Supervised Learning Regression and Classification

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Spring 2015

Regression

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation

Two-Class Classification

- Logistic Regression
- Perceptron

3 Multiclass Classification

- Wrapper Methods
- Direct Models

4 Non-Parametric Methods

Regression

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation

Two-Class Classification

- Logistic Regression
- Perceptron

3 Multiclass Classification

- Wrapper Methods
- Direct Models

4 Non-Parametric Methods

Given

- a training dataset $\mathfrak{X} = \left\{ \left(\mathbf{x}^{(t)}, r^{(t)} \right) \right\}_{t=1}^{N}$, where $\mathbf{x}^{(t)} \in \mathbb{R}^{d}$'s are examples (or instances or observations) consisting of attributes (or inputs or features) and $r^{(t)} \in \mathbb{R}$'s are labels, and
- a testing instance x',

predict the label y' of x'

• Example: stock price forecasting

56

- Data collection and preprocessing (e.g., integration, cleaning, etc.)
- 2 Model development
 - Assume a *model* that represents the posteriori knowledge we want to discover. The model has parameters
 - Offine an objective that measures "how good the model with a particular combination of parameters can explain the data"
- Training: employ an algorithm that optimizes the objective by finding the best (or good enough) parameters
- Testing: evaluate the model performance on hold-out data
- Using the model

- Model: Let the model be a collection of functions, called hypothesis class and denoted as H = {h: J×Θ → ℝ}, where J is the input space (or feature space) and Θ is the set of all possible parameters
 - A particular θ ∈ Θ instantiates a *hypothesis* h that makes the *prediction* (or *output*) y' = h(x'; θ) > 0
- Objective: $\arg_{\theta} \min \sum_{l=1}^{N} l(h(\mathbf{x}^{(l)}; \theta), r^{(l)})$, where *l* is some *loss function* which penalizes the error of predictions made on the training dataset
 - We want the hypothesis to have the minimal *empirical error*. $emp(\theta; \mathcal{X}) = \sum_{t=1}^{N} l(h(\mathbf{x}^{(t)}; \theta), r^{(t)})$

- Common choice: $\arg_{\theta} \min \sum_{t=1}^{N} \left[r^{(t)} h(\boldsymbol{x}^{(t)}; \theta) \right]^2$
 - $emp(\theta; \mathfrak{X}) = \sum_{t=1}^{N} [r^{(t)} h(\mathbf{x}^{(t)}; \theta)]^2$ has a specific name called the *Sum of Square Errors (SSE)*
- Alternatively, the objective can be formed using the absolute error: $\arg_{\theta} \min \sum_{t=1}^{N} |r^{(t)} h(x^{(t)}; \theta)|$
 - What is the difference? [Homework]

56

Regression

Linear Regression

- Interpolation vs. Rregression
- Probability Interpretation

Two-Class Classification

- Logistic Regression
- Perceptron

3 Multiclass Classification

- Wrapper Methods
- Direct Models

4 Non-Parametric Methods

- Suppose x is a scalar and h is a line, i.e., h(x; θ) = w₁x + w₀, we have the objective:
 - To find w_0 and w_1 that minimizes

$$emp(\theta; \mathcal{X}) = \sum_{t=1}^{N} \left(r^{(t)} - \boldsymbol{w}^{\top} \begin{bmatrix} 1 \\ x^{(t)} \end{bmatrix} \right)^{2}$$

• where $\boldsymbol{w} = [w_0, w_1]^{\top} \in \mathbb{R}^2$

Training: Analytic Solution (1)

- We take the partial derivatives of *emp* with respect to w₀ and w₁ and set them to 0
 - We have a system of linear equations

$$\begin{cases} \sum_{t=1}^{N} r^{(t)} = Nw_0 + w_1 \sum_{t=1}^{N} x^{(t)} \\ \sum_{t=1}^{N} x^{(t)} r^{(t)} = w_0 \sum_{t=1}^{N} x^{(t)} + w_1 \sum_{t=1}^{N} (x^{(t)})^2 \end{cases}$$

• Let $A = \begin{bmatrix} N & \sum_{t=1}^{N} x^{(t)} \\ \sum_{t=1}^{N} x^{(t)} & \sum_{t=1}^{N} (x^{(t)})^2 \end{bmatrix}$, $w = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$, and
 $y = \begin{bmatrix} \sum_{t=1}^{N} r^{(t)} \\ \sum_{t=1}^{N} r^{(t)} x^{(t)} \end{bmatrix}$, we can solve w by $w = A^{-1}y$

Shan-Hung Wu (CS, NTHU)

• A bit of arithmetic leads to

$$\begin{cases} w_0 = \overline{r} - w_1 \overline{x} \\ w_1 = \left(\sum_{t=1}^N x^{(t)} r^{(t)} - \overline{xr} N\right) / \left(\sum_{t=1}^N \left(x^{(t)}\right)^2 - N \overline{x}^2\right) \\ \text{where } \overline{x} = \frac{1}{N} \sum_{t=1}^N x^{(t)} \text{ and } \overline{r} = \frac{1}{N} \sum_{t=1}^N r^{(t)} \text{ [Proof]} \end{cases}$$

