
Solution of Assignment 4

January 12, 2016

1. In a second-order Markov chain, each state depends on the two previous states, i.e.,
P
[
X(t+1) = Sk|X(t) = Sj , X

(t−1) = Si, · · ·
]

= P
[
X(t+1) = Sk|X(t) = Sj , X

(t−1) = Si
]
.

Show that the second-order Markov chain can always be converted to a �rst-order Markov chain.
(Hint: by redesign the states)

Answer:
Denote p(w|y, z) = P

[
X(t+1) = w|X(t) = y,X(t−1) = z

]
Let Z(t) = (X(t), X(t+1))

We have P
[
Z(t+1) = (w,w′)|Z(t) = (y, z)

]
=

{
0 if w′ 6= y

p(w|y, z) otherwise

2. Prove that a Bayesian network must be a Directed Acyclic Graph (DAG).

Answer:
We proof by induction by considering Bayesian networks with i nodes, i ≥ 2. When i = 2, we
have either P (X1, X2) = P (X1|X2)P (X2) or P (X1, X2) = P (X2|X1)P (X1), which all results
in a DAG. Now suppose that every Bayesian network with i nodes is a DAG, and consider a
Bayesian network with i + 1 nodes given by P (X1, X2, · · · , Xi+1) =

∏i+1
j=1 P (Xj |parent(Xj)).

Let L be a node in the network that has no child. Then the subgraph corresponding to
{X1, X2, · · · , Xi+1}\L is a DAG based on our assumption. Since all links between nodes in
the subgraph and L have the same direction pointing to L, the Bayesian network cannot have
any path passing through L and therefore must still be a DAG.

3. Given random variables A, B, C, and D, answer true or false and justify your answer:

(a) {A} ⊥⊥ {B}|{C} implies {A} ⊥⊥ {B};
(b) {A} ⊥⊥ {B} implies {A} ⊥⊥ {B}|{C};
(c) {A} ⊥⊥ {B,C}|{D} implies {A} ⊥⊥ {B}|{D}.

Answer:

(a) False, as p(A,B) =
´
p(A,B,C)dC =

´
p(A,B|C)p(C)dC =

´
p(A|C)p(B|C)p(C)dC does

not generally equal to p(A)p(B) for all distributions.

(b) False, as p(A,B|C) = p(C|A,B)p(A,B)
p(C) = p(C|A,B)p(A)p(B)

p(C) does not generally equal to p(A|C)p(B|C) =
p(A|C)p(C|B)p(B)

p(C) .

(c) True, since p(A,B|D) =
´
p(A,B,C|D)dC =

´
p(A|D)p(B,C|D)dC = p(A|D)

´
p(B,C|D)dC =

p(A|D)p(B|D).
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4. Given a Hidden Markov model with time homogeneous Gaussian emission probability P [x(t)|z(t)
i , θi] =

1
(2π)d/2det(Σi)1/2

e−
1
2 (x(t)−µi)

>Σ−1
i (x(t)−µi), where θi = (µi,Σi). Consider the problem �nding

Θ = (π(1),A, {θk}Kk=1) using the EM algorithm. Show that maximizing Q(Θ; Θold) in the M-

step gives µi =
∑T

t=1 γ
(t)
i x(t)∑T

t=1 γ
(t)
i

and Σi =
∑T

t=1 γ
(t)
i (x(t)−µi)(x

(t)−µi)
>∑T

t=1 γ
(t)
i

.

Answer:
Q(Θ; Θold) =

∑k
i=1 ln(π

(1)
i )r

(1)
i +

∑T−1
t=1

∑K
i=1

∑K
j=1 ln(ai,j)ξ

(t)
i,j+

∑T
t=1

∑K
i=1 ln(P [x(t)|z(t)

i , θi])γ
(t)
i

s.t.
∑T
t=1 π

(1)
i = 1,

∑K
j=1 ai,j = 1 for all 1 ≤ i ≤ K

solve π(i): L(π(1), α) =
∑k
i=1 ln(π

(1)
i )γ

(1)
i − α(

∑k
i=1 π

(1)
i − 1)

solve A : L(A, {αi}ki=1) =
∑T−1
i=1

∑K
i=1

∑K
j=1 ln(ai,j)ξ

(t)
i,j −

∑K
i=1 αi(

∑k
j=1 ai,j − 1)

sovle {θi}ki=1 : max
∑T
t=1

∑K
i=1 ln(P [x(t)|z(t)

i , θi])γ
(t)
i , assume P [x(t)|z(t)

i , θi] ∼ N(~µi,Σi)

f =
∑T
t=1

∑K
i=1 ln(P [x(t)|z(t)

i , θi])γ
(t)
i =

− 1
2

∑T
t=1

∑K
i=1(x(t) − µi)>Σ−1

i (x(t) − µi)γ(t)
i −

∑T
t=1

∑K
i=1 ln(2π

d
2 det(Σi)

1
2 )γ

(t)
i

∂f
∂µi

= − 1
2 (
∑T
t=1 γ

(t)
i (x(t) − µi)> · 2Σ−1

i ) = 0 ⇒ µi =
∑T

t=1 γ
(t)
i x(t)∑T

t=1 γ
(t)
i

∂f

∂Σ−1
i

= − 1
2

∑T
t=1(x(t)−µi)>(x(t)−µi)γ(t)

i + 1
2

∑T
t=1 γ

(t)
i Σi = 0 ⇒ Σi =

∑T
t=1(x(t)−µi)

>(x(t)−µi)γ
(t)
i∑T

t=1 γ
(t)
i
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