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The Regression Problem

o Given

.. N ,
o a training dataset X = {(x),r)} " where x() € R”s are
examples (or instances or observations) consisting of attributes (or
inputs or features) and r() € R’s are labels, and

e a testing instance x’,

predict the label y’ of x/

e Example: stock price forecasting
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ML Process Revisited

© Data collection and preprocessing (e.g., integration, cleaning, etc.)
@ Model development

@ Assume a model that represents the posteriori knowledge we want to
discover. The model has parameters
@ Define an objective that measures “how good the model with a
particular combination of parameters can explain the data”
© Training: employ an algorithm that optimizes the objective by finding
the best (or good enough) parameters

Q Testing: evaluate the model performance on hold-out data
@ Using the model
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Modeling a Regressor

@ Model: Let the model be a collection of functions, called hypothesis
class and denoted as H ={h:J x ©® — R}, where J is the input space
(or feature space) and O is the set of all possible parameters

o A particular © € © instantiates a hypothesis h that makes the
prediction (or output) y' =h(x';0) >0

o Objective: argg minZ?’:ll(h(x(’);G),r(’)), where [ is some loss
function which penalizes the error of predictions made on the training
dataset

o We want the hypothesns to have the minimal empirical error:
emp(0;X) =Y N I(h(x1);0), 1)
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The Objective

e Common choice: argg mjnzg\’:1 [rm —h(xm;@)]2

e emp(0;X) = Zf/:l [r(’) —h(x(’);e)]2 has a specific name called the
Sum of Square Errors (SSE)

@ Alternatively, the objective can be formed using the absolute error:
arggy minZi\;l ‘r(’) —h(x(’);e)‘

o What is the difference? [Homework]
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Outline

© Regression
@ Linear Regression
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Linear Regression

@ Suppose x is a scalar and A is a line, i.e., h(x;0) = wix+wg, we have
the objective:

e To find wy and w; that minimizes

w22, (50 )

o where w = [wy,w;] " € R?
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Training: Analytic Solution (1)

@ We take the partial derivatives of emp with respect to wy and w; and
set them to 0

o We have a system of linear equations

S =Nwo+wy T x0 2
N N N
Zt:lxmrm =Wwo Zt:lxm +wi Zr:l (x(t))

N SN X "
o lLetA e ,WZ[ 0]and
PIARELCIED SN C10) Wi
N @)
1 F _
y= { Z%tlrlmxm } we can solve w by w =A"ly
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Training: Analytic Solution (2)

o A bit of arithmetic leads to

wo=T7r—wix
{wlz(zylxm (1) —er) (Zt p (x1) —NX2> '

where x = %Zi]xm and 7= %Zi\;l ) [Proof]
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Multivariate Linear Regression

i - 1
o Given x € R?, suppose h is linear: h(x;0) =w' [ 0 ] where

w=[wo,wi,---,wg] T € RIH!

@ We can solve w by w =A"ly, where y = = and
Zﬁv:l r(t)xfit)

N (1) N (1)

A Z':1x(1)2 e

N N (1 N ().t

Lox X XX

A= Zt—.l 1 Zz{ 1 . =1 .1 d [Proof]
N N 00 N 02
Zz:lxd Zz:lxd X Zt:1xd
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From Least Squares to Linear Regression

L T,
o Let X= xl_ xd_ ,w=[wo,wi, -, wgl", and
1 xN) xgv)
r=[rM, 2 ... T

o ldeally, we want to solve w such that Xw =r, but impossible if N > d

o We can instead solve the “closet approximation:” argmin,, |[r—Xw/|*
o |r—Xw]|* is exactly the SSE!

e The least square problem: find w such that ||r—Xw]||* is minimized.
Solution?
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From Least Squares to Linear Regression

U]
(2) (2)
l x .. x
o Let X = ! d_ ,w=[wo,wi, - .wgl T, and
1 xEN) x;N)
r= [ 2 . T

o ldeally, we want to solve w such that Xw =r, but impossible if N > d
o We can instead solve the “closet approximation:” argmin,, |[r—Xw/|*
o |r—Xw]|* is exactly the SSE!
e The least square problem: find w such that ||r—Xw]||* is minimized.
Solution?

o w*=(X"X)"'XTrif Xis full column rank (remember the normal
equations?)
o (X"X) ! and X r are exactly A~ and y seen previously
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Analytic Solution Revisited

o What if X is not full column rank?
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Analytic Solution Revisited

o What if X is not full column rank?