Shan-Hung Wu (CS, NTHU)

Multivariate Linear Regression

• Given $\boldsymbol{x} \in \mathbb{R}^d$, suppose h is linear: $h(\boldsymbol{x}; \theta) = \boldsymbol{w}^\top \begin{bmatrix} 1 \\ \boldsymbol{x}^{(t)} \end{bmatrix}$, where $\boldsymbol{w} = [w_0, w_1, \cdots, w_d]^\top \in \mathbb{R}^{d+1}$ • We can solve \boldsymbol{w} by $\boldsymbol{w} = \boldsymbol{A}^{-1}\boldsymbol{y}$, where $\boldsymbol{y} = \begin{bmatrix} \sum_{t=1}^{N} r^{(t)} \\ \sum_{t=1}^{N} r^{(t)} x_{1}^{(t)} \\ \vdots \\ \sum_{t=1}^{N} r^{(t)} x_{d}^{(t)} \end{bmatrix}$ and $\boldsymbol{A} = \begin{bmatrix} N & \sum_{t=1}^{N} x_{1}^{(t)} & \cdots & \sum_{t=1}^{N} x_{d}^{(t)} \\ \sum_{t=1}^{N} x_{1}^{(t)} & \sum_{t=1}^{N} x_{1}^{(t)2} & \cdots & \sum_{t=1}^{N} x_{d}^{(t)} \\ \vdots & \vdots & \vdots \\ \sum_{t=1}^{N} x_{d}^{(t)} & \sum_{t=1}^{N} x_{d}^{(t)} x_{1}^{(t)} & \cdots & \sum_{t=1}^{N} x_{d}^{(t)2} \end{bmatrix}$ [Proof]

Shan-Hung Wu (CS, NTHU)

From Least Squares to Linear Regression

• Let
$$X = \begin{bmatrix} 1 & x_1^{(1)} & \cdots & x_d^{(1)} \\ 1 & x_1^{(2)} & \cdots & x_d^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(N)} & \cdots & x_d^{(N)} \end{bmatrix}$$
, $w = [w_0, w_1, \cdots, w_d]^\top$, and $r = [r^{(1)}, r^{(2)}, \cdots, r^{(N)}]^\top$.

- Ideally, we want to solve w such that Xw = r, but impossible if N > d
 We can instead solve the "closet approximation:" argmin_w ||r-Xw||²
 ||r-Xw||² is exactly the SSE!
- The *least square problem*: find w such that $||r Xw||^2$ is minimized. Solution?

From Least Squares to Linear Regression

• Let
$$X = \begin{bmatrix} 1 & x_1^{(1)} & \cdots & x_d^{(1)} \\ 1 & x_1^{(2)} & \cdots & x_d^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(N)} & \cdots & x_d^{(N)} \end{bmatrix}$$
, $w = [w_0, w_1, \cdots, w_d]^\top$, and $r = [r^{(1)}, r^{(2)}, \cdots, r^{(N)}]^\top$.

- Ideally, we want to solve w such that Xw = r, but impossible if N > d
 We can instead solve the "closet approximation:" argmin_w ||r-Xw||²
 ||r-Xw||² is exactly the SSE!
- The *least square problem*: find w such that $||r Xw||^2$ is minimized. Solution?
 - $w^* = (X^T X)^{-1} X^T r$ if X is full column rank (remember the normal equations?)
 - $(X^{ op}X)^{-1}$ and $X^{ op}r$ are exactly A^{-1} and y seen previously

• What if X is not full column rank?

- What if X is not full column rank?
- Anyone in the set $X^{\dagger}r + \mathcal{N}(X)$ is the solution (remember the SVD solution to least squares?)
- Make X full column rank by changing the objective (to be explained later)

- Machine learning solutions need not be accurate
 - Close-to-optimal solutions enough for making good predictions
- Numeric methods suffice
 - E.g., gradient descent:

Repeat until convergence {

$$w := w - \eta \nabla emp(w; \mathcal{X}) = w + 2\eta \sum_{t=1}^{N} (r^{(t)} - w^{\top} \begin{bmatrix} 1 \\ x^{(t)} \end{bmatrix}) \begin{bmatrix} 1 \\ x^{(t)} \end{bmatrix};$$
}

