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The Regression Problem

Given

a training dataset X=
{(

x(t),r(t)
)}N

t=1, where x(t) ∈ Rd's are
examples (or instances or observations) consisting of attributes (or
inputs or features) and r(t) ∈ R's are labels, and
a testing instance x ′,

predict the label y ′ of x ′

Example: stock price forecasting
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ML Process Revisited

1 Data collection and preprocessing (e.g., integration, cleaning, etc.)

2 Model development

1 Assume a model that represents the posteriori knowledge we want to
discover. The model has parameters

2 De�ne an objective that measures �how good the model with a
particular combination of parameters can explain the data�

3 Training: employ an algorithm that optimizes the objective by �nding
the best (or good enough) parameters

4 Testing: evaluate the model performance on hold-out data

5 Using the model
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Modeling a Regressor

Model: Let the model be a collection of functions, called hypothesis

class and denoted as H = {h : I×Θ→ R}, where I is the input space
(or feature space) and Θ is the set of all possible parameters

A particular θ ∈Θ instantiates a hypothesis h that makes the
prediction (or output) y ′ = h(x ′;θ)> 0

Objective: argθ min
∑N

t=1 l(h(x(t);θ),r(t)), where l is some loss

function which penalizes the error of predictions made on the training
dataset

We want the hypothesis to have the minimal empirical error:
emp(θ;X) =

∑N
t=1 l(h(x(t);θ),r(t))
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The Objective

Common choice: argθ min
∑N

t=1
[
r(t)−h(x(t);θ)

]2
emp(θ;X) =

∑N
t=1
[
r(t)−h(x(t);θ)

]2
has a speci�c name called the

Sum of Square Errors (SSE)

Alternatively, the objective can be formed using the absolute error:
argθ min

∑N
t=1

∣∣r(t)−h(x(t);θ)
∣∣

What is the di�erence? [Homework]
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Linear Regression

Suppose x is a scalar and h is a line, i.e., h(x;θ) = w1x+w0, we have
the objective:

To �nd w0 and w1 that minimizes

emp(θ;X) =
∑N

t=1

(
r(t)−w>

[
1

x(t)

])2

,

where w = [w0,w1]
> ∈ R2
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Training: Analytic Solution (1)

We take the partial derivatives of emp with respect to w0 and w1 and
set them to 0

We have a system of linear equations{ ∑N
t=1 r(t) = Nw0 +w1

∑N
t=1 x(t)∑N

t=1 x(t)r(t) = w0
∑N

t=1 x(t)+w1
∑N

t=1
(
x(t)
)2

Let A =

[
N

∑N
t=1 x(t)∑N

t=1 x(t) ∑N
t=1
(
x(t)
)2

]
, w =

[
w0
w1

]
, and

y =
[ ∑N

t=1 r(t)∑N
t=1 r(t)x(t)

]
, we can solve w by w = A−1y
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Training: Analytic Solution (2)

A bit of arithmetic leads to{
w0 = r−w1x

w1 =
(∑N

t=1 x(t)r(t)− xrN
)
/
(∑N

t=1
(
x(t)
)2

−Nx2
) ,

where x = 1
N

∑N
t=1 x(t) and r = 1

N

∑N
t=1 r(t) [Proof]
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Multivariate Linear Regression

Given x ∈ Rd, suppose h is linear: h(x;θ) = w>
[

1
x(t)

]
, where

w = [w0,w1, · · · ,wd]
> ∈ Rd+1

We can solve w by w = A−1y, where y =


∑N

t=1 r(t)∑N
t=1 r(t)x(t)

1
...∑N

t=1 r(t)x(t)
d

 and

A =


N

∑N
t=1 x(t)

1 · · ·
∑N

t=1 x(t)
d∑N

t=1 x(t)
1

∑N
t=1 x(t)2

1 · · ·
∑N

t=1 x(t)
1 x(t)

d
...

...
. . .

...∑N
t=1 x(t)

d
∑N

t=1 x(t)
d x(t)

1 · · ·
∑N

t=1 x(t)2
d

 [Proof]
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From Least Squares to Linear Regression

Let X =


1 x(1)

1 · · · x(1)
d

1 x(2)
1 · · · x(2)

d
...