© Anyone in the set XTr+N(X) is the solution (remember the SVD
solution to least squares?)

@ Make X full column rank by changing the objective (to be explained
later)
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Training: Numeric Methods

@ Machine learning solutions need not be accurate
o Close-to-optimal solutions enough for making good predictions
@ Numeric methods suffice

o E.g., gradient descent:

Repeat until convergence {

1 1
wi=w-—nVemp(w;X)=w+2nY L (r)—w" [ x(® ] ) [ x(® ] |

}

@ The step size 1 is called the learning rate
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Outline

© Regression

@ Interpolation vs. Rregression
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Interpolation vs. Regression (1)

@ Instead of regression, we can perform the interpolation that fits a
hypothesis /1: R x © — R to examples, i.e., h(x");0) = r*)
o In polynomial interpolation, we can always fit a polynomial of degree
(N—1) to N 1-D points
o Let 0= (wp,---,wy_1) and h(x;0) =wo+wix+---+wy_12x¥ 1, xeR
e Obtain 0 by solving
(xm)o (xm)N—l Wo #()

(x(z;/))o (X(N)')N*’ Wy )

@ The label of a new instance x’ can be predicted by y’ = h(x’;0)

Shan-Hung Wu (CS, NTHU) Supervised Learning NetDB-ML, Spring 2015 17 / 56



Interpolation vs. Regression (2)

@ Given 7 examples, the right
shows the regression results
using polynomials of degrees 1,
2,and 6

o x() is the mileage of a used
car and r*) is the price

y: price
T

o It is unlikely that the real curve
shapes like the 6th-order
polynomial

1 1
x: milage
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Interpolation vs. Regression (3)

@ In the presence of noise, we don't need an exact fitting
@ The target of regression is to catch the trend

o Differs from interpolation in finding a “simple” hypothesis (e.g., low
degree polynomial) that is “close enough” to the examples
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How About Nonlinear Trend/Regression? (1)

@ In the case of univariate regression (where x's are scalars), we can
assume a polynomial hypothesis with an arbitrary degree k:
h(x;0) = wo+wix+- - +wixk,

wo
o We can solvew=| by w=A"y, where
Wik
_ N Zf’zlx(t) Zivzlx(t)k
N N v
A > a0 SN 02§V G
L Z?’:]x(t)k Zi\/zlx(t)(l;d) Zivzlx(t)lk
" %tzl(r)(t)( )
w1 o t x t
w=1| . | andy= - . [Proof]
L Wk SV 0k
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How About Nonlinear Trend/Regression? (2)

@ In multivariate regression, we seldom assume h to be a polynomial
with degree higher than 1

o Why?
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How About Nonlinear Trend/Regression? (2)

@ In multivariate regression, we seldom assume h to be a polynomial
with degree higher than 1

o Why?

O Analytical simplicity
© More descriptive model:

o The sign of w; tells whether x; has positive or negative effect on the
prediction

o The absolute value of w; indicates how important the feature is
(provided that features are in the same range); if w; is close to 0, the
feature can even be removed

© We can instead augment the inputs to achieve the effect of nonlinear
regression (to be explained later)
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Outline

© Regression

@ Probability Interpretation
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Probability Interpretation (1)

o Given X = {x ivl, where ) € R. Assume

° (x(’),rm) are i.i.d samples drawn from some joint distribution of x and
r (otherwise can never learn r from x)

o In particular, r) =f(x(;0)+¢, e ~N(0,p~") for some
hyperparameter (i.e., constant fixed during the objective solving) 3

o The marginal distribution p(r|x) follows: p(rlx) = =PV, 00— ()

o We want to estimate f using X

o Hypothesis: h(x;wo,wi, -+, wq) =wo+wix;+---+wgxy, a line

o Once getting wg, w1, -+ ,wy, we can predict the unknown r’ of a new
instance x” by y’ = arg, maxp(ylx’) = gy Maxpy, ooy (y) =h(x';0)

o Note that we don't need to know 3 to make prediction
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Probability Interpretation (2)