• The step size η is called the *learning rate*

Regression

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation

- Logistic Regression
- Perceptron

- Wrapper Methods
- Direct Models

Non-Parametric Methods

- Instead of regression, we can perform the *interpolation* that fits a hypothesis $h : \mathbb{R} \times \Theta \to \mathbb{R}$ to examples, i.e., $h(x^{(t)}; \theta) = r^{(t)}$
 - $\bullet\,$ In polynomial interpolation, we can always fit a polynomial of degree $(N\!-\!1)$ to N 1-D points
 - Let $\theta = (w_0, \cdots, w_{N-1})$ and $h(x; \theta) = w_0 + w_1 x + \cdots + w_{N-1} x^{N-1}$, $x \in \mathbb{R}$
 - Obtain θ by solving

$$\begin{bmatrix} (x^{(1)})^0 & \cdots & (x^{(1)})^{N-1} \\ \vdots & \ddots & \vdots \\ (x^{(N)})^0 & \cdots & (x^{(N)})^{N-1} \end{bmatrix} \begin{bmatrix} w_0 \\ \vdots \\ w_{N-1} \end{bmatrix} = \begin{bmatrix} r^{(1)} \\ \vdots \\ r^{(N)} \end{bmatrix}$$

• The label of a new instance x' can be predicted by $y' = h(x'; \theta)$

Interpolation vs. Regression (2)

- Given 7 examples, the right shows the regression results using polynomials of degrees 1, 2, and 6
 - $x^{(t)}$ is the mileage of a used car and $r^{(t)}$ is the price
- It is unlikely that the real curve shapes like the 6th-order polynomial

- In the presence of noise, we don't need an exact fitting
- The target of regression is to catch the trend
 - Differs from interpolation in finding a "simple" hypothesis (e.g., low degree polynomial) that is "close enough" to the examples

How About Nonlinear Trend/Regression? (1)

- In the case of univariate regression (where x's are scalars), we can assume a polynomial hypothesis with an arbitrary degree k: $h(x; \theta) = w_0 + w_1 x + \dots + w_k x^k$,
- We can solve $\mathbf{w} = \begin{bmatrix} w_0 \\ \vdots \\ w_k \end{bmatrix}$ by $\mathbf{w} = \mathbf{A}^{-1}\mathbf{y}$, where $\mathbf{A} = \begin{bmatrix} N & \sum_{t=1}^{N} x^{(t)} & \cdots & \sum_{t=1}^{N} x^{(t)k} \\ \sum_{t=1}^{N} x^{(t)} & \sum_{t=1}^{N} x^{(t)2} & \cdots & \sum_{t=1}^{N} x^{(t)(k+1)} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{t=1}^{N} x^{(t)k} & \sum_{t=1}^{N} x^{(t)(k+1)} & \cdots & \sum_{t=1}^{N} x^{(t)2k} \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_k \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} \sum_{t=1}^{N} r^{(t)} \\ \sum_{t=1}^{N} r^{(t)} x^{(t)} \\ \vdots \\ \sum_{t=1}^{N} r^{(t)} x^{(t)k} \end{bmatrix}$ [Proof]

How About Nonlinear Trend/Regression? (2)

- In multivariate regression, we seldom assume h to be a polynomial with degree higher than 1
 - Why?

How About Nonlinear Trend/Regression? (2)

- In multivariate regression, we seldom assume h to be a polynomial with degree higher than 1
 - Why?
- Analytical simplicity
- One descriptive model:
 - The sign of w_j tells whether x_j has positive or negative effect on the prediction
 - The absolute value of w_j indicates how important the feature is (provided that features are in the same range); if w_j is close to 0, the feature can even be removed
- We can instead augment the inputs to achieve the effect of nonlinear regression (to be explained later)

Regression

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation

- Logistic Regression
- Perceptron

- Wrapper Methods
- Direct Models

Non-Parametric Methods

Probability Interpretation (1)

• Given
$$\mathfrak{X} = \{ \pmb{x}^{(t)}, r^{(t)} \}_{t=1}^N$$
, where $r^{(t)} \in \mathbb{R}$. Assume

- $(x^{(t)}, r^{(t)})$ are i.i.d samples drawn from some joint distribution of x and r (otherwise can never learn r from x)
- In particular, r^(t) = f(x^(t); θ) + ε, ε ~ N(0, β⁻¹) for some hyperparameter (i.e., constant fixed during the objective solving) β
- The marginal distribution $p(r|\mathbf{x})$ follows: $p(r|\mathbf{x}) = p_{N_{h(\mathbf{x}:\Theta)|B}-1}(r)$
- We want to estimate f using ${\mathcal X}$
 - Hypothesis: $h(\mathbf{x}; w_0, w_1, \cdots, w_d) = w_0 + w_1 x_1 + \cdots + w_d x_d$, a line
 - Once getting w_0, w_1, \dots, w_d , we can predict the unknown r' of a new instance \mathbf{x}' by $y' = \arg_y \max p(y|\mathbf{x}') = \arg_y \max p_{N_{h(\mathbf{x}', \Theta)}, \Theta^{-1}}(y) = h(\mathbf{x}'; \Theta)$
 - Note that we don't need to know β to make prediction

Probability Interpretation (2)