...
. . .

...

1 x(N)
1 · · · x(N)

d

, w = [w0,w1, · · · ,wd]
>, and

r = [r(1),r(2), · · · ,r(N)]>.

Ideally, we want to solve w such that Xw = r, but impossible if N > d

We can instead solve the �closet approximation:� argminw ‖r−Xw‖2

‖r−Xw‖2 is exactly the SSE!

The least square problem: �nd w such that ‖r−Xw‖2 is minimized.
Solution?

w∗ = (X>X)−1X>r if X is full column rank (remember the normal
equations?)
(X>X)−1 and X>r are exactly A−1 and y seen previously
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Analytic Solution Revisited

What if X is not full column rank?

1 Anyone in the set X†r+N(X) is the solution (remember the SVD
solution to least squares?)

2 Make X full column rank by changing the objective (to be explained
later)
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Training: Numeric Methods

Machine learning solutions need not be accurate

Close-to-optimal solutions enough for making good predictions

Numeric methods su�ce

E.g., gradient descent:

Repeat until convergence {

w := w−η∇emp(w;X) = w+2η
∑N

t=1(r
(t)−w>

[
1

x(t)

]
)

[
1

x(t)

]
;

}

The step size η is called the learning rate
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Interpolation vs. Regression (1)

Instead of regression, we can perform the interpolation that �ts a
hypothesis h : R×Θ→ R to examples, i.e., h(x(t);θ) = r(t)

In polynomial interpolation, we can always �t a polynomial of degree
(N −1) to N 1-D points
Let θ= (w0, · · · ,wN−1) and h(x;θ) = w0 +w1x+ · · ·+wN−1xN−1, x ∈ R
Obtain θ by solving
(
x(1)
)0 · · ·

(
x(1)
)N−1

...
. . .

...(
x(N)

)0 · · ·
(
x(N)

)N−1


 w0

...
wN−1

=

 r(1)

...

r(N)


The label of a new instance x ′ can be predicted by y ′ = h(x ′;θ)
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Interpolation vs. Regression (2)

Given 7 examples, the right
shows the regression results
using polynomials of degrees 1,
2, and 6

x(t) is the mileage of a used
car and r(t) is the price

It is unlikely that the real curve
shapes like the 6th-order
polynomial  x: milage

 y
: p

ri
ce
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Interpolation vs. Regression (3)

In the presence of noise, we don't need an exact �tting

The target of regression is to catch the trend

Di�ers from interpolation in �nding a �simple� hypothesis (e.g., low
degree polynomial) that is �close enough� to the examples
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How About Nonlinear Trend/Regression? (1)

In the case of univariate regression (where x's are scalars), we can
assume a polynomial hypothesis with an arbitrary degree k:
h(x;θ) = w0 +w1x+ · · ·+wkxk,

We can solve w =

 w0
...

wk

 by w = A−1y, where

A =


N

∑N
t=1 x(t) · · ·

∑N
t=1 x(t)k∑N

t=1 x(t) ∑N
t=1 x(t)2 · · ·

∑N
t=1 x(t)(k+1)

...
...

. . .
...∑N

t=1 x(t)k ∑N
t=1 x(t)(k+1) · · ·

∑N
t=1 x(t)2k

,

w =


w0
w1
...

wk

, and y =


∑N

t=1 r(t)∑N
t=1 r(t)x(t)

...∑N
t=1 r(t)x(t)k

 [Proof]

Shan-Hung Wu (CS, NTHU) Supervised Learning NetDB-ML, Spring 2015 20 / 56



How About Nonlinear Trend/Regression? (2)

In multivariate regression, we seldom assume h to be a polynomial
with degree higher than 1

Why?

