Solution of Assignment 4

January 12, 2016

1. In a second-order Markov chain, each state depends on the two previous states, i.e., $P\left[X^{(t+1)}=S_{k} \mid X^{(t)}=S_{j}, X^{(t-1)}=S_{i}, \cdots\right]=P\left[X^{(t+1)}=S_{k} \mid X^{(t)}=S_{j}, X^{(t-1)}=S_{i}\right]$.
Show that the second-order Markov chain can always be converted to a first-order Markov chain. (Hint: by redesign the states)
Answer:
Denote $p(w \mid y, z)=P\left[X^{(t+1)}=w \mid X^{(t)}=y, X^{(t-1)}=z\right]$
Let $Z^{(t)}=\left(X^{(t)}, X^{(t+1)}\right)$
We have $P\left[Z^{(t+1)}=\left(w, w^{\prime}\right) \mid Z^{(t)}=(y, z)\right]= \begin{cases}0 & \text { if } w^{\prime} \neq y \\ p(w \mid y, z) & \text { otherwise }\end{cases}$
2. Prove that a Bayesian network must be a Directed Acyclic Graph (DAG).

Answer:
We proof by induction by considering Bayesian networks with i nodes, $i \geq 2$. When $i=2$, we have either $P\left(X_{1}, X_{2}\right)=P\left(X_{1} \mid X_{2}\right) P\left(X_{2}\right)$ or $P\left(X_{1}, X_{2}\right)=P\left(X_{2} \mid X_{1}\right) P\left(X_{1}\right)$, which all results in a DAG. Now suppose that every Bayesian network with i nodes is a DAG, and consider a Bayesian network with $i+1$ nodes given by $P\left(X_{1}, X_{2}, \cdots, X_{i+1}\right)=\prod_{j=1}^{i+1} P\left(X_{j} \mid \operatorname{parent}\left(X_{j}\right)\right)$. Let L be a node in the network that has no child. Then the subgraph corresponding to $\left\{X_{1}, X_{2}, \cdots, X_{i+1}\right\} \backslash L$ is a DAG based on our assumption. Since all links between nodes in the subgraph and L have the same direction pointing to L, the Bayesian network cannot have any path passing through L and therefore must still be a DAG.
3. Given random variables A, B, C, and D, answer true or false and justify your answer:
(a) $\{A\} \Perp\{B\} \mid\{C\}$ implies $\{A\} \Perp\{B\}$;
(b) $\{A\} \Perp\{B\}$ implies $\{A\} \Perp\{B\} \mid\{C\}$;
(c) $\{A\} \Perp\{B, C\} \mid\{D\}$ implies $\{A\} \Perp\{B\} \mid\{D\}$.

Answer:

(a) False, as $p(A, B)=\int p(A, B, C) d C=\int p(A, B \mid C) p(C) d C=\int p(A \mid C) p(B \mid C) p(C) d C$ does not generally equal to $p(A) p(B)$ for all distributions.
(b) False, as $p(A, B \mid C)=\frac{p(C \mid A, B) p(A, B)}{p(C)}=\frac{p(C \mid A, B) p(A) p(B)}{p(C)}$ does not generally equal to $p(A \mid C) p(B \mid C)=$ $\frac{p(A \mid C) p(C \mid B) p(B)}{p(C)}$.
(c) True, since $p(A, B \mid D)=\int p(A, B, C \mid D) d C=\int p(A \mid D) p(B, C \mid D) d C=p(A \mid D) \int p(B, C \mid D) d C=$ $p(A \mid D) p(B \mid D)$.
4. Given a Hidden Markov model with time homogeneous Gaussian emission probability $P\left[\boldsymbol{x}^{(t)} \mid z_{i}^{(t)}, \theta_{i}\right]=$ $\frac{1}{(2 \pi)^{d / 2} \operatorname{det}\left(\boldsymbol{\Sigma}_{i}\right)^{1 / 2}} e^{-\frac{1}{2}\left(\boldsymbol{x}^{(t)}-\boldsymbol{\mu}_{i}\right)^{\top} \boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}^{(t)}-\boldsymbol{\mu}_{i}\right)}$, where $\theta_{i}=\left(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right)$. Consider the problem finding $\Theta=\left(\boldsymbol{\pi}^{(1)}, \boldsymbol{A},\left\{\theta_{k}\right\}_{k=1}^{K}\right)$ using the EM algorithm. Show that maximizing $\mathcal{Q}\left(\Theta ; \Theta^{\text {old }}\right)$ in the Mstep gives $\boldsymbol{\mu}_{i}=\frac{\sum_{t=1}^{T} \gamma_{i}^{(t)} \boldsymbol{x}^{(t)}}{\sum_{t=1}^{T} \gamma_{i}^{(t)}}$ and $\boldsymbol{\Sigma}_{i}=\frac{\sum_{t=1}^{T} \gamma_{i}^{(t)}\left(\boldsymbol{x}^{(t)}-\boldsymbol{\mu}_{i}\right)\left(\boldsymbol{x}^{(t)}-\boldsymbol{\mu}_{i}\right)^{\top}}{\sum_{t=1}^{T} \gamma_{i}^{(t)}}$.