- How to obtain the estimate h of f? How to obtain θ ?
- Now let θ be a random variable, we can pick θ maximizing $p(\theta|\mathcal{X})$, the *posterior* probability
- Or, by Baye's theorem, θ maximizing the *likelihood* $p(X|\theta)$ (if we assume $p(\theta)$ remains the same for all θ)
- Or, θ maximizing the *log likelihood* $\log p(\mathfrak{X}|\theta) = \log \left(\prod_{t=1}^{N} p(\mathbf{x}^{(t)}, r^{(t)}|\theta)\right) = \log \left(\prod_{t=1}^{N} p(r^{(t)}|\mathbf{x}^{(t)}, \theta) p(\mathbf{x}^{(t)}|\theta)\right) = \log \left(\prod_{t=1}^{N} p(h(\mathbf{x}^{(t)}; \theta) + \epsilon |\mathbf{x}^{(t)}, \theta) p(\mathbf{x}^{(t)}|\theta)\right)$
- Ignoring $p(\mathbf{x}^{(t)}|\theta) = p(\mathbf{x}^{(t)})$ (since it is irrelevant to θ) and constants we have $\log p(\mathcal{X}|\theta) \propto -N \log \left(\sqrt{\frac{2\pi}{\beta}}\right) \frac{\beta}{2} \sum_{t=1}^{N} \left(r^{(t)} h(\mathbf{x}^{(t)};\theta)\right)^2$
- Dropping the first term and constants we have $\log p(\mathcal{X}|\theta) \propto -\sum_{t=1}^{N} \left(r^{(t)} - h(\boldsymbol{x}^{(t)};\theta) \right)^2; \text{ that is, we seek for } \theta$ minimizing the SSE (sum of square errors)!

• Linear Regression

- Interpolation vs. Rregression
- Probability Interpretation

Two-Class Classification

- Logistic Regression
- Perceptron
- **3** Multiclass Classification
 - Wrapper Methods
 - Direct Models

4 Non-Parametric Methods

- Given a *training dataset* $\mathcal{X} = \{(\mathbf{x}^{(t)}, r^{(t)})\}_{t=1}^{N}$, where $r^{(t)} \in \{1, -1\}$, and a testing instance \mathbf{x}' , predict the label of \mathbf{x}'
- Model (or *hypothesis class*): $\mathcal{H} = \{h : \mathcal{I} \times \Theta \rightarrow \{1, -1\}\}$

• Or $\mathcal{H} = \{h : \mathbb{I} \times \Theta \to \mathbb{R}\}$ with prediction $sgn(h(\mathbf{x}'; \theta))$

- Objective: $\arg_{\theta} \min \sum_{t=1}^{N} l(h(\mathbf{x}^{(t)}; \theta), r^{(t)})$ with some loss function l
 - Example: the **0-1** loss function: l(a,b) = 1 if $a \neq b$; 0 otherwise

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation

Two-Class Classification

- Logistic Regression
- Perceptron
- - Wrapper Methods
 - Direct Models

Logistic Function

• The *logistic function* (a special case of *sigmoid functions*) is defined as

$$g(z) = \frac{e^{z}}{e^{z} + 1} = \frac{1}{1 + e^{-z}}$$

• Always gives values between (0, 1)

- The larger the z, the higher the g(z)
- The smaller the z, the higher the 1 g(z)

Logistic Regression

- In regression, we learn $p(r|\mathbf{x}; \theta)$ from \mathcal{X} and make predictions by $y' = \arg \max_{y} p(y|\mathbf{x}'; \theta)$
- In *logistic regression* everything is the same except that P(r|x; θ) is modeled by a Bernoulli distribution parametrized by φ:

$$P(r|\mathbf{x}; \mathbf{\theta}) = \left\{ egin{array}{cc} \Phi, & ext{if } r = 1, \ 1 - \Phi, & ext{otherwise}, \end{array}
ight.$$

- We can simply write $P(r|\mathbf{x}; \theta) = \phi^q (1-\phi)^{(1-q)}$, where $q = \frac{r+1}{2}$
- Furthermore, $\phi = \pi(\mathbf{x}; \mathbf{\beta}) = \frac{e^{\mathbf{\beta}^{\top} \tilde{\mathbf{x}}}}{e^{\mathbf{\beta}^{\top} \tilde{\mathbf{x}}} + 1} = \frac{1}{1 + e^{-\mathbf{\beta}^{\top} \tilde{\mathbf{x}}}}$ is a deterministic function, where $\tilde{\mathbf{x}} = [1, \mathbf{x}]^{\top}$
 - $\bullet\,$ So the larger the projection of \widetilde{x} onto a line, the higher the φ
- Prediction: $y' = \arg \max_{y} p(y|\mathbf{x}'; \theta) = \arg \max_{y} \{\phi, 1 \phi\} = sgn(\boldsymbol{\beta}^{\top} \widetilde{\mathbf{x}'}) = sgn(\boldsymbol{w}^{\top} \mathbf{x}' + b)$

Fitting Logistic Regression Models (1)

• How to obtain β ?

