword
- If codewords are designed such that each pair has Hamming distance at least s, then $\left\lfloor\frac{s-1}{2}\right\rfloor$ wrong predictions can be tolerated

Outline

(1) Regression

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation
(2) Two-Class Classification
- Logistic Regression
- Perceptron
(3) Multiclass Classification
- Wrapper Methods
- Direct Models

4 Non-Parametric Methods

Generalized Linear Models

TBA

Multi-Hyperplane Classifier

- Learn K separating hyperplanes simultaneously:

$$
\begin{gathered}
\arg \min _{\left\{\boldsymbol{w}_{i}, b_{i}\right\}_{i=1}^{K}, \xi} \sum_{t=1}^{N} \xi_{t, r} \\
\text { subject to }\left(\boldsymbol{w}_{i d x\left(\boldsymbol{r}^{(t)}\right)}^{\top} \boldsymbol{x}^{(t)}-b_{i d x\left(\boldsymbol{r}^{(t)}\right)}\right)-\left(\boldsymbol{w}_{r}^{\top} \boldsymbol{x}^{(t)}-b_{r}\right)>-\xi_{t, r} \\
\text { and } \xi_{t, r} \geqslant 0, \forall t, r \neq i d x\left(\boldsymbol{r}^{(t)}\right)
\end{gathered}
$$

- For an example of class r, the corresponding hyperplane should give value higher than those given by other hyperplanes
- Prediction: $y^{\prime}:=\arg \max _{i} \boldsymbol{w}_{i}^{\top} \boldsymbol{x}^{\prime}-b_{i}$
- Hyperplanes are correlated
- No one will give values significantly higher than the others
- In practice,
- There is little or no performance improvement over the wrappers
- Very slow and memory hungry

Outline

(1) Regression

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation
(2) Two-Class Classification
- Logistic Regression
- Perceptron
(3) Multiclass Classification
- Wrapper Methods
- Direct Models
(4) Non-Parametric Methods

$k-N N$ Methods

- There are another simple ways, call k-NN methods, to make predictions
- Given a test instance \boldsymbol{x}^{\prime}, predict its label by the (weighted) average of labels of k examples in X most similar to \boldsymbol{x}^{\prime}
- Applies to both continuous and discrete labels
- Needs a similarity metric $k(\boldsymbol{x}, \boldsymbol{y})$ between any two instances
- E.g., cosin similarity: $k(\boldsymbol{x}, \boldsymbol{y})=\frac{\boldsymbol{x}^{\top} y}{\|\boldsymbol{x}\|\|\boldsymbol{y}\|} \in[-1,1]$
- Training: simply remember X

Non-Parametric Methods

- k-NN methods are special cases of non-parametric (or memory-based) methods
- Non-parametric in the sense that f cannot be described by parameters
- Memory-based in that all data (rather than just parameters) need to be memorized during the training process
- Lazy since the hypothesis is obtained only before the prediction
- This allows the development of local models

Local Weighted Linear Regression

- Recall in (eager) linear regression, we fit $\boldsymbol{w} \in \mathbb{R}^{d+1}$ to minimize the SSE: $\sum_{i}\left(\boldsymbol{r}^{(i)}-\boldsymbol{w}^{\top}\left[\begin{array}{c}1 \\ \boldsymbol{x}^{(i)}\end{array}\right]\right)^{2}$
- Local model: fit \boldsymbol{w} to minimize SSE local to the instance x^{\prime} we want to predict:

$$
\sum_{i} l\left(\boldsymbol{x}^{(i)} ; \boldsymbol{x}^{\prime}\right)\left(r^{(i)}-\boldsymbol{w}^{\top}\left[\begin{array}{c}
1 \\
\boldsymbol{x}^{(i)}
\end{array}\right]\right)^{2}
$$

where $l: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a weighting function

- Idea: only examples nearby (or local to) \boldsymbol{x}^{\prime} should be taken into account in $\operatorname{emp}(\theta ; \mathcal{X})$
- Possible choice for $l: l\left(\boldsymbol{x}^{(i)} ; \boldsymbol{x}^{\prime}\right):=\exp \left(-\frac{\left(x^{(i)}-x^{\prime}\right)^{2}}{2 \tau^{2}}\right)$ for some τ (mimics $k-\mathrm{NN}$)

Summary of Supervised Learning Models

- Three main categories (either parametric or non-parametric):
(1) Those learning the discriminant functions f 's (no probability interpretation)
- E.g., perceptron, $k N N$, etc.
(2) Those based on probability and learn $p(r \mid \boldsymbol{x})$ directly
- E.g., linear regression, logistic regression, etc.
- $p(r \mid x ; \theta)$ with θ (constant) estimated from X
- Methods in 1 and 2 are called discriminative methods
(3) Those learn $p(r \mid \boldsymbol{x})$ indirectly from $p(\boldsymbol{x} \mid r) p(r)$
- To be discussed later
- These are called generative methods, as $p(\boldsymbol{x} \mid r) p(r)$ explains how X is generated