Answer:

$\mathcal{Q}\left(\Theta ; \Theta^{\text {old }}\right)=\sum_{i=1}^{k} \ln \left(\pi_{i}^{(1)}\right) r_{i}^{(1)}+\sum_{t=1}^{T-1} \sum_{i=1}^{K} \sum_{j=1}^{K} \ln \left(a_{i, j}\right) \xi_{i, j}^{(t)}+\sum_{t=1}^{T} \sum_{i=1}^{K} \ln \left(P\left[x^{(t)} \mid z_{i}^{(t)}, \theta_{i}\right]\right) \gamma_{i}^{(t)}$
s.t. $\sum_{t=1}^{T} \pi_{i}^{(1)}=1, \sum_{j=1}^{K} a_{i, j}=1$ for all $1 \leq i \leq K$
solve $\pi^{(i)}: L\left(\pi^{(1)}, \alpha\right)=\sum_{i=1}^{k} \ln \left(\pi_{i}^{(1)}\right) \gamma_{i}^{(1)}-\alpha\left(\sum_{i=1}^{k} \pi_{i}^{(1)}-1\right)$
solve $A: L\left(A,\left\{\alpha_{i}\right\}_{i=1}^{k}\right)=\sum_{i=1}^{T-1} \sum_{i=1}^{K} \sum_{j=1}^{K} \ln \left(a_{i, j}\right) \xi_{i, j}^{(t)}-\sum_{i=1}^{K} \alpha_{i}\left(\sum_{j=1}^{k} a_{i, j}-1\right)$
sovle $\left\{\theta_{i}\right\}_{i=1}^{k}: \max \sum_{t=1}^{T} \sum_{i=1}^{K} \ln \left(P\left[x^{(t)} \mid z_{i}^{(t)}, \theta_{i}\right]\right) \gamma_{i}^{(t)}$, assume $P\left[x^{(t)} \mid z_{i}^{(t)}, \theta_{i}\right] \sim N\left(\overrightarrow{\mu_{i}}, \Sigma_{i}\right)$
$f=\sum_{t=1}^{T} \sum_{i=1}^{K} \ln \left(P\left[x^{(t)} \mid z_{i}^{(t)}, \theta_{i}\right]\right) \gamma_{i}^{(t)}=$
$-\frac{1}{2} \sum_{t=1}^{T} \sum_{i=1}^{K}\left(x^{(t)}-\mu_{i}\right)^{\top} \Sigma_{i}^{-1}\left(x^{(t)}-\mu_{i}\right) \gamma_{i}^{(t)}-\sum_{t=1}^{T} \sum_{i=1}^{K} \ln \left(2 \pi^{\frac{d}{2}} \operatorname{det}\left(\Sigma_{i}\right)^{\frac{1}{2}}\right) \gamma_{i}^{(t)}$
$\frac{\partial f}{\partial \mu_{i}}=-\frac{1}{2}\left(\sum_{t=1}^{T} \gamma_{i}^{(t)}\left(x^{(t)}-\mu_{i}\right)^{\top} \cdot 2 \Sigma_{i}^{-1}\right)=0 \Rightarrow \mu_{i}=\frac{\sum_{t=1}^{T} \gamma_{i}^{(t)} x^{(t)}}{\sum_{t=1}^{T} \gamma_{i}^{(t)}}$
$\frac{\partial f}{\partial \Sigma_{i}^{-1}}=-\frac{1}{2} \sum_{t=1}^{T}\left(x^{(t)}-\mu_{i}\right)^{\top}\left(x^{(t)}-\mu_{i}\right) \gamma_{i}^{(t)}+\frac{1}{2} \sum_{t=1}^{T} \gamma_{i}^{(t)} \Sigma_{i}=0 \Rightarrow \Sigma_{i}=\frac{\sum_{t=1}^{T}\left(x^{(t)}-\mu_{i}\right)^{\top}\left(x^{(t)}-\mu_{i}\right) \gamma_{i}^{(t)}}{\sum_{t=1}^{T} \gamma_{i}^{(t)}}$

