
Solution of Assignment 1

October 29, 2015

1. What is the di�erence in terms of the performance between the regression hypotheses based on

the objective argθmin
∑N
t=1

[
r(t) − h(x(t); θ)

]2
and argθmin

∑N
t=1

∣∣r(t) − h(x(t); θ)
∣∣ respectively?

Answer :

Since f(x) = x2 grows faster than f(x) = |x| as x increases, argθmin
∑N
t=1

[
r(t) − h(x(t); θ)

]2
will

be more sensitive to outliner than argθmin
∑N
t=1

∣∣r(t) − h(x(t); θ)
∣∣. However, argθmin

∑N
t=1

[
r(t) − h(x(t); θ)

]2
is easier to solve as it can be di�erentiated everywhere.

2. In logistic regression, show that l (β) =
∑N
t=1

{
y(t)β>x̃(t) − log

(
1 + eβ

>x̃(t)
)}

.

Answer :

As we know, φ = π(x;β) = eβ
T x̃

eβT x̃+1
= 1

e−βT x̃+1
.

l(β) =
∑N
t=1

{
y(t) log π(x;β) + (1− y(t)) log(1− π(x;β))

}
=
∑N
t=1

{
y(t) log 1

e−βT x̃+1
+ (1− y(t)) log(1− eβ

T x̃

eβT x̃+1
)
}

=
∑N
t=1

{
y(t)βT x̃(t) − y(t) log(eβT x̃(t)

+ 1) + (1− y(t))(log 1− log(eβ
T x̃ + 1)

}
=
∑N
t=1

{
y(t)βT x̃(t) − y(t) log(eβT x̃(t)

+ 1) + y(t) log(eβ
T x̃ + 1)− log(eβ

T x̃ + 1)
}

=
∑N
t=1

{
y(t)βT x̃(t) − log(eβ

T x̃ + 1)
}
.

3. Read Appendix C on the de�nitions of convex set and functions.

(a) Show that the intersection of convex sets,
⋂
i∈N Ci where Ci ⊆ Rn, is convex.

Answer :

Let x, y ∈
⋂
i∈N Ci, and let m = (1 − θ)x + θy, θ ∈ [0, 1]. Then m ∈ C1 because C1 is

convex. Similarly, m ∈ Ci, ∀i ∈ N because Ci are convex. Therefore, m ∈
⋂
i∈N Ci, which

implies that
⋂
i∈N Ci is convex.

(b) Show that the log-likelihood function for logistic regression, l (β), is concave.

Answer :

The log-likelyhood function for logistic regression is l(β) =
∑N
t=1

{
y(t)βT x̃(t) − log(1 + eβ

T x̃(t)

)
}
.

Based on the characteristic that the composition with monotone convex function is also con-

vex (p.26 of appendix C), log(1+eβ
T x̃(t)

) is a convex function, so −log(1+eβT x̃(t)

) is concave.
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(y(t)βT x̃(t) − log(1 + eβ
T x̃(t)

)) is also concave because y(t)βT x̃(t) is linear. l(β) is the sum
of concave functions. Therefore, it is concave.

4. Consider the locally weighted linear regression problem with the following objective:

arg min
w∈Rd+1

1

2

N∑
i=1

l(i)(w>
[

1
x(i)

]
− r(i))2

local to a given instance x′ whose label will be predicted, where l(i) = exp(− (x′−x(i))2

2τ2 ) for some
constant τ .

(a) Show that the above objective can be written as the form

(Xw − r)>L(Xw − r).

Specify clearly what X, r, and L are.

(b) Give a close form solution to w. (Hint: recall that we have w = (X>X)−1X>r in linear
regression when l(i) = 1 for all i)

(c) Suppose that the training examples (x(i), r(i)) are i.i.d. samples drawn from some joint
distribution with the marginal:

p(r(i)|x(i);w) =
1√

2πσ(i)
exp

− (r(i) −w>
[

1
x(i)

]
)2

2σ(i)2


where σ(i)'s are constants. Show that �nding the maximum likelihood of w reduces to
solving the locally weighted linear regression problem above. Specify clearly what the l(i)

is in terms of the σ(i)'s.

(d) Implement a linear regressor (see the spec for more details) on the provided 1D dataset.
Plot the data and your �tted line. (Hint: don't forget the intercept term)

(e) Implement 4 locally weighted linear regressors (see the spec for more details) on the same
dataset with τ = 0.1, 1, 10, and 100 respectively. Plot the data and your 4 �tted curves
(for di�erent x′s within the dataset range).

(f) Discuss what happens when τ is too small or large.

Answer :

(a) X =


1 x

(1)
1 · · · x

(1)
d

1 x
(2)
1 · · · x

(2)
d

...
...

. . .
...

1 x
(N)
1 · · · x

(N)
d

, w = [w0, w1, · · · , wd]T , r =
[
r(1), r(2), · · · , r(N)

]
, L is ans

identity matrix with diagonal elements [ l
(1)

2 , l
(2)

2 , · · · , l
(N)

2 ].

(b) w = (XTLX)−1XTLr.
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(c) argwmax p(w|X) = argwmax p(X|w) (by Bayes theorem)

= argwmax
∏N
i=1 p(x

(i), r(i)|w) = argwmax ln
∏N
i=1 p(r

(i)|x(i), w)p(x(i)|w)
= argwmax ln

∏N
i=1 p(r

(i)|x(i), w) = argwmax
∑N
i=1 ln p(r(i)|x(i), w)

= argwmax
∑N
i=1 ln

 1√
2πσ(i)

exp

− (r(i)−wT
 1
x(i)

)2

2σ(i)2




= argwmax
∑N
i=1

ln 1√
2πσ(i)

+ ln exp

− (r(i)−wT
 1
x(i)

)2

2σ(i)2




= argwmax
∑N
i=1

ln 1√
2πσ(i)

+−
(r(i)−wT

 1
x(i)

)2

2σ(i)2



= argwmax
∑N
i=1

− (r(i)−wT
 1
x(i)

)2

2σ(i)2

 (Since ln 1√
2πσ(i)

is irrelevant to w, it can be

ignored)

= argwmin
∑N
i=1

 (r(i)−wT
 1
x(i)

)2

2σ(i)2

== argwmin
∑N
i=1

(
1

2σ(i)2 (r
(i) − wT

[
1
x(i)

]
)2
)

So, l(i) = 1
σ(i)2 .

(d) see the coding solution

(e) see the coding solution

(f) When τ is too large, the predictions become almost the same as linear regression. When τ
is too small, the predictions are sensitive to local data points and tend to be in�uenced by
outliers easily.
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