@ How to obtain the estimate & of f7 How to obtain 07

@ Now let 0 be a random variable, we can pick 6 maximizing p(0|X), the
posterior probability

e Or, by Baye's theorem, 0 maximizing the likelihood p(X|0) (if we
assume p(0) remains the same for all 0)

e Or, 0 maximizing the log likelihood logp(X|0) =
tog (T, p(x, r710)) =1log (T} p(r! ), 0)p(x0) )=
log (H,le (h x( );9) + elx(’),e)p(x(’)le))
e Ignoring p(x(|0) = p(x(!)) (since it is irrelevant to 0) and constants
_ 2 _ B () _ p(y(D)-91)2
we have logp(X|0) o —Nlog (,/ ) Zz:l (ri) —h(x1;0))
e Dropping the first term and constants we have

logp(X]0) o< Zt 1 ( — (x(’);e))z; that is, we seek for 0
minimizing the SSE (sum of square errors)!
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© Two-Class Classification
@ Logistic Regression
@ Perceptron
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Two-Class Classification Problem

e Given a training dataset X = {(x“),r(’))}ivzl, where r() € {1,—1},
and a testing instance x’, predict the label of x’

e Model (or hypothesis class): H={h:Ix© —{1,—1}}
o Or H={h:Jx0O — R} with prediction sgn(h(x’;0))
o Objective: argg minzyzll(h(x(’);e),rm) with some loss function [

o Example: the 0-1 loss function: I(a,b) =1 if a # b; 0 otherwise
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© Two-Class Classification
@ Logistic Regression
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Logistic Function

e The logistic function (a special . R
case of sigmoid functions) is ]
defined as

O a——
gl e+l 14e:

@ Always gives values between I
0.1

@ The larger the z, the higher the g(z)
@ The smaller the z, the higher the 1 —g(z)
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Logistic Regression

@ In regression, we learn p(rlx;0) from X and make predictions by
y' = argmax, p(ylx'; 0)

e In logistic regression everything is the same except that P(rlx;0) is
modeled by a Bernoulli distribution parametrized by ¢:

ay o, ifr=1,
Plrir;0) = { 1—¢, otherwise,
o We can simply write P(rx;0) = ¢4(1— ) =), where g = r+l
P'E 1

— = ~ is a deterministic
B 4] l4+eB'F

o Furthermore, =7t (x;B) =
function, where x = [l,x]T
o So the larger the projection of X onto a line, the higher the ¢
o Prediction: y’ =argmax, p(ylx’; 0) = argmax,{$p, | —d} =
sgn(B ' x’) =sgn(w'x’'+b)
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Fitting Logistic Regression Models (1)

@ How to obtain B7?
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Fitting Logistic Regression Models (1)

@ How to obtain B7?

e By B maximizing p(|X)
e Or, by Bayes' Rule and assuming uniform p(f3), B maximizing p(X|B)

o Log-likelihood:

1(B) =logTip (x.r"I)
=log[TV,P (rDx®, ) p (x(B)
(1) (1—¢1)

xlog[ T m(x;B)" (1—m(x";B))

o p(xIB) =p(x") can be dropped

o 1(B)= T2 {gogn (51 B) + (1~ tog (1 —n (e )} =
SV, {qm B %" —log (1 +eﬁT’?m) } [Homework]
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Fitting Logistic Regression Models (2)

@ To maximize the log-likelihood, we set its derivative to zero:

@ Unlike the linear regression, we cannot solve 3 analytically in a
closed-form

@ How to obtain B7?
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Fitting Logistic Regression Models (2)

@ To maximize the log-likelihood, we set its derivative to zero:

@ Unlike the linear regression, we cannot solve 3 analytically in a
closed-form

@ How to obtain 37 Iterative algorithms

o Gradient descent:

Repeat until convergence {

B:=B+nVIB) =p+nY i 7T ¢V —m(x);));

}

@ Observe that /() is concave [Homework]

o So iterative algorithms approach to global optimal

Shan-Hung Wu (CS, NTHU) Supervised Learning NetDB-ML, Spring 2015



Newton’s Method for Logistic Regression*

Update rule: B:=p— (V2—I(B)) ' V—I(B) = B— (VH(B)) ' VI(B)

o Given g € RN the vector of ¢g()'s, X € RV*(4+1) the row matrix of

J?m's, 7t € RN with the rth element ﬂ(x(t); [3), and W e RVXN 4
diagonal matrix with the rth diagonal element

T (x(’); [3) (1 —n(x(’); B)) then

i
vz(ﬁ):(a”‘”) —XT(g—n),

B
=(1) 0 _ . T
VZI(ﬁ)_(avaléB))T_ (azy_lx (q;; ﬂ(x(),[g)))
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© Two-Class Classification