Fitting Logistic Regression Models (1)

- How to obtain β?
 - By β maximizing $p(\beta|\mathcal{X})$
 - Or, by Bayes' Rule and assuming uniform $p(\beta)$, β maximizing $p(\mathfrak{X}|\beta)$
- Log-likelihood:

$$l(\boldsymbol{\beta}) = \log \prod_{t=1}^{N} p\left(\boldsymbol{x}^{(t)}, r^{(t)} | \boldsymbol{\beta}\right)$$

= $\log \prod_{t=1}^{N} P\left(r^{(t)} | \boldsymbol{x}^{(t)}, \boldsymbol{\beta}\right) p\left(\boldsymbol{x}^{(t)} | \boldsymbol{\beta}\right)$
 $\propto \log \prod_{t=1}^{N} \pi\left(\boldsymbol{x}^{(t)}; \boldsymbol{\beta}\right)^{q^{(t)}} \left(1 - \pi\left(\boldsymbol{x}^{(t)}; \boldsymbol{\beta}\right)\right)^{(1-q^{(t)})}$

•
$$p(\mathbf{x}^{(t)}|\mathbf{\beta}) = p(\mathbf{x}^{(t)})$$
 can be dropped
• $l(\mathbf{\beta}) = \sum_{t=1}^{N} \left\{ q^{(t)} \log \pi(\mathbf{x}^{(t)}; \mathbf{\beta}) + (1 - q^{(t)}) \log \left(1 - \pi(\mathbf{x}^{(t)}; \mathbf{\beta})\right) \right\} = \sum_{t=1}^{N} \left\{ q^{(t)} \mathbf{\beta}^{\top} \widetilde{\mathbf{x}}^{(t)} - \log \left(1 + e^{\mathbf{\beta}^{\top} \widetilde{\mathbf{x}}^{(t)}}\right) \right\}$ [Homework]

Fitting Logistic Regression Models (2)

• To maximize the log-likelihood, we set its derivative to zero:

$$\frac{\partial l(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \sum_{t=1}^{N} \widetilde{\boldsymbol{x}}^{(t)\top} \left(q^{(t)} - \pi \left(\boldsymbol{x}^{(t)}; \boldsymbol{\beta} \right) \right) = \boldsymbol{0}^{\top}$$

- \bullet Unlike the linear regression, we cannot solve β analytically in a closed-form
- How to obtain β?

Fitting Logistic Regression Models (2)

• To maximize the log-likelihood, we set its derivative to zero:

$$\frac{\partial l(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \sum_{t=1}^{N} \widetilde{\boldsymbol{x}}^{(t)\top} \left(q^{(t)} - \pi \left(\boldsymbol{x}^{(t)}; \boldsymbol{\beta} \right) \right) = \boldsymbol{0}^{\top}$$

- \bullet Unlike the linear regression, we cannot solve β analytically in a closed-form
- How to obtain β ? Iterative algorithms
- Gradient descent:

Repeat until convergence { $\boldsymbol{\beta} := \boldsymbol{\beta} + \eta \nabla l(\boldsymbol{\beta}) = \boldsymbol{\beta} + \eta \sum_{t=1}^{N} \widetilde{\boldsymbol{x}}^{(t)\top} \left(q^{(t)} - \pi \left(\boldsymbol{x}^{(t)}; \boldsymbol{\beta} \right) \right);$ }

- Observe that $l(\beta)$ is concave [Homework]
 - So iterative algorithms approach to global optimal

Newton's Method for Logistic Regression*

Update rule: $\boldsymbol{\beta} := \boldsymbol{\beta} - \left(\nabla^2 - \boldsymbol{l}(\boldsymbol{\beta})\right)^{-1} \nabla - \boldsymbol{l}(\boldsymbol{\beta}) = \boldsymbol{\beta} - \left(\nabla^2 \boldsymbol{l}(\boldsymbol{\beta})\right)^{-1} \nabla \boldsymbol{l}(\boldsymbol{\beta})$

• Given $q \in \mathbb{R}^N$ the vector of $q^{(t)}$'s, $X \in \mathbb{R}^{N \times (d+1)}$ the row matrix of $\widetilde{x}^{(t)}$'s, $\pi \in \mathbb{R}^N$ with the *t*th element $\pi(x^{(t)}; \beta)$, and $W \in \mathbb{R}^{N \times N}$ a diagonal matrix with the *t*th diagonal element $\pi(x^{(t)}; \beta) (1 - \pi(x^{(t)}; \beta))$, then

$$\nabla l(\boldsymbol{\beta}) = \left(\frac{\partial l(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}\right)^{\top} = \boldsymbol{X}^{\top} (\boldsymbol{q} - \boldsymbol{\pi}),$$

$$\nabla^{2} l(\boldsymbol{\beta}) = \left(\frac{\partial \nabla l(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}\right)^{\top} = \left(\frac{\partial \sum_{t=1}^{N} \tilde{\boldsymbol{x}}^{(t)} \left(\boldsymbol{q}^{(t)} - \boldsymbol{\pi} \left(\boldsymbol{x}^{(t)}; \boldsymbol{\beta}\right)\right)}{\partial \boldsymbol{\beta}}\right)^{\top}$$

$$= \left(-\sum_{t=1}^{N} \tilde{\boldsymbol{x}}^{(t)} \boldsymbol{\pi} \left(\boldsymbol{x}^{(t)}; \boldsymbol{\beta}\right) \left(1 - \boldsymbol{\pi} \left(\boldsymbol{x}^{(t)}; \boldsymbol{\beta}\right)\right) \boldsymbol{x}^{(t)\top}\right)^{\top} = -\boldsymbol{X}^{\top} \boldsymbol{W} \boldsymbol{X}$$