1 Analytical simplicity

2 More descriptive model:

The sign of wj tells whether xj has positive or negative e�ect on the
prediction
The absolute value of wj indicates how important the feature is
(provided that features are in the same range); if wj is close to 0, the
feature can even be removed

3 We can instead augment the inputs to achieve the e�ect of nonlinear
regression (to be explained later)
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Probability Interpretation (1)

Given X= {x(t),r(t)}Nt=1, where r(t) ∈ R. Assume

(x(t),r(t)) are i.i.d samples drawn from some joint distribution of x and
r (otherwise can never learn r from x)
In particular, r(t) = f (x(t);θ)+ε, ε ∼ N(0,β−1) for some
hyperparameter (i.e., constant �xed during the objective solving) β
The marginal distribution p(r|x) follows: p(r|x) = pNh(x;θ),β−1 (r)

We want to estimate f using X

Hypothesis: h(x;w0,w1, · · · ,wd) = w0 +w1x1 + · · ·+wdxd, a line
Once getting w0,w1, · · · ,wd, we can predict the unknown r ′ of a new
instance x ′ by y ′ = argy maxp(y|x ′) = argy maxpNh(x ′;θ),β−1 (y) = h(x ′;θ)
Note that we don't need to know β to make prediction
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Probability Interpretation (2)

How to obtain the estimate h of f ? How to obtain θ?

Now let θ be a random variable, we can pick θ maximizing p(θ|X), the
posterior probability

Or, by Baye's theorem, θ maximizing the likelihood p(X|θ) (if we
assume p(θ) remains the same for all θ)

Or, θ maximizing the log likelihood logp(X|θ) =

log
(∏N

t=1 p(x(t),r(t)|θ)
)
= log

(∏N
t=1 p(r(t)|x(t),θ)p(x(t)|θ)

)
=

log
(∏N

t=1 p(h(x(t);θ)+ε|x(t),θ)p(x(t)|θ)
)

Ignoring p(x(t)|θ) = p(x(t)) (since it is irrelevant to θ) and constants

we have logp(X|θ)∝−N log
(√

2π
β

)
− β

2

∑N
t=1
(
r(t)−h(x(t);θ)

)2

Dropping the �rst term and constants we have

logp(X|θ)∝−
∑N

t=1
(
r(t)−h(x(t);θ)

)2
; that is, we seek for θ

minimizing the SSE (sum of square errors)!
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Two-Class Classi�cation Problem

Given a training dataset X=
{(

x(t),r(t)
)}N

t=1, where r(t) ∈ {1,−1},
and a testing instance x ′, predict the label of x ′

Model (or hypothesis class): H = {h : I×Θ→ {1,−1}}

Or H = {h : I×Θ→ R} with prediction sgn(h(x ′;θ))

Objective: argθ min
∑N

t=1 l(h(x(t);θ),r(t)) with some loss function l

Example: the 0-1 loss function: l(a,b) = 1 if a 6= b; 0 otherwise
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Logistic Function

The logistic function (a special
case of sigmoid functions) is
de�ned as

g(z) =
ez

ez +1
=

1
1+ e−z

Always gives values between
(0,1)

The larger the z, the higher the g(z)

The smaller the z, the higher the 1−g(z)
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Logistic Regression

In regression, we learn p(r|x;θ) from X and make predictions by
y ′ = argmaxy p(y|x ′;θ)
In logistic regression everything is the same except that P(r|x;θ) is
modeled by a Bernoulli distribution parametrized by φ:

P(r|x;θ) =
{

φ, if r = 1,
1−φ, otherwise,

We can simply write P(r|x;θ) = φq(1−φ)(1−q), where q = r+1
2

Furthermore, φ= π(x;β) = eβ
> x̃

eβ> x̃+1
= 1

1+e−β> x̃
is a deterministic

function, where x̃ = [1,x]>

So the larger the projection of x̃ onto a line, the higher the φ

Prediction: y ′ = argmaxy p(y|x ′;θ) = argmaxy{φ,1−φ}=
sgn(β>x̃ ′) = sgn(w>x ′+b)
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Fitting Logistic Regression Models (1)

How to obtain β?

