Solution of Assignment 1

October 29, 2015

1. What is the difference in terms of the performance between the regression hypotheses based on the objective $\arg _{\theta} \min \sum_{t=1}^{N}\left[r^{(t)}-h\left(\boldsymbol{x}^{(t)} ; \theta\right)\right]^{2}$ and $\arg _{\theta} \min \sum_{t=1}^{N}\left|r^{(t)}-h\left(\boldsymbol{x}^{(t)} ; \theta\right)\right|$ respectively?
Answer :
Since $f(x)=x^{2}$ grows faster than $f(x)=|x|$ as x increases, $\arg _{\theta} \min \sum_{t=1}^{N}\left[r^{(t)}-h\left(\boldsymbol{x}^{(t)} ; \theta\right)\right]^{2}$ will be more sensitive to outliner than $\arg _{\theta} \min \sum_{t=1}^{N}\left|r^{(t)}-h\left(\boldsymbol{x}^{(t)} ; \theta\right)\right|$. However, $\arg _{\theta} \min \sum_{t=1}^{N}\left[r^{(t)}-h\left(\boldsymbol{x}^{(t)} ; \theta\right)\right]^{2}$ is easier to solve as it can be differentiated everywhere.
2. In logistic regression, show that $l(\boldsymbol{\beta})=\sum_{t=1}^{N}\left\{y^{(t)} \boldsymbol{\beta}^{\top} \widetilde{\boldsymbol{x}}^{(t)}-\log \left(1+e^{\boldsymbol{\beta}^{\top} \widetilde{\boldsymbol{x}}^{(t)}}\right)\right\}$.

Answer :
As we know, $\phi=\pi(x ; \beta)=\frac{e^{\beta^{T} \tilde{x}}}{e^{\beta^{T} \tilde{x}}+1}=\frac{1}{e^{-\beta^{T} \tilde{x}}+1}$.

$$
\begin{aligned}
& l(\beta)=\sum_{t=1}^{N}\left\{y^{(t)} \log \pi(x ; \beta)+\left(1-y^{(t)}\right) \log (1-\pi(x ; \beta))\right\} \\
& =\sum_{t=1}^{N}\left\{y^{(t)} \log \frac{1}{e^{-\beta^{T} \tilde{x}}+1}+\left(1-y^{(t)}\right) \log \left(1-\frac{e^{\beta^{T} \tilde{x}}}{e^{\beta^{T} \tilde{x}}+1}\right)\right\} \\
& =\sum_{t=1}^{N}\left\{y^{(t)} \beta^{T} \tilde{x}^{(t)}-y^{(t)} \log \left(e^{\beta^{T} \tilde{x}^{(t)}}+1\right)+\left(1-y^{(t)}\right)\left(\log 1-\log \left(e^{\beta^{T} \tilde{x}}+1\right)\right\}\right. \\
& =\sum_{t=1}^{N}\left\{y^{(t)} \beta^{T} \tilde{x}^{(t)}-y^{(t)} \log \left(e^{\beta^{T} \tilde{x}^{(t)}}+1\right)+y^{(t)} \log \left(e^{\beta^{T} \tilde{x}}+1\right)-\log \left(e^{\beta^{T} \tilde{x}}+1\right)\right\} \\
& =\sum_{t=1}^{N}\left\{y^{(t)} \beta^{T} \tilde{x}^{(t)}-\log \left(e^{\beta^{T} \tilde{x}}+1\right)\right\} .
\end{aligned}
$$

3. Read Appendix C on the definitions of convex set and functions.
(a) Show that the intersection of convex sets, $\bigcap_{i \in \mathbb{N}} C_{i}$ where $C_{i} \subseteq \mathbb{R}^{n}$, is convex.