• Note that
$$g'(z) = \frac{1}{(1+e^{-z})^2}e^{-z} = \frac{1}{1+e^{-z}}\left(1-\frac{1}{1+e^{-z}}\right) = g(z)(1-g(z)).$$

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation

Two-Class Classification

- Logistic Regression
- Perceptron
- - Wrapper Methods
 - Direct Models

Non-Parametric Methods

- Recall that in logistic regression, we make prediction by $y' = \arg \max_{y} p(y|\mathbf{x}'; \theta) = \arg \max_{y} \{\phi, 1-\phi\} = \operatorname{sgn}(\boldsymbol{\beta}^{\top} \widetilde{\mathbf{x}'}) = \operatorname{sgn}(\boldsymbol{w}^{\top} \mathbf{x}' + b)$
- Why not just making prediction based on $sgn(w^{\top}x'+b)$ directly?

Perceptron (2)

• Model:
$$\mathcal{H} = \{f: f: \mathbb{R}^d \to \mathbb{R}, f(\mathbf{x}; \theta) = \mathbf{w}^\top \mathbf{x} + b\}$$

 $\Theta = \{\mathbf{w}, b: \mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}\}$

- A collection of hyperplanes
- Prediction: $y' = \operatorname{sgn}(f(x'))$
- Objective 1: any $f \in \mathcal{H}$ such that

•
$$\boldsymbol{w}^{\top} \boldsymbol{x}^{(t)} + b > 0$$
 if $r^{(t)} = 1$;
 $\boldsymbol{w}^{\top} \boldsymbol{x}^{(t)} + b < 0$ otherwise
• or simply $r^{(t)} (\boldsymbol{w}^{\top} \boldsymbol{x}^{(t)} + b) > 0$.
 $\forall t$

Non Separable Datasets

• What if the examples are *not* separable by a hyperplane?

Shan-Hung Wu (CS, NTHU)

Non Separable Datasets

• What if the examples are *not* separable by a hyperplane?

• Don't insist perfect separation as in Objective 1

Slacks

• Objective 2:

$$\begin{aligned} & \arg\min_{\boldsymbol{w},b,\boldsymbol{\xi}}\sum_{t=1}^{N}\xi_t\\ \text{subject to } r^{(t)}(\boldsymbol{w}^{\top}\boldsymbol{x}^{(t)}+b)>-\xi_t \text{ and } \xi_t \geqslant 0, \; \forall t=1,\cdots,N \end{aligned}$$

- ξ_t 's are called the *slacks*
- We minimize $\sum_{t=1}^{N} \xi_t$ instead of $\sum_{t=1}^{N} \xi_t^2$ to make the hypothesis robust to outliers
- Alternative form: $\arg\min_{w,b} \sum_{t=1}^{N} \max(0, -r^{(t)}(w^{\top}x^{(t)}+b))$
 - No slack to solve, no constraint, *convex*
- $l(h(\mathbf{x}^{(t)}; \mathbf{\theta}), r^{(t)}) := \max(0, -r^{(t)}(\mathbf{w}^{\top}\mathbf{x}^{(t)} + b))$ is called the *hinge loss* function (why?)
 - $emp(\theta; \mathfrak{X}) = \sum_{t=1}^{N} l(h(\mathbf{x}^{(t)}; \theta), r^{(t)})$

Training the Perceptron Classifier

• Let
$$\widetilde{\mathbf{x}}^{(t)} = \begin{bmatrix} \mathbf{x}^{(t)} \\ 1 \end{bmatrix}$$
 and $\widetilde{\mathbf{w}}^{(t)} = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$, we need to solve
 $\arg\min_{\widetilde{\mathbf{w}}} emp(\widetilde{\mathbf{w}}) := \sum_{t=1}^{N} \max(0, -r^{(t)}\widetilde{\mathbf{w}}^{\top}\widetilde{\mathbf{x}}^{(t)})$

• Let's consider the Gradient descent method due to its simplicity

•
$$\nabla emp(\widetilde{w}) = \sum_{t=1}^{N} \nabla l^{(t)}(\widetilde{w})$$
, where
 $\nabla l^{(t)}(\widetilde{w}) = \begin{cases} 0, & \text{if } r^{(t)}\widetilde{w}^{\top}\widetilde{x}^{(t)} > 0 \\ -r^{(t)}\widetilde{x}^{(t)}, & \text{otherwise} \end{cases}$