By β maximizing p(β|X)
Or, by Bayes' Rule and assuming uniform p(β), β maximizing p(X|β)

Log-likelihood:

l(β) = log
∏N

t=1 p
(
x(t),r(t)|β

)
= log

∏N
t=1 P

(
r(t)|x(t),β

)
p
(
x(t)|β

)
∝ log

∏N
t=1π

(
x(t);β

)q(t) (
1−π

(
x(t);β

))(1−q(t))

p
(
x(t)|β

)
= p

(
x(t)
)
can be dropped

l(β) =
∑N

t=1
{

q(t) logπ
(
x(t);β

)
+
(
1−q(t)

)
log
(
1−π

(
x(t);β

))}
=∑N

t=1

{
q(t)β>x̃(t)− log

(
1+ eβ

>x̃(t)
)}

[Homework]

Shan-Hung Wu (CS, NTHU) Supervised Learning NetDB-ML, Spring 2015 30 / 56



Fitting Logistic Regression Models (1)

How to obtain β?

By β maximizing p(β|X)
Or, by Bayes' Rule and assuming uniform p(β), β maximizing p(X|β)

Log-likelihood:

l(β) = log
∏N

t=1 p
(
x(t),r(t)|β

)
= log

∏N
t=1 P

(
r(t)|x(t),β

)
p
(
x(t)|β

)
∝ log

∏N
t=1π

(
x(t);β

)q(t) (
1−π

(
x(t);β

))(1−q(t))

p
(
x(t)|β

)
= p

(
x(t)
)
can be dropped

l(β) =
∑N

t=1
{

q(t) logπ
(
x(t);β

)
+
(
1−q(t)

)
log
(
1−π

(
x(t);β

))}
=∑N

t=1

{
q(t)β>x̃(t)− log

(
1+ eβ

>x̃(t)
)}

[Homework]

Shan-Hung Wu (CS, NTHU) Supervised Learning NetDB-ML, Spring 2015 30 / 56



Fitting Logistic Regression Models (2)

To maximize the log-likelihood, we set its derivative to zero:

∂l(β)
∂β

=

N∑
t=1

x̃(t)>
(

q(t)−π
(

x(t);β
))

= 0>

Unlike the linear regression, we cannot solve β analytically in a
closed-form

How to obtain β?

Iterative algorithms

Gradient descent:

Repeat until convergence {

β := β+η∇l(β) = β+η
∑N

t=1 x̃(t)> (q(t)−π
(
x(t);β

))
;

}

Observe that l(β) is concave [Homework]

So iterative algorithms approach to global optimal
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Newton's Method for Logistic Regression*

Update rule: β := β−
(
∇2−l(β)

)−1∇−l(β) = β−
(
∇2l(β)

)−1∇l(β)

Given q ∈ RN the vector of q(t)'s, X ∈ RN×(d+1) the row matrix of

x̃(t)'s, π ∈ RN with the tth element π
(
x(t);β

)
, and W ∈ RN×N a

diagonal matrix with the tth diagonal element
π
(
x(t);β

)(
1−π

(
x(t);β

))
, then

∇l(β) =
(
∂l(β)
∂β

)>
= X> (q−π) ,

∇2l(β) =
(
∂∇l(β)
∂β

)>
=

∂∑N
t=1 x̃(t)

(
q(t)−π

(
x(t)

;β
))

∂β

>

=

(
−

N∑
t=1

x̃(t)π
(

x(t)
;β
)(

1−π
(

x(t)
;β
))

x(t)>
)>

=−X>WX

Note that g ′ (z) = 1
(1+e−z)2 e−z = 1

1+e−z

(
1− 1

1+e−z

)
= g(z)(1−g(z)).
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Perceptron (1)

Recall that in logistic regression, we make prediction by y ′ =
argmaxy p(y|x ′;θ) = argmaxy{φ,1−φ}= sgn(β>x̃ ′) = sgn(w>x ′+b)

Why not just making prediction based on sgn(w>x ′+b) directly?
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Perceptron (2)

Model: H ={
f : f : Rd→ R, f (x;θ) = w>x+b

}
,

Θ=
{

w,b : w ∈ Rd,b ∈ R
}

A collection of hyperplanes

Prediction: y ′ = sgn(f (x ′))
Objective 1: any f ∈H such
that

w>x(t)+b> 0 if r(t) = 1;
w>x(t)+b< 0 otherwise
or simply r(t)(w>x(t)+b)> 0,
∀t
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Non Separable Datasets

What if the examples are not separable by a hyperplane?

