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1. Given a training dataset X = {x(t), r(t)}Nt=1 where x
(t) ∈ R are scalars and the number of classes

is K = 2. Suppose instances are normally distributed within each class. Write in closes-form the
decision boundary z ∈ R, where P [C1|z] = P [C2|z].
Answer:

We want to �nd x such that P [C1|x] = P [C2|x], or equivalently from Bayes' rule, logP [x|C1] +
logP [C1] = logP [x|C2]+logP [C2]. Since instances are normally distributed within each class, we
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The decision boundaries are the roots of this equation, i.e., x = −b±
√
b2−4ac
2a .

2. Consider the univariate parametric classi�cation. Show that the priors P [Ci], i = 1, 2, · · · ,K,
for di�erent classes can be estimated jointly by assuming that P [Ci] follows a Multinomial dis-

tribution parametrized by θ = (ρ1, · · · , ρK) with constrains
∑K
i=1 ρi = 1 and by maximizing the

likelihood P [X|θ].
Answer:

Assuming P [Ci] follows a multinomial distribution parameterized by θ = ρ = (ρ1, · · · , ρK) with

constraints
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De�ne the objective as follows:
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To solve this constraint optimization problem, we add an Lagrange multiplier α to the objective
and rewrite it as
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Taking the partial derivatives of L with respect to each ρi and α, we have
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we have α = N .

The maximum likelihood estimator ρi therefore becomes
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3. Show that the Area Under the ROC Curve (AUC) is equal to the probability that a classi�er
ranks a randomly chosen positive instance higher than a randomly chosen negative one.
Answer:

Consider the horizontal partition of AUC based on each positive instance. The height of each
partition (shown as the shaded area in the above �gure) is the probability that a positive instance
is chosen. On the other hand, the width of the partition is the conditional probability that given
a positive instance is chosen, a randomly chosen negative instance is ranked after that positive
instance (note that each negative instance ranked before that positive instance contributes to the
portion of the horizontal bar before the shaded area). Therefore, summing up all the partition we
have the joint probability that a randomly chosen positive instance is ranked before a randomly
chosen negative one.
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