@ Perceptron
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Perceptron (1)

o Recall that in logistic regression, we make prediction by y’ =
argmax, p(ylx’; ) = argmax,{¢p, | —d} = sgn(B'x’) =sgn(w ' x’'+b)
e Why not just making prediction based on sgn(w ' x’+b) directly?
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Perceptron (2)

o Model: H = °
{fif: RIS Rf(x;0) =wTx+b}
©={wb:weR!beR} A
o A collection of hyperplanes e ° P
@ Prediction: y’ =sgn(f(x’)) ’ /;/°
° Cl)1bjective 1: any f € H such /// .
that S ® e
a . Vs ]
o wxW4p>0ifr =1, e .
wTx(") +b < 0 otherwise . e
o or simply () (wTx) +b) >0, v
vt @
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Non Separable Datasets

@ What if the examples are not separable by a hyperplane?
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Non Separable Datasets

@ What if the examples are not separable by a hyperplane?

° //
. X Ve
° /// o
//// ¢
,/// ..

@ Don't insist perfect separation as in Objective 1

Shan-Hung Wu (CS, NTHU) Supervised Learning NetDB-ML, Spring 2015 36 / 56



@ Objective 2:

: N
argming p g Y, &
subject to r (wTx) +p) > -, and &, >0, Vr=1,---,N

o &,'s are called the slacks
o We minimize YV & instead of Y, &2 to make the hypothesis
robust to outliers

o Alternative form: argminw,beLImaX(O, —rD(wTx(® 1+ b))
o No slack to solve, no constraint, convex

o I(h(x"):0),r)) :=max(0,—r) (wTx") +b)) is called the hinge loss
function (why?)

o emp(0;X) =3 N 1(h(x");0), 1))
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Training the Perceptron Classifier

(1)

1
argming emp(w) := Zﬁvzl max (0, —r(’)ﬁ)—rf(t))

o Let's consider the Gradient descent method due to its simplicity

o Let ¥ = [ * ] and w') = [ Z } we need to solve

o Vemp(w) =3 VI (), where
_ 0, .f w0 >0
VI(I)(W) - (1)z(1) ;
—rx otherwise

o Can be also written as Vemp(w) = —% i\leg(t)'r (rm —sgn(WTf))

Repeat until convergence {
w =w—nVempw)
=i’ L EOT (r0 —sen(v ),
where 1" =1/2
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Remarks (1)

@ A model for how individual neurons in human brain work

Aclivation
Fundamental unit of a Neural Network // function

Lif Y wx >0

output = il
-1otherwise

A

"7 weights 0. -

Inputs

e Not good at recognizing non-linear classes/patterns
o E.g., identifying an object in an image
@ Improvements:

o Chained to form a neural network
o Make instances linearly separable (to be discussed later)
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Remarks (2)

e If positive and negative examples are not linearly separable by
sgn(B 'x’), the training algorithm will not converge

@ Solution?
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Remarks (2

o If posmve and negative examples are not linearly separable by
sgn(B "x’), the training algorithm will not converge

@ Solution?

o Limit the maximum number of iterations, or
e Stop if |emp(~("ew)) —emp( (old) )| <e
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Update Rules: Perceptron vs. Logistic Regression

1

14 B'% to

o If we “harden” the logistic function 7t(x;B) =

1, x>0,
0, otherwise,

Tr(x;B)z{

so that the gradient descent update rule becomes:

Repeat until convergence {
B =p+nVip)=p+ny 77 (¢ —n(x";p))
— B_i_n/zivv:l:f(l)—r (r(t) _Sgn(BT”x’/)> ,
where ¢l = ’(I)TH andn’ =n/2

@ Despite its cosmetic similarity with logistic regression, perceptron
learning has no simple probabilistic interpretation
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© Muilticlass Classification
@ Wrapper Methods
@ Direct Models
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Learning Multiple Classes

o What if we have K classes instead of 27
@ Applications:

e OCR (Optical Character Recognition)
o Medical diagnosis
o Surveillance, etc.

@ Training set: X :{x(’),rm}ﬁv:l, where rl*) ¢ RX and
(1) 1, xWed

r = )
! { —1, otherwise
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© Muilticlass Classification
@ Wrapper Methods
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1vs2&3

@ Assume a model consisting of K
hypotheses h;
o There is no need to for these

K hypotheses to belong to the
same hypotheses class

3vs1&2
@ Perform the two-class

classification K times

2vs1&3

o Each time treat the examples
of a certain class as positive
and the rest as negative

o How to handle the cases of
doubt?