Don't insist perfect separation as in Objective 1
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Slacks

Objective 2:

argminw,b,ξ
∑N

t=1ξt

subject to r(t)(w>x(t)+b)>−ξt and ξt > 0, ∀t = 1, · · · ,N

ξt's are called the slacks
We minimize

∑N
t=1ξt instead of

∑N
t=1ξ

2
t to make the hypothesis

robust to outliers

Alternative form: argminw,b
∑N

t=1 max(0,−r(t)(w>x(t)+b))

No slack to solve, no constraint, convex

l(h(x(t);θ),r(t)) := max(0,−r(t)(w>x(t)+b)) is called the hinge loss

function (why?)

emp(θ;X) =
∑N

t=1 l(h(x(t);θ),r(t))
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Training the Perceptron Classi�er

Let x̃(t) =

[
x(t)

1

]
and w̃(t) =

[
w
b

]
, we need to solve

argminw̃ emp(w̃) :=
∑N

t=1 max(0,−r(t)w̃>x̃(t))

Let's consider the Gradient descent method due to its simplicity

∇emp(w̃) =
∑N

t=1∇l(t)(w̃), where

∇l(t)(w̃) =

{
0, if r(t)w̃>x̃(t) > 0
−r(t)x̃(t), otherwise

Can be also written as ∇emp(w̃) = − 1
2
∑N

t=1 x̃(t)>
(

r(t)− sgn(w̃>x̃)
)

Repeat until convergence {
w̃ := w̃−η∇emp(w̃)

= w̃+η ′
∑N

t=1 x̃(t)>
(

r(t)− sgn(w̃>x̃)
)
,

where η ′ = η/2
}
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Remarks (1)

A model for how individual neurons in human brain work

Not good at recognizing non-linear classes/patterns

E.g., identifying an object in an image

Improvements:

Chained to form a neural network
Make instances linearly separable (to be discussed later)
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Remarks (2)

If positive and negative examples are not linearly separable by
sgn(β>x̃ ′), the training algorithm will not converge

Solution?

Limit the maximum number of iterations, or
Stop if |emp(w̃(new))− emp(w̃(old))|< ε
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Update Rules: Perceptron vs. Logistic Regression

If we �harden� the logistic function π(x;β) = 1
1+e−β> x̃

to

π(x;β) =
{

1, if β>x̃ > 0,
0, otherwise,

so that the gradient descent update rule becomes:

Repeat until convergence {

β := β+η∇l(β) = β+η
∑N

t=1 x̃(t)> (q(t)−π
(
x(t);β

))
= β+η ′

∑N
t=1 x̃(t)>

(
r(t)− sgn(β>x̃ ′)

)
,

where q(t) = r(t)+1
2 and η ′ = η/2

}

Despite its cosmetic similarity with logistic regression, perceptron
learning has no simple probabilistic interpretation
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Outline

1 Regression

Linear Regression
Interpolation vs. Rregression
Probability Interpretation

2 Two-Class Classi�cation

Logistic Regression
Perceptron

3 Multiclass Classi�cation

Wrapper Methods
Direct Models

4 Non-Parametric Methods

Shan-Hung Wu (CS, NTHU) Supervised Learning NetDB-ML, Spring 2015 42 / 56



Learning Multiple Classes

What if we have K classes instead of 2?

Applications:

OCR (Optical Character Recognition)
Medical diagnosis
Surveillance, etc.

Training set: X= {x(t),r(t)}Nt=1, where r(t) ∈ RK and

r(t)
i =

{
1, x(t) ∈ Ci

−1, otherwise
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1 vs. All (1)

Assume a model consisting of K
hypotheses hi

There is no need to for these
K hypotheses to belong to the
same hypotheses class

Perform the two-class
classi�cation K times

Each time treat the examples
of a certain class as positive
and the rest as negative

How to handle the cases of

doubt?