Answer :
Let $x, y \in \bigcap_{i \in N} C_{i}$, and let $m=(1-\theta) x+\theta y, \theta \in[0,1]$. Then $m \in C_{1}$ because C_{1} is convex. Similarly, $m \in C_{i}, \forall i \in N$ because C_{i} are convex. Therefore, $m \in \bigcap_{i \in N} C_{i}$, which implies that $\bigcap_{i \in N} C_{i}$ is convex.
(b) Show that the log-likelihood function for logistic regression, $l(\boldsymbol{\beta})$, is concave.

Answer :

The log-likelyhood function for logistic regression is $l(\beta)=\sum_{t=1}^{N}\left\{y^{(t)} \beta^{T} \tilde{x}^{(t)}-\log \left(1+e^{\beta^{T}} \tilde{x}^{(t)}\right)\right\}$.
Based on the characteristic that the composition with monotone convex function is also convex (p .26 of appendix C) $\log \left(1+e^{\beta^{T} \tilde{x}^{(t)}}\right)$ is a convex function, so $-\log \left(1+e^{\beta^{T} \tilde{x}^{(t)}}\right)$ is concave.
$\left(y^{(t)} \beta^{T} \tilde{x}^{(t)}-\log \left(1+e^{\beta^{T}} \tilde{x}^{(t)}\right)\right)$ is also concave because $y^{(t)} \beta^{T} \tilde{x}^{(t)}$ is linear. $l(\beta)$ is the sum of concave functions. Therefore, it is concave.
4. Consider the locally weighted linear regression problem with the following objective:

$$
\arg \min _{\boldsymbol{w} \in \mathbb{R}^{d+1}} \frac{1}{2} \sum_{i=1}^{N} l^{(i)}\left(\boldsymbol{w}^{\top}\left[\begin{array}{c}
1 \\
\boldsymbol{x}^{(i)}
\end{array}\right]-r^{(i)}\right)^{2}
$$

local to a given instance \boldsymbol{x}^{\prime} whose label will be predicted, where $l^{(i)}=\exp \left(-\frac{\left(\boldsymbol{x}^{\prime}-\boldsymbol{x}^{(i)}\right)^{2}}{2 \tau^{2}}\right)$ for some constant τ.
(a) Show that the above objective can be written as the form

$$
(\boldsymbol{X} \boldsymbol{w}-\boldsymbol{r})^{\top} \boldsymbol{L}(\boldsymbol{X} \boldsymbol{w}-\boldsymbol{r}) .
$$

Specify clearly what $\boldsymbol{X}, \boldsymbol{r}$, and \boldsymbol{L} are.
(b) Give a close form solution to \boldsymbol{w}. (Hint: recall that we have $\boldsymbol{w}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{r}$ in linear regression when $l^{(i)}=1$ for all i)
(c) Suppose that the training examples $\left(\boldsymbol{x}^{(i)}, r^{(i)}\right)$ are i.i.d. samples drawn from some joint distribution with the marginal:

$$
p\left(r^{(i)} \mid \boldsymbol{x}^{(i)} ; \boldsymbol{w}\right)=\frac{1}{\sqrt{2 \pi \sigma^{(i)}}} \exp \left(-\frac{\left(r^{(i)}-\boldsymbol{w}^{\top}\left[\begin{array}{c}
1 \\
\boldsymbol{x}^{(i)}
\end{array}\right]\right)^{2}}{2 \sigma^{(i) 2}}\right)
$$

where $\sigma^{(i)}$'s are constants. Show that finding the maximum likelihood of \boldsymbol{w} reduces to solving the locally weighted linear regression problem above. Specify clearly what the $l^{(i)}$ is in terms of the $\sigma^{(i)}$'s.
(d) Implement a linear regressor (see the spec for more details) on the provided 1D dataset. Plot the data and your fitted line. (Hint: don't forget the intercept term)
(e) Implement 4 locally weighted linear regressors (see the spec for more details) on the same dataset with $\tau=0.1,1,10$, and 100 respectively. Plot the data and your 4 fitted curves (for different $\boldsymbol{x}^{\prime} \mathrm{s}$ within the dataset range).
(f) Discuss what happens when τ is too small or large.