Shan-Hung Wu (CS, NTHU) Supervised Learning NetDB-ML, Spring 2015 45 / 56



1vs2&3

@ Assume a model consisting of K
hypotheses h;
o There is no need to for these

K hypotheses to belong to the
same hypotheses class

3vs1&2
@ Perform the two-class 2vs18&3

classification K times /

. 'l1 vs2&3
o Each time treat the examples /

of a certain class as positive
and the rest as negative

o How to handle the cases of
doubt?

o Define decision boundaries,

e.g., y' :=argmax; h;(x’; 0;) 3vs1&2

\
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@ Pros:

o Easy to implement
o F# classifiers grows with K

o Cons:

e Time consuming (each of the K classifiers takes the whole dataset as
input)
o Each classifier deals with imbalance dataset
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N ) times, and predict by voting

@ Perform 1 vs. 1 classification (

@ Pros:

e Avoid creating imbalanced dataset for each classifier
o Faster and memory economic (each classifier takes only two classes in
the dataset as input)

e Cons:

o # classifiers grows with K2, not suitable for datasets with massive
classes
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Wrappers based on Error-Correcting Codes

@ To make prediction:

hy hy
Cil-1]-1]-1]-1]1 @ Obtain a codeword for x’
based on the predictions of L
: 1]-1]1 1]-1 classifiers
C¢k | 1|1 |-1|-1]1 @ Assign x’ to the label with

o Rows: predefined codewords of the most similar codeword

length L @ If codewords are designed such
that each pair has Hamming
distance at least s, then L%J
wrong predictions can be

tolerated

@ Columns: a particular grouping
of examples for training a
two-class classifier
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© Muilticlass Classification

@ Direct Models
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Generalized Linear Models

TBA
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Multi-Hyperplane Classifier

@ Learn K separating hyperplanes simultaneously:

. N
argminy,,, » 1K g 2 i1 &
subject to (w;x(rm )xm —bigeriny) — W] x —b) > —&,

and &, >0, V1, r # idx(r'"))

o For an example of class r, the corresponding hyperplane should give
value higher than those given by other hyperplanes
o Prediction: y’ :=argmax;w;'x’ —b;

@ Hyperplanes are correlated

o No one will give values significantly higher than the others
@ In practice,

o There is little or no performance improvement over the wrappers
o Very slow and memory hungry
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@ Non-Parametric Methods

Shan-Hung Wu (CS, NTHU) Supervised Learning NetDB-ML, Spring 2015 52 / 56



k-NN Methods

@ There are another simple ways, call k-NN methods, to make
predictions

o Given a test instance x’, predict its label by the (weighted) average of
labels of k examples in X most similar to x’

o Applies to both continuous and discrete labels

@ Needs a similarity metric k(x,y) between any two instances

o E.g., cosin similarity: k(x,y) = I;clﬁlyyll el-1,1]

@ Training: simply remember X
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Non-Parametric Methods

@ k-NN methods are special cases of non-parametric (or
memory-based) methods

o Non-parametric in the sense that f cannot be described by parameters
e Memory-based in that all data (rather than just parameters) need to be
memorized during the training process

@ Lazy since the hypothesis is obtained only before the prediction

@ This allows the development of local models
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Local Weighted Linear Regression

o Recall in (eager) linear regression, we fit w € RY*! to minimize the
: 1
SSE:Zi(r(’) —w' [ ) ])2

@ Local model: fit w to minimize SSE local to the instance x' we
want to predict:

i i 1
> i) (0w T [ <10 ])2

where [: R? — R is a weighting function
o Idea: only examples nearby (or local to) x’ should be taken into
account in emp(0;X)

@ Possible choice for I I(x'V);x') .= exp (—7/)2) for some T

(mimics k-NN)
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Summary of Supervised Learning Models

@ Three main categories (either parametric or non-parametric):

© Those learning the discriminant functions f’s (no probability
interpretation)

o E.g., perceptron, kNN, etc.
@ Those based on probability and learn p(r|x) directly

o E.g., linear regression, logistic regression, etc.
o p(rlx;0) with 6 (constant) estimated from X
o Methods in 1 and 2 are called discriminative methods

© Those learn p(rlx) indirectly from p(x|r)p(r)

o To be discussed later
o These are called generative methods, as p(x|r)p(r) explains how X is
generated
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