De�ne decision boundaries,
e.g., y ′ := argmaxi hi(x ′;θi)
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1 vs. All (2)

Pros:

Easy to implement
# classi�ers grows with K

Cons:

Time consuming (each of the K classi�ers takes the whole dataset as
input)
Each classi�er deals with imbalance dataset
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1 vs 1

Perform 1 vs. 1 classi�cation

(
K
2

)
times, and predict by voting

Pros:

Avoid creating imbalanced dataset for each classi�er
Faster and memory economic (each classi�er takes only two classes in
the dataset as input)

Cons:

# classi�ers grows with K2, not suitable for datasets with massive
classes
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Wrappers based on Error-Correcting Codes

h1 · · · hL

C1 -1 -1 -1 -1 1
... 1 -1 1 1 -1

CK 1 1 -1 -1 1

Rows: prede�ned codewords of
length L

Columns: a particular grouping
of examples for training a
two-class classi�er

To make prediction:

1 Obtain a codeword for x ′
based on the predictions of L
classi�ers

2 Assign x ′ to the label with
the most similar codeword

If codewords are designed such
that each pair has Hamming
distance at least s, then

⌊ s−1
2

⌋
wrong predictions can be
tolerated
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Generalized Linear Models

TBA
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Multi-Hyperplane Classi�er

Learn K separating hyperplanes simultaneously:

argmin{wi,bi}
K
i=1,ξ

∑N
t=1ξt,r

subject to (w>idx(r(t))
x(t)−bidx(r(t)))−(w>r x(t)−br)>−ξt,r

and ξt,r > 0, ∀t,r 6= idx(r(t))

For an example of class r, the corresponding hyperplane should give
value higher than those given by other hyperplanes
Prediction: y ′ := argmaxi w>i x ′−bi

Hyperplanes are correlated

No one will give values signi�cantly higher than the others

In practice,

There is little or no performance improvement over the wrappers
Very slow and memory hungry
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k-NN Methods

There are another simple ways, call k-NN methods, to make
predictions

Given a test instance x ′, predict its label by the (weighted) average of
labels of k examples in X most similar to x ′

Applies to both continuous and discrete labels

Needs a similarity metric k(x,y) between any two instances

E.g., cosin similarity: k(x,y) = x>y
‖x‖‖y‖ ∈ [−1,1]

Training: simply remember X
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Non-Parametric Methods

k-NN methods are special cases of non-parametric (or
memory-based) methods

Non-parametric in the sense that f cannot be described by parameters
Memory-based in that all data (rather than just parameters) need to be
memorized during the training process

Lazy since the hypothesis is obtained only before the prediction

This allows the development of local models
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Local Weighted Linear Regression

Recall in (eager) linear regression, we �t w ∈ Rd+1 to minimize the

SSE:
∑

i(r
(i)−w>

[
1

x(i)

]
)2

Local model: �t w to minimize SSE local to the instance x ′ we
want to predict: ∑

i

l(x(i);x ′)(r(i)−w>
[

1
x(i)

]
)2

where l : Rd→ R is a weighting function

Idea: only examples nearby (or local to) x ′ should be taken into
account in emp(θ;X)

Possible choice for l: l(x(i);x ′) := exp
(
−

(x(i)−x ′)2

2τ2

)
for some τ

(mimics k-NN)
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Summary of Supervised Learning Models

Three main categories (either parametric or non-parametric):

1 Those learning the discriminant functions f 's (no probability
interpretation)

E.g., perceptron, kNN, etc.

2 Those based on probability and learn p(r|x) directly
E.g., linear regression, logistic regression, etc.
p(r|x;θ) with θ (constant) estimated from X

Methods in 1 and 2 are called discriminative methods

3 Those learn p(r|x) indirectly from p(x|r)p(r)
To be discussed later
These are called generative methods, as p(x|r)p(r) explains how X is
generated

Shan-Hung Wu (CS, NTHU) Supervised Learning NetDB-ML, Spring 2015 56 / 56


	Regression
	Linear Regression
	Interpolation vs. Rregression
	Probability Interpretation

	Two-Class Classification
	Logistic Regression
	Perceptron

	Multiclass Classification
	Wrapper Methods
	Direct Models

	Non-Parametric Methods