• Can be also written as $\nabla emp(\widetilde{\boldsymbol{w}}) = -\frac{1}{2} \sum_{t=1}^{N} \widetilde{\boldsymbol{x}}^{(t)\top} \left(r^{(t)} - \operatorname{sgn}(\widetilde{\boldsymbol{w}}^{\top} \widetilde{\boldsymbol{x}}) \right)$

Repeat until convergence {

$$\widetilde{w} := \widetilde{w} - \eta \nabla emp(\widetilde{w})$$

 $= \widetilde{w} + \eta' \sum_{t=1}^{N} \widetilde{x}^{(t)\top} \left(r^{(t)} - \operatorname{sgn}(\widetilde{w}^{\top} \widetilde{x}) \right),$
where $\eta' = \eta/2$
}

Remarks (1)

• A model for how individual neurons in human brain work

- Not good at recognizing non-linear classes/patterns
 - E.g., identifying an object in an image
- Improvements:
 - Chained to form a *neural network*
 - Make instances linearly separable (to be discussed later)

Remarks (2)

• If positive and negative examples are not linearly separable by $sgn(\beta^{\top}\widetilde{x'})$, the training algorithm will *not* converge

Solution?

Remarks (2)

• If positive and negative examples are not linearly separable by $sgn(\beta^{\top}\widetilde{x'})$, the training algorithm will *not* converge

Solution?

- Limit the maximum number of iterations, or
- Stop if $|emp(\widetilde{w}^{(new)}) emp(\widetilde{w}^{(old)})| < \epsilon$

Update Rules: Perceptron vs. Logistic Regression

• If we "harden" the logistic function
$$\pi(\pmb{x};\pmb{eta})=rac{1}{1+e^{-\pmb{eta}^{ op}\widehat{\pmb{x}}}}$$
 to

$$\pi(\mathbf{x}; \boldsymbol{\beta}) = \begin{cases} 1, & \text{if } \boldsymbol{\beta}^\top \widetilde{\mathbf{x}} \ge 0, \\ 0, & \text{otherwise,} \end{cases}$$

so that the gradient descent update rule becomes:

Repeat until convergence {

$$\boldsymbol{\beta} := \boldsymbol{\beta} + \eta \nabla l(\boldsymbol{\beta}) = \boldsymbol{\beta} + \eta \sum_{t=1}^{N} \widetilde{\boldsymbol{x}}^{(t)\top} \left(q^{(t)} - \pi \left(\boldsymbol{x}^{(t)}; \boldsymbol{\beta} \right) \right)$$

$$= \boldsymbol{\beta} + \eta' \sum_{t=1}^{N} \widetilde{\boldsymbol{x}}^{(t)\top} \left(r^{(t)} - \operatorname{sgn}(\boldsymbol{\beta}^{\top} \widetilde{\boldsymbol{x}}') \right),$$
where $q^{(t)} = \frac{r^{(t)}+1}{2}$ and $\eta' = \eta/2$
}

• Despite its cosmetic similarity with logistic regression, perceptron learning has no simple probabilistic interpretation

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation

- Logistic Regression
- Perceptron

Multiclass Classification

- Wrapper Methods
- Direct Models

- What if we have K classes instead of 2?
- Applications:
 - OCR (Optical Character Recognition)
 - Medical diagnosis
 - Surveillance, etc.

• Training set:
$$\mathcal{X} = \{ \mathbf{x}^{(t)}, \mathbf{r}^{(t)} \}_{t=1}^{N}$$
, where $\mathbf{r}^{(t)} \in \mathbb{R}^{K}$ and $r_{i}^{(t)} = \begin{cases} 1, & \mathbf{x}^{(t)} \in C_{i} \\ -1, & otherwise \end{cases}$

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation
- - Logistic Regression
 - Perceptron
- Multiclass Classification Wrapper Methods
 - Direct Models

1 vs. All (1)

- Assume a model consisting of *K* hypotheses *h_i*
 - There is no need to for these *K* hypotheses to belong to the same hypotheses class
- Perform the two-class classification *K* times
 - Each time treat the examples of a certain class as positive and the rest as negative
- How to handle the cases of doubt?

1 vs. All (1)

- Assume a model consisting of *K* hypotheses *h_i*
 - There is no need to for these *K* hypotheses to belong to the same hypotheses class
- Perform the two-class classification *K* times
 - Each time treat the examples of a certain class as positive and the rest as negative
- How to handle the cases of doubt?
 - Define decision boundaries,
 e.g., y' := arg max_i h_i(x'; θ_i)

• Pros:

- Easy to implement
- # classifiers grows with K
- Cons:
 - Time consuming (each of the K classifiers takes the whole dataset as input)
 - Each classifier deals with imbalance dataset

• Perform 1 vs. 1 classification $\begin{pmatrix} K \\ 2 \end{pmatrix}$ times, and predict by voting

Pros:

- Avoid creating imbalanced dataset for each classifier
- Faster and memory economic (each classifier takes only two classes in the dataset as input)
- Cons:
 - # classifiers grows with K^2 , not suitable for datasets with massive classes

	h_1		•••		h_L
C_1	-1	-1	-1	-1	1
	1	-1	1	1	-1
C_K	1	1	-1	-1	1

- Rows: predefined codewords of length *L*
- Columns: a particular grouping of examples for training a two-class classifier

- To make prediction:
 - Obtain a codeword for x' based on the predictions of L classifiers
 - Assign x' to the label with the most similar codeword
- If codewords are designed such that each pair has Hamming distance at least *s*, then $\lfloor \frac{s-1}{2} \rfloor$ wrong predictions can be tolerated

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation

- Logistic Regression
- Perceptron

Multiclass Classification Wrapper Methods

Direct Models

Non-Parametric Methods

Generalized Linear Models

ТВА

Shan-Hung Wu (CS, NTHU)

Supervised Learning

NetDB-ML, Spring 2015 50 / 56

Multi-Hyperplane Classifier

• Learn K separating hyperplanes simultaneously:

$$\begin{aligned} & \arg\min_{\{\boldsymbol{w}_i, b_i\}_{i=1}^K, \boldsymbol{\xi}} \sum_{t=1}^N \xi_{t,r} \\ \text{subject to } (\boldsymbol{w}_{idx(\boldsymbol{r}^{(t)})}^\top \boldsymbol{x}^{(t)} - b_{idx(\boldsymbol{r}^{(t)})}) - (\boldsymbol{w}_r^\top \boldsymbol{x}^{(t)} - b_r) > -\xi_{t,r} \\ & \text{ and } \xi_{t,r} \ge 0, \ \forall t, r \neq idx(\boldsymbol{r}^{(t)}) \end{aligned}$$

- For an example of class r, the corresponding hyperplane should give value higher than those given by other hyperplanes
- Prediction: $y' := \arg \max_i \boldsymbol{w}_i^\top \boldsymbol{x}' b_i$
- Hyperplanes are correlated
 - No one will give values significantly higher than the others
- In practice,
 - There is little or no performance improvement over the wrappers
 - Very slow and memory hungry

- Linear Regression
- Interpolation vs. Rregression
- Probability Interpretation

Two-Class Classification

- Logistic Regression
- Perceptron
- **3** Multiclass Classification
 - Wrapper Methods
 - Direct Models

4 Non-Parametric Methods

- There are another simple ways, call *k*-NN methods, to make predictions
- Given a test instance x', predict its label by the (weighted) average of labels of k examples in X most similar to x'
 - Applies to both continuous and discrete labels
- Needs a similarity metric k(x, y) between any two instances
 - E.g., cosin similarity: $k(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}^\top \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} \in [-1, 1]$
- Training: simply remember ${\mathfrak X}$

- k-NN methods are special cases of non-parametric (or memory-based) methods
 - Non-parametric in the sense that *f* cannot be described by parameters
 - Memory-based in that all data (rather than just parameters) need to be memorized during the training process
- Lazy since the hypothesis is obtained only before the prediction
- This allows the development of *local models*

Local Weighted Linear Regression

- Recall in (eager) linear regression, we fit $w \in \mathbb{R}^{d+1}$ to minimize the SSE: $\sum_{i} (r^{(i)} w^{\top} \begin{bmatrix} 1 \\ x^{(i)} \end{bmatrix})^2$
- Local model: fit w to minimize SSE local to the instance x' we want to predict:

$$\sum_{i} l(\boldsymbol{x}^{(i)}; \boldsymbol{x}') (r^{(i)} - \boldsymbol{w}^{\top} \begin{bmatrix} 1 \\ \boldsymbol{x}^{(i)} \end{bmatrix})^2$$

where $l: \mathbb{R}^d \to \mathbb{R}$ is a weighting function

- Idea: only examples nearby (or local to) x' should be taken into account in emp(θ; X)
- Possible choice for $l: l(\mathbf{x}^{(i)}; \mathbf{x}') := \exp\left(-\frac{(\mathbf{x}^{(i)}-\mathbf{x}')^2}{2\tau^2}\right)$ for some τ (mimics k-NN)

Summary of Supervised Learning Models

- Three main categories (either parametric or non-parametric):
- Those learning the *discriminant functions f*'s (no probability interpretation)
 - E.g., perceptron, kNN, etc.
- 2 Those based on probability and learn $p(r|\mathbf{x})$ directly
 - E.g., linear regression, logistic regression, etc.
 - $p(r|\mathbf{x}; \theta)$ with θ (constant) estimated from \mathcal{X}
 - Methods in 1 and 2 are called discriminative methods
- Those learn $p(r|\mathbf{x})$ indirectly from $p(\mathbf{x}|r)p(r)$
 - To be discussed later
 - These are called *generative methods*, as $p(\pmb{x}|r)p(r)$ explains how $\pmb{\mathcal{X}}$ is generated