Answer :
(a) $X=\left[\begin{array}{cccc}1 & x_{1}^{(1)} & \cdots & x_{d}^{(1)} \\ 1 & x_{1}^{(2)} & \cdots & x_{d}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1}^{(N)} & \cdots & x_{d}^{(N)}\end{array}\right], w=\left[w_{0}, w_{1}, \cdots, w_{d}\right]^{T}, r=\left[r^{(1)}, r^{(2)}, \cdots, r^{(N)}\right], L$ is ans identity matrix with diagonal elements $\left[\frac{l^{(1)}}{2}, \frac{l^{(2)}}{2}, \cdots, \frac{l^{(N)}}{2}\right]$.
(b) $w=\left(X^{T} L X\right)^{-1} X^{T} L r$.
(c) $\arg _{w} \max p(w \mid X)=\arg _{w} \max p(X \mid w)$ (by Bayes theorem)

$$
=\arg _{w} \max \prod_{i=1}^{N} p\left(x^{(i)}, r^{(i)} \mid w\right)=\arg _{w} \max \ln \prod_{i=1}^{N} p\left(r^{(i)} \mid x^{(i)}, w\right) p\left(x^{(i)} \mid w\right)
$$

$$
=\arg _{w} \max \ln \prod_{i=1}^{N} p\left(r^{(i)} \mid x^{(i)}, w\right)=\arg _{w} \max \sum_{i=1}^{N} \ln p\left(r^{(i)} \mid x^{(i)}, w\right)
$$

$$
=\arg _{w} \max \sum_{i=1}^{N} \ln \left(\frac{1}{\sqrt{2 \pi \sigma^{(i)}}} \exp \left(-\frac{\left(r^{(i)}-w^{T}\left[\begin{array}{c}
1 \\
x^{(i)}
\end{array}\right]\right)^{2}}{2 \sigma^{(i) 2}}\right)\right)
$$

$=\arg _{w} \max \sum_{i=1}^{N}\left(\ln \frac{1}{\sqrt{2 \pi \sigma^{(i)}}}+\ln \exp \left(-\frac{\left(r^{(i)}-w^{T}\left[\begin{array}{c}1 \\ x^{(i)}\end{array}\right]\right)^{2}}{2 \sigma^{(i) 2}}\right)\right)$
$=\arg _{w} \max \sum_{i=1}^{N}\left(\ln \frac{1}{\sqrt{2 \pi \sigma^{(i)}}}+-\frac{\left(r^{(i)}-w^{T}\left[\begin{array}{c}1 \\ x^{(i)}\end{array}\right]\right)^{2}}{2 \sigma^{(i) 2}}\right)$
$=\arg _{w} \max \sum_{i=1}^{N}\left(-\frac{\left(r^{(i)}-w^{T}\left[\begin{array}{c}1 \\ x^{(i)}\end{array}\right]\right)^{2}}{2 \sigma^{(i) 2}}\right) \quad\left(\right.$ Since $\ln \frac{1}{\sqrt{2 \pi \sigma^{(i)}}}$ is irrelevant to w, it can be
ignored)
$=\arg _{w} \min \sum_{i=1}^{N}\left(\frac{\left(r^{(i)}-w^{T}\left[\begin{array}{c}1 \\ x^{(i)}\end{array}\right]\right)^{2}}{2 \sigma^{(i) 2}}\right)==\arg _{w} \min \sum_{i=1}^{N}\left(\frac{1}{2 \sigma^{(i) 2}}\left(r^{(i)}-w^{T}\left[\begin{array}{c}1 \\ x^{(i)}\end{array}\right]\right)^{2}\right)$
So, $l^{(i)}=\frac{1}{\sigma^{(i) 2}}$.
(d) see the coding solution
(e) see the coding solution
(f) When τ is too large, the predictions become almost the same as linear regression. When τ is too small, the predictions are sensitive to local data points and tend to be influenced by outliers